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Abstract- Significant operational cost and energy sav-
ings can be achieved by optimising the schedules of
pumps, which pump water from source reservoirs to
storage tanks, in Water Distribution Networks. Despite
the fact that Pump Scheduling Problem involves sev-
eral conflictive objectives, few studies have considered
multi-objective optimisation in terms of Pareto optimal-
ity. Our approach links a well-known multi-objective
optimiser, SPEA2, with a hydraulic simulator, EPANET,
in order to provide a Pareto set of explicit schedules.
Since only fixed speed pumps and fixed time intervals
are considered, we use a natural binary representation
and simple and straightforward initialisation and re-
combination operators. Unlike earlier studies, feasibil-
ity constraints are handled by a methodology based on
the dominance relation rather than using penalty func-
tions or reparation mechanisms. We test the proposed
approach using a network instance and an assessment of
the results is carried out by means of empirical attain-
ment surfaces. The results show that the proposed ap-
proach is able to obtain better schedules than the state-
of-the-art single-objective algorithm for this network in-
stance and within the same number of function evalua-
tions.

1 Introduction

In Water Distribution Networks, water is pumped from
reservoirs into tanks where it is stored during periods of low
demand and released during periods of high demand. Costs
incurred for the operation and maintenance of pumps con-
stitute the major part of the budget required for management
of Water Distribution Networks and can amount to as high
as 90% of the operating costs. Therefore, great savings in
operational costs can be obtained by carefully scheduling
the operations of pumps. Operational costs include cost of
the electrical energy consumed during a time period (elec-
trical consumption charge), cost associated with the maxi-
mum amount of power consumed during any time interval
(demand charge) and maintenance costs due to the wearing
on pumps caused by frequent switching of pumps, that is,
changing the state of a pump from off to on.

The objective of Pump Scheduling Problem is to min-
imise the above cost whilst satisfying physical and opera-
tional constraints. These constraints include supplying re-
quired volume of water at demand nodes with adequate
pressure and maintaining water levels inside tanks within
maximum and minimum limits. Since pumps are scheduled

over a time period, usually 24 hours, we must achieve pe-
riodicity between supply and demand. Therefore, another
feasibility constraint is that the volume of water in the tanks
at the end of the time period is not lower than the volume at
the start of time period.

The problem of scheduling the operation of pumps to
minimise a single objective has been studied using many
approaches. Linear, non-linear, integer, dynamic [1] and
mixed [2] programming are some of these approaches. A
review of earlier studies was carried out by Ormsbee and
Lansey [3].

Complex water distribution networks could not be rep-
resented realistically by these methods due to their inher-
ent limitations. Therefore, researchers have considered the
application of Genetic Algorithms [4, 5, 6, 7, 8] and other
techniques including Particle Swarm Optimisation [9] and
Simulated Annealing [10, 11]. The objective in most of
these studies was to minimise electricity cost. Other objec-
tives were incorporated as penalties to the objective func-
tion. However, little attention has been given to the multi-
objective nature of the Pump Scheduling problem.

In this work, we study the multi-objective optimisation
of pump scheduling with respect to both electricity cost and
number of pump switches. While in single objective opti-
misation the goal is to find the optimal solution, in multi-
objective optimisation defined in terms of Pareto optimality
the goal is to find, or at least approximate to, theoptimal
Pareto set, that is, the set of feasible solutions such that none
of them is dominated by any other feasible solution. A so-
lution dominates another, if the former is not worse than the
later for each objective value and better for at least one ob-
jective. When neither of two solutions dominate each other,
they are mutually nondominated. As in single objective op-
timisation, given two solutions with equal objective values,
one of them is considered to be dominated by the other.

Savic et al. [12] studied a bi-objective problem: minimi-
sation of both the electricity cost and the number of pump
switches. They used a hybrid approach (a genetic algorithm
combined with a local search) based on Goldberg’s Pareto
optimal ranking [13]. Roughly, nondominated solutions in
the current population are assigned rank one and then re-
moved from the current population. Then, nondominated
solutions in the reduced population are given rank two. This
procedure is repeated until a rank has been assigned to all
solutions in the current population and the fitness of each
solution is calculated according to their rank. In their ap-
proach, constraint violations on tank water levels were in-
corporated into the electricity cost as penalties. This may



result in a Pareto set containing infeasible solutions. To
prevent this, they assigned all infeasible solutions a rank
greater than one.

Sotelo et al. [14] compared the performance of sev-
eral multi-objective evolutionary algorithms (MOEA) for
the pump scheduling problem. They concluded that the
Strength Pareto Evolutionary Algorithm (SPEA) produced
the best overall performance for the minimisation of four
objectives: (i) electricity cost, (ii ) demand charge, (iii ) num-
ber of pump switches, and (iv) difference between the initial
and final levels of the tank. They incorporated a heuristic
into the algorithms for repairing solutions which violate re-
strictions on the maximum and minimum tank levels. If at
some time interval the tank level is above the maximum,
then the current scheduling is pumping more water than the
amount required, and thus, a number of pumps which were
on in the previous intervals are turned off. A similar method
was adopted to repair solutions which produced tank levels
below the minimum level.

A basic difference between the present study and the pre-
vious works which considered multiple objectives is the fact
that, in the present work, we use a disaggregated or dual-
level methodology, that is, linking an optimisation model
with a network simulation model. The use of a simu-
lation model allows to handle more complex network in-
stances, while previous multi-objective approaches tackled
simple networks composed of several pumps in parallel and
a single tank. The optimisation model chosen is the sec-
ond version of the Strength Pareto Evolutionary Algorithm
(SPEA2) [15] and the network simulator EPANET [16] is
used to conduct hydraulic analysis and evaluate pump op-
eration policies. In addition, we use a method based on
dominance criteria to handle infeasible solutions [17]. Fi-
nally, we assess the quality of the results using attainment
surfaces [18] which provide a more robust measure of the
quality of multi-objective optimisers than other metrics used
in previous studies of multi-objective optimisation for the
Pump Scheduling problem.

2 The Pump Scheduling Problem

2.1 Water Distribution Networks

A typical Water Distribution Network, given by Van Zyl
et al. [8], is as shown in Figure1. It consists of a source
of potable water (reservoir), three pumps, two tanks and a
check valve which prevents water flowing backwards. Wa-
ter is pumped from the reservoir into the tanks and it is con-
sumed at the demand node. The amount of water which can
be pumped is higher than the amount of water consumed,
thus pumps do not need to be active all the time. Moreover,
water can be stored in tanks to be consumed later in a grad-
ual way. Water demand varies over time and consumption
patterns can be estimated using historical data. Therefore,
the operation of pumps can be scheduled to minimise the
cost of supplying water.
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Figure 1: Example of a Water Distribution Network

2.2 The Pump Scheduling Problem

In a Pump Scheduling Problem, operation ofN pumps are
scheduled over a time period, usually 24 hours. The main
goal is to minimise the cost of supplying water, while keep-
ing the physical and the operational constraints within lim-
its [3]. There are two classes of costs associated with the
operation of pumps: electrical cost and maintenance costs.

Pump maintenance costs are mainly due to wear and tear
of pumps caused by frequent switching them on and off. A
pump switch, i.e., turning on a pump that was not operat-
ing in the previous time period [19], causes a cost of wear
on the pump which cannot easily be estimated. However, a
safe assumption is that maintenance costs increase with the
number of pump switches. Therefore, a surrogate objec-
tive of number of pump switches is considered to represent
pump maintenance cost.

Total energy cost is composed of anelectrical consump-
tion charge(£/kW·h), i.e., the cost of electrical energy con-
sumed during a time period, and thedemand charge(£/kW),
i.e., the cost associated with the maximum amount of power
consumed (peak energy) within a time interval. The elec-
tricity consumption charge usually varies depending on the
time of the day, with peak and off-peak electricity tariffs.
The energy consumption rate of pumping depends on sev-
eral factors such as efficiency and power of the pumps, flow
of water through the pump and the elevation of tanks.

The optimal pump policyis defined as the schedule of
pump operations that will result in the lowest total operat-
ing cost for a given set of boundary conditions and system
constraints [20].

Implicit system constraints define the hydraulic equilib-
rium state of the system, e.g., conservation of mass at each
junction node and conservation of energy around each loop
in the network. Implicit system constraints are handled by
the network simulator EPANET.

Implicit bound constraints represent system performance
criteria. There are two implicit bound constraints that are
usually considered: constraints on tank water levels and
pressures at demand nodes.

Minimum and maximum tank levels are handled by



EPANET (and in the real world by automatic systems of
valves). In order to achieve periodicity between supply and
demand, we must ensure that the volume of water in the
tanks at the end of the simulation period is not lower than
the volume at the start of the simulation period. The dif-
ference between the initial volume and the final volume of
water in a tank will be calledvolume deficit. If the volume
deficit in a tank is higher than a tolerance volume, then the
operation policy is consideredinfeasible.

A solution is considered to beinvalid when EPANET
generates warnings during the simulation of a particular op-
erational policy. For example, if during a particular simu-
lation period, the system could not supply required volume
of water with the specified minimum pressure at demand
nodes, then the objectives of this solution cannot be evalu-
ated and it is considered to be invalid.

3 Solution Methodology

The approach followed in this work considers a natural bi-
nary representation for operation policies. Each operation
policy is a solution to the problem which is evaluated by
EPANET. For each solution, EPANET calculates two ob-
jective values, that is, electricity cost and the total number
of pump switches. The goal is the multi-objective minimi-
sation of these values. This optimisation is performed by
SPEA2. Additionally, EPANET calculates the total volume
deficit and pressure deficiency of each solution. These val-
ues are used to establish the feasibility of a solution.

3.1 Multi-objective Optimisation

In multi-objective optimisation [21, 22] we do not have a
single objective value, but a vector of objective values, that
is, anobjective vector. Given two objective vectorsu andv,
u 6= v, we say thatu dominatesv if u is not worse thanv
for each objective value and better for at least one objective.
When neitheru dominatesv nor vice versa, we say that the
two objective vectors arenondominated. Since each solu-
tion represents an objective vector, we use the same termi-
nology among solutions. Therefore, given a set of solutions,
we can use the dominance relation among their objective
vectors to define a subset of solutions which are not domi-
nated by any other solution of that set. This subset is called a
Pareto setand by definition its elements are nondominated.
The elements of a Pareto set define implicitly a partition in
the objective space between the region dominated by them
and the region not dominated by them. Thus, it is often
calledPareto frontieror Pareto surfacein the literature.

In our multi-objective approach to the pump scheduling
problem, each operation policy is a solution which repre-
sents an objective vector formed by the electricity cost and
the number of pump switches of that operation policy. The
goal is to find, or at least approximate to, theoptimal Pareto
setof operation policies, that is, the set of feasible operation
policies such that any other feasible operation policy has a
higher value for the electricity cost or the total number of
pump switches. Therefore, the outcome of our optimisation
procedure will be a Pareto set of feasible operation policies.

3.2 Bit/Binary Representation

In this study, only fixed speed pumps are considered. There-
fore, as shown in Fig.2, for each pump during a certain time
interval, the operation policy can be represented by one bit
of a string. The pump is off during that time interval if the
bit’s value is zero, and the pump is operating at fixed speed
if the value is one. The number of pump switches is the
number of 0 1 sequences, plus one if the scheduling starts
with 1 and ends with 0 . Given N pumps andT time
intervals, the number of possible solutions is2N ·T and the
maximum number of switches per pump isT/2.

t0 t1 t2 t3 tj tT
Pi 0/1 0/1 0/1 0/1 . . . 0/1

Figure 2: Binary representation(0/1) for each pumpi and
a numberT of fixed time intervalstj .

In the present work, we consider24 fixed time intervals
of 1 hour. Then, forT = 24 andN = 3 the number of
possible solutions is4.72× 1021 and the maximum number
of pump switches is36.

3.3 SPEA2

The optimiser used in the present work is the second version
of the Strength Pareto Evolutionary Algorithm (SPEA2)
[15]. The main features of SPEA2 are: (i) the fitness of
a solution depends on the strength of the solutions by which
it is dominated, where the strength of a solution is defined
as the number of other solutions in the current population
that it dominates; (ii ) the ties of solutions with the same fit-
ness are broken by a nearest neighbour density estimation
technique; (iii ) the size of the archive of nondominated so-
lutions is a fixed valueα, when the actual number of non-
dominated solutions is lower than this value the archive is
filled with dominated solutions and when the actual num-
ber of nondominated solutions exceedsα, some of them are
discarded by a truncation operator which preserves bound-
ary solutions.

The algorithm schema of SPEA2 as implemented in this
work can be summarised as follows. Firstly, an initial pop-
ulation is generated and the archive starts empty. Secondly,
the algorithm calculates the fitness of solutions in the cur-
rent population and all nondominated solutions are added to
the archive. If the size of the archive becomes larger than
α, the solution which has the minimum distance to another
solution (according to the truncation operator) is discarded
until archive size is exactlyα. In case of the number of non-
dominated solutions is less thanα, the dominated solution
with the minimum fitness value is added to the archive until
there areα solutions in the archive. Next, a number of solu-
tions are selected as parents using binary tournament selec-
tion with replacement. Finally, recombination is applied to
parents in order to generate a number of offspring solutions,
which become a new population that must be evaluated and
merged into the archive. More details on SPEA2 can be
found in the original publication [15].



Because the different objective values considered in this
work, i.e., electricity cost and number of pump switches,
are not comparable, we normalise the distance between two
solutionssi, sj with respect to objectivefk as:

(fk(si)− fk(sj))2

(fmax
k − fmin

k )2
(1)

wherefmax
k and fmin

k are known for each particular ob-
jective. The maximum electrical cost corresponds to that
schedule where all pumps are operating during the whole
simulation period, while the minimum electrical cost is
zero. For the total number of pump switches, the maximum
value whenT = 24 hours andN = 3 pumps is36, while
the minimum value is always zero.

3.4 Constraint Handling

We handle invalid and infeasible solutions (defined in Sec-
tion 2.2) following a methodology proposed by Deb and
Jain [17], where solutions are partially ordered depending
on their feasibility. Concretely, we augment the dominance
criteria with the following rules:

• Any invalid solution is dominated by any valid (feasi-
ble or infeasible) solution. For two invalid solutions,
the one which has lower number of pressure viola-
tions during the simulation dominates the other.

• Given two valid solutions, the one with the lower total
volume deficit dominates the other. Since the total
volume deficit of any feasible solution is always zero,
then any feasible solution dominates any infeasible
solution.

• Given two valid solutions with equal total volume
deficit, the normal dominance criteria between their
objective values is applied. That is, one solution dom-
inates other if the electricity cost and the number of
pump switches of the first one are not higher than the
values corresponding to the second solution, and at
least one of these values is lower than the respective
value in the second solution.

4 Experiments

The method to generate the initial population and the re-
combination operator are problem dependent and the alter-
natives studied in this work are described in the following
paragraphs.

With regard to the initial population, in this work we con-
sider two simple, straightforward methods: either the initial
population is randomly generated or it is generated from
mutations of a particular solution. The mutation procedure
changes the value of a random number in[1, 18] of posi-
tions per pump. We have tested three different solutions as
the solution which is mutated: theempty solution, which is
the solution where all pumps are off during the whole sim-
ulation, that is, all positions of the binary string have value
0; the complete solution, which is the solution where all
pumps are on during the whole simulation, that is, all posi-
tions of the binary string are1; and acustom solutionwhich

is known to be feasible. The rationale for the use of this cus-
tom solution is that a real network is already working using
a feasible operation policy, which is not an optimal solution
but has more quality than the average quality of a randomly
generated solution.

We tested three types of recombination: one-point
crossover, uniform crossover, and a deterministic (turn-
based) uniform crossover.

The one-point crossovercreates one offspring solution
by joining a part of the first parent solution from the first
position to a crossover point with another part of the second
parent from the crossover point to the last position. The
crossover point can occur with equal probability between
any two adjacent positions.

In uniform crossover, the value of each position in the
offspring solution is produced by randomly selecting, with
equal probability, the value at the same position of one of
the parents. Thus, those positions with the same value in
both parents will keep that value in the offspring solution.
As an alternative, we also tested adeterministic uniform
crossover, which keeps the value of those positions with the
same value in both parents, but assigns alternately the value
of each parent for those positions where the values of each
parent differ.

Our implementation of SPEA2 is based on originalC
source code1 from the PISA project [23] but with signifi-
cant modifications to serve our purposes. We also modified
EPANET Toolkit version 2.00.10 but maintaining backward
compatibility (under some assumptions).

The test instance shown in Figure1 is used for studying
the various alternatives proposed here. In this instance the
demand charge is taken to be zero and the water available at
the reservoir is assumed to be infinite. The electricity cost is
divided into two periods with a peak electricity tariff period
from 7 am to 12 am and a off-peak tariff from12 am to 7
am. The demand pattern contains two peaks at7 am and
6 pm. More details about the test instance are provided by
Van Zyl et al. [8]

The custom solution used to generate the initial popu-
lation has an electricity cost of370.47, a total number of
pump switches of4, a volume deficit for tank A of−0.41%
and for tank B of−0.19%, where the negative deficits mean
that there is more water at the end than at the start of the
simulation.

The volume deficit tolerated per tank was5%. The
archive size of SPEA2 wasα = 200. The number of so-
lutions selected as parents, the number of offspring solu-
tions and the number of initial solutions were 50. As in the
state-of-the-art algorithm for this test instance [8], we ran
each experiment for 6000 function evaluations, that is, 6000
calls to the EPANET simulator. Finally, we performed 30
repetitions of each configuration.

Experiments were ran on a Pentium 4 (2.80 GHz) with
1 GB RAM using GNU/Linux (Ubuntu).

1Source code available athttp://www.tik.ee.ethz.ch/
pisa/selectors/spea2/spea2.html

http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2.html
http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2.html


5 Results

The attainment function [18] represents the probability of
obtaining an arbitrary goal in the objective space during a
single run of an arbitrary algorithm. This attainment func-
tion can be estimated using data collected from several runs
of the particular algorithm. For example, themedian attain-
ment surfacecontains objective vectors with an empirical
frequency of 50% of being attained. The median attainment
surface is a Pareto set because all the objective vectors are
nondominated. Therefore, these objective vectors can be
connected by a line (or a surface when the number of ob-
jectives is larger than two) which defines the partition of the
objective space dominated by them. Similarly, thebest at-
tainment surfaceconnects objective vectors attained by at
least one of the runs carried out, and the objective vectors
in theworst attainment surfacewere attained in all the runs
carried out

We must remark that the best, median and worst attain-
ment surfaces only describe the distribution of the outcomes
in terms of location. However, they do not address the de-
pendence structure within each outcome, and thus, they do
not show the frequency of two objective vectors being at-
tained in the same run [24].

In our experiments we found that uniform crossover ob-
tained always better results than one-point crossover. Also,
results obtained by the deterministic uniform crossover
based on alternative turns were slightly worse than results
produced by uniform crossover. Therefore, in the following
we restrict to the results obtained when using the uniform
crossover.

Figure 3 shows the best, median and worst attainment
surfaces of the30 repetitions ran for each of the four meth-
ods of generating the initial population and using uniform
crossover. For reference, the average solution obtained by
the single objective state-of-the-art algorithm for this in-
stance [8] is denoted by the symbol “×××”, and it has an elec-
tricity cost of 348.58 and a number of pump switches of
4.29.

Comparing the top row with the bottom row of Fig.3,
the attainment surfaces obtained using an initial population
generated randomly or from a custom solution are better
than the attainment surfaces obtained when the initial pop-
ulation was generated by mutations from the empty or from
the complete solution. Particularly, the median attainment
surfaces corresponding to an initial population generated
randomly or from a custom solution (top row) dominate the
average solution obtained by the single objective state-of-
the-art algorithm.

When the population is generated from mutations of a
custom solution (top right), the best, median and worst at-
tainment surfaces are closer to each other compared to the
attainment surfaces obtained when the initial population is
generated randomly (top left). Moreover, the worst attain-
ment surface in the top right plot is better than the one cor-
responding to the top left plot. On the other hand, the best
attainment surface shows the opposite result, that is, the best
result of30 trials is obtained with an initial population gen-
erated randomly. From these results we can conclude that

an initial population generated from a custom solution pro-
vides robust results but lacks the diversity in solutions ob-
tained when using an initial population generated randomly.
This diversity allows us to obtain better results in some of
the runs but produces worse results in the worst case.

Finally, Table1 shows the average computation time re-
quired by each run depending on the method used to gen-
erate the initial population and the recombination operator.
Since no initialisation method or recombination operator is
more algorithmically expensive than the others, the differ-
ences observed in computation time are only caused by the
time required by EPANET for evaluating the solutions. One
clear result is that quasi-complete solutions (right-most col-
umn), where the pumps are active most of the time intervals,
produce longer simulation time and thus longer computa-
tion time. Nevertheless, the variability in computation time
for the other configurations indicates that the computation
time depends in a high manner on the simulation engine.

Recombination Initial population
Custom Random Empty Complete

One-point 76.2 107.6 70.6 1043.0
Uniform 75.2 238.9 121.8 945.2

Determ. Unif. 68.9 224.6 95.3 1011.0

Table 1: Average computation time in seconds.

6 Conclusions and Future Work

This paper shows the viability of a multi-objective approach
for solving the Pump Scheduling problem, which allows the
system operator to examine a range of Pareto-optimal solu-
tions and choose one solution with regard to additional cri-
teria. The importance of this has already been noticed by
Ormsbee and Reddy [20].2

Although the use of multi-objective algorithms for the
Pump Scheduling problem has been studied previously [12,
14], recent improvements on algorithms [15] and perfor-
mance assessment methodologies [18, 24] have increased
the applicability of multi-objective optimisers. We have ap-
plied these improvements in this paper.

Moreover, we have considered a disaggregated or dual-
level methodology, that is, linking a multi-objective opti-
misation model (SPEA2) with a network simulation model
(EPANET). This methodology, which has not been consid-
ered in previous multi-objective approaches to the Pump
Scheduling problem, allows to consider complex network
instances.

Additionally, we have used a feasibility handling tech-
nique designed for multi-objective optimisation and based
on the dominance criteria [17] which replaces penalty func-
tions and reparation mechanisms.

2 The exact quote is “Indeed, not only is anoptimalsolution obtained,
but all resulting feasible solutions are available for examinations by the
system operator. As a result, the operator is provided with an increased
flexibility with regard to selection of alternative solutions that may not be
optimal from a purely cost-savings objective but may provide a superior
solution based on additional more subjective operational considerations.”
Ormsbee and Reddy [20]



The use of a well-known multi-objective algorithm
(SPEA2) and simple and straightforward initialisation and
recombination methods produces solutions of a quality sim-
ilar to results already published in the literature. In particu-
lar, using uniform crossover and an initial population gener-
ated randomly produces state-of-the-art results for this Wa-
ter Distribution Network. If the initial population is gener-
ated from mutations of a feasible solution of a certain qual-
ity, the results are even better in the median and the worst
case, but a randomly generated initial population produces
eventually the best Pareto set of pump schedules.

Nevertheless, our results should encourage the study of
more advanced techniques, as alternative representations to
the binary string and hybridisation with local search meth-
ods. Furthermore, since a complete description of the test
instance used in this work has been already published [8]
and the simulation engine is available3, the results obtained
by different optimisation algorithms can be compared with
the results provided in this work.

Although the binary representation is a natural represen-
tation for fixed speed pumps and fixed time intervals, it im-
poses the restriction that pumps can only start or stop at
fixed time intervals. We are currently studying other repre-
sentations which do not have such limitation, and thus, may
allow more flexible schedules, leading to better results.

Finally, we have noted that computation time depends
greatly on the simulation engine and on the type of solu-
tions evaluated. Therefore, although real-world applications
should take into account computation time, future develop-
ments on the simulation engine may completely change any
conclusions relying on a computation time limit, and thus,
the number of function evaluations is a more robust mea-
sure when comparing algorithms for the Pump Scheduling
problem.
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