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Abstract—Evolutionary multi-objective optimization algo-
rithms (EMOAs) typically assume that all objectives that are
relevant to the decision-maker (DM) are optimized by the EMOA.
In some scenarios, however, there are irrelevant objectives that
are optimized by the EMOA but ignored by the DM, as well as,
hidden objectives that the DM considers when judging the utility
of solutions but are not optimized. This discrepancy between the
EMOA and the DM’s preferences may impede the search for the
most-preferred solution and waste resources evaluating irrelevant
objectives. Research on objective reduction has focused so far on
the structure of the problem and correlations between objectives
and neglected the role of the DM. We formally define here the
concepts of irrelevant and hidden objectives and propose methods
for detecting them, based on uni-variate feature selection and
recursive feature elimination, that use the preferences already
elicited when a DM interacts with a ranking-based interactive
EMOA (iEMOA). We incorporate the detection methods into
an iEMOA capable of dynamically switching the objectives
being optimized. Our experiments show that this approach can
efficiently identify which objectives are relevant to the DM and
reduce the number of objectives being optimized, while keeping
and often improving the utility, according to the DM, of the best
solution found.

Index Terms—Interactive Multi-Objective Optimization, Hid-
den Objectives, Irrelevant Objectives, Machine Learning, Dimen-
sion Reduction, Feature Selection

I. INTRODUCTION

In many real-world optimization problems, there are tens
of numerical features of a candidate solution that could, in
principle, be optimized by means of an Evolutionary Multi-
Objective Algorithm (EMOA) and it is often tempting to
model as many objectives as possible [1]. However, the
runtime of various steps within an EMOA increases with the
number of objectives [2, 3] and, in the case of hypervolume-
based methods, this increase is exponential [4]. Moreover,
the fraction of solutions that are Pareto-optimal increases
exponentially with the number of objectives [5, 6], which
complicates the a posteriori decision-making phase [7].

Previous research on objective reduction considered remov-
ing objectives that are highly correlated to other objectives
[1, 7] or do not significantly alter the dominance relations
among solutions [8, 9]. However, regardless of the structure
of the problem, some of the objectives may not be relevant
to the DM and they can be removed from the optimization
model. Interactive EMOAs (iEMOAs) [10] iteratively elicit

and exploit preference information of a decision maker (DM)
to guide the optimizer towards preferred solutions. It is possi-
ble to exploit the elicited information to identify and remove
objectives that are not relevant to the DM.

Such a scenario can happen if this particular DM was
not consulted during the modeling phase or her preferences
changed during the optimization due to learning [11] and
“preference drift” [12]. Thus, there may be objectives that
are optimized by the iEMOA but are irrelevant to the DM.
In other cases, the DM’s preferences may depend on both
the value of the objectives being optimized and the value of
other numerical features that are measured by the system and
observed by the DM but are not optimized. Such features
are said to be hidden from the optimizer and would lead to
results that are not satisfactory to the DM if not considered
by the optimizer [13, 14]. Stewart [15] discusses the concept
of “unmodelled” criteria, which appear in the DM’s internal
utility function but are missing from the preference model.

This discrepancy may make the elicited preferences seem
non-rational, e.g. when a solution that is dominated with
respect to the modelled objectives is preferred by the DM
over a non-dominated one because the former is better than
the latter with respect to features that are not optimized
as objectives. Let us consider a simplified example inspired
by the real-world problem discussed by Ramos-Pérez et al.
[16] of planning school lunches in terms of not only cost,
but also a number of metrics of nutritional value and food
variety. Imagine two candidate menu plans with three features
z1 = (7, 4, 2) and z2 = (7, 3, 6), where each feature is total
cost, the total amount of calcium, and the variety of vegetables,
respectively. Further assume that the iEMOA was designed
to optimize only the first two features as objectives, thus,
z1 dominates z2, i.e., z1 is not worse in cost and is better
in amount of Calcium than z2. However, a DM (e.g., the
nutritionist of a particular school who is aware that children in
this school already have a diet rich in Calcium outside school
but struggle to eat their vegetables) may not look at the second
objective (Calcium) and instead wishes to maximize the third
feature (vegetables variety), thus prefer z2 over z1.

One may argue that the system should allow the DM to
specify which features must be optimized. But in practice
a DM may only realize the relevance of a feature during
the optimization process [12]. Moreover, the DM may not
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be conscious of the particular features that are guiding her
decisions, e.g., the nutritionist may directly compare the
composition of the menus instead of looking at any summary
metrics provided by the iEMOA. In some problems a DM
may be able to judge solutions according to qualitative aspects
(e.g., the quality of the behavior of a robot performing a task)
without being aware that there exist numerical features (e.g.,
the number of turns or minimum distance to walls) that could
act as “proxy” objectives [17] to that aspect.

In the above scenarios, it would be desirable if an iEMOA
could (1) detect the discrepancy between the objectives being
optimized and the features that influence the preferences
provided by the DM at each interaction; and (2) dynamically
select the features that are optimized after each interaction.
In the case of irrelevant objectives, removing them from the
optimization phase increases the efficiency of any EMOA (as
fewer objectives are optimized) and may also help to find
better solutions [9].

To the best of our knowledge, for the first time in the
literature we consider the preference information collected by
an iEMOA when interacting with the DM as an opportunity
to detect irrelevant objectives and remove them during the
optimization. In addition, our proposal is also able to detect
numerical features that are measured but not optimized by
the iEMOA before the interaction, but are correlated with the
DM’s preferences. We propose that, after each interaction, the
iEMOA dynamically activates the optimization of such hidden
objectives, thus adapting the search to the preferences of the
DM. By removing irrelevant objectives and optimizing hidden
ones, an iEMOA is able to adapt to a diverse range of DMs
and preference changes during optimization without requiring
the simultaneous optimization of every potential objective.

Our main contributions can be summarized as follows:

• The formal definition of irrelevant and hidden objectives
in interactive multi-objective optimization.

• A method to detect irrelevant and hidden objectives from
the ranking information provided by a DM and to dynam-
ically update the set of objectives after each interaction.
The approach draws on feature selection methods and can
be applied to any ranking-based iEMOA.

• A benchmarking approach that simulates irrelevant and
hidden objectives using classical multi-objective prob-
lems. This approach is demonstrated for DTLZ problems
[18] and multi-objective NK-landscapes ρMNKs [19].

• The empirical validation of the proposed detection
method using:
i. Problems of varying dimensionality, complexity, and

Pareto front structure.
ii. Different utility functions that simulate different DMs.

iii. Different feature selection methods to detect relevant
objectives.

• A sensitivity analysis to understand the performance
impact of key parameters of the proposed approach.

Experimental results show that the proposed method can
almost always replace irrelevant objectives with relevant ones
quickly and significantly improve the utility of the solutions
found.

The rest of the paper is organized as follows. Several
fundamental concepts on which this work is based are de-
fined in Section II. A summarized background on previous
efforts towards objective reduction is given in Section III. In
Section IV, the proposed method and several variants of it
are elaborated in detail. The experimental setup is laid out
in Section V. The results of the experiments are discussed
in Section VI. Finally Section VII provides conclusions and
future research directions.

II. DEFINITIONS

Let us consider an optimization problem with n decision
variables, where, given a solution vector x = (x1, . . . , xn)
from the feasible decision space X , we can compute a set
F = {f1, . . . , fm} of m numerical features, fi : X → R. In
principle, all these features could be optimized as objectives.
In the following, we assume minimization without loss of
generality.

Definition II.1 (Potential objectives). All m features in F are
called potential objectives.

Let us assume as well that, either due to decisions made
during the modeling phase or efficiency reasons, only a subset
F̂ ⊆ F (m̂ = |F̂ |) of the potential objectives must be min-
imized as optimization objectives, resulting in the following
multi-objective optimization problem:

Minimize
(
f1(x), . . . , fm̂(x)

)
subject to x ∈ X

(1)

where fi ∈ F̂ are the objectives minimized by the optimization
method, while F \ F̂ are not.

Definition II.2 (Active objective). An objective is active if
it must be optimized by the optimization method. The set of
active objectives is denoted by F̂ . Inactive objectives (F \ F̂ )
are either evaluated but ignored by the optimization method
or not evaluated at all.

In the EMOA literature, computational cost is often mea-
sured in terms of solution evaluations, where each solution
evaluation usually means the evaluation of all its (active)
objectives. Here we will consider objective evaluations instead
because different solutions may be evaluated for different
subsets of of objectives, and these subsets may also vary in
cardinality.

Definition II.3 (Objective evaluation). The evaluation of any
of the objectives fi corresponding to a solution x is counted
as one objective evaluation. Thus, the cost of a solution
evaluation is m̂ objective evaluations.

Although most EMOAs assume that the set of active of ob-
jectives is decided in the modeling phase and remains constant,
it is possible to change the set of active objectives during the
optimization by choosing any subset of potential objectives,
as we will show later. When solving the above problem in
terms of Pareto optimality, an EMOA only considers active
objectives.
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Definition II.4 (Dominance and non-dominance [20]). Given
two solutions x,y ∈ X , we say that x dominates y if the
former is not worse than the latter in any objective and it is
strictly better in at least one, i.e., ∀fi ∈ F̂ , fi(x) ≤ fi(y) and
∃fj ∈ F̂ , fj(x) < fj(y). When f(x) ̸= f(y) and x does not
dominate y nor y dominates x, we say that they are (mutually)
non-dominated.

Definition II.5 (Pareto optimal [20]). A feasible solution
x ∈ X is called Pareto optimal if there is no y ∈ X that
dominates it. The set of (mutually non-dominated) Pareto
optimal solutions is the Pareto set.

Definition II.6 (Pareto front [20]). The image of the Pareto
set on the objective space defined by F̂ is known as the Pareto
front (PF).

Definition II.7 (Redundant objectives [21]). An objective is
called redundant if it can be removed from the set of active ob-
jectives without changing the set of Pareto optimal solutions.
Saxena et al. [22] extend this definition to include objectives
that are not conflicting with a non-redundant objective.

The above definitions are independent of the preferences
of a human DM interacting with an EMOA. In the case of
interactive EMOAs (iEMOAs), the DM provides preference
information, e.g., by ranking a subset of solutions, to guide
the algorithm towards the DM’s most preferred solution. Let
us assume the DM can observe the value of all potential
objectives when comparing solutions. For reasons explained
in the introduction, there may exist a discrepancy between
the active objectives being optimized by the iEMOA and the
objectives considered by the DM when comparing solutions.

We can formally define this discrepancy in the case of non-
ad-hoc interactive methods, which assume there exists a utility
function (UF) guiding the DM’s decisions but unknown to
the iEMOA [23–27]. Ad-hoc methods assume that no such
UF exists [23]. Due to the popularity of UFs in modeling
preferences, the vast majority of iEMOAs are non-ad-hoc
methods, thus we focus on them in the remainder of the
paper. Without loss of generality, we assume an UF of the
form U : Rm → R, whose input is the vector-valued function
f(x) = (f1(x), . . . , fm(x)) with components being the set
F of potential objectives. Although U receives as input the
value of all potential objective functions, it may not use all
those values to calculate its output.

Definition II.8 (Irrelevant objectives). An objective fi ∈ F is
called irrelevant if its value does not affect the value of the
DM’s UF. That is, any two solutions x,y ∈ X with the same
value in all potential objectives except fi should also have the
same utility value, i.e., fj(x) = fj(y), ∀fj ∈ F \ {fi} ⇒
U(f(x)) = U(f(y)).

Hereafter, FDM ⊆ F denotes the set of objective functions
relevant to the DM, thus the set of irrelevant objectives is given
by F \ FDM.

Definition II.9 (Hidden objectives). An objective fi ∈ F is
hidden if it is relevant but not (currently) active, i.e., fi ∈
FDM ∧ fi /∈ F̂ .

Hidden objectives may confuse the iEMOA, since the
interaction with the DM may be consistent with the dominance
criterion for the objectives in FDM but not for the objectives
in F̂ . If FDM ⊂ F̂ , then no hidden objectives exist, but the
iEMOA is optimizing some irrelevant objectives, which makes
the problem more challenging for the iEMOA and is wasteful
if the evaluation of those objectives is expensive. Similarly, if
FDM = F̂ , then neither hidden nor irrelevant objectives exist,
and the iEMOA is optimizing precisely the objectives that the
DM cares about.

In the rest of the paper, when considering benchmark
problems and known UFs, we will assume for simplicity that
irrelevant objectives are not a (trivial) function of relevant ones
nor vice versa, so that the set of relevant objectives FDM, and,
hence, irrelevant and hidden ones, can be inferred from the
definition of the UF. In practice, the DM’s UF is unknown
and, in the case of black-box optimization, we may not know
whether an objective is a function of other objectives, thus an
objective is considered irrelevant if its value does not seem to
influence the DM’s decisions.

From the above definitions, it can be concluded that while
redundant objectives are determined based on the structure
of the problem, irrelevant and hidden objectives are defined
from the DM’s perspective. An irrelevant objective may be
redundant or not, however, a redundant objective cannot be
relevant unless the DM’s preferences are somehow inconsis-
tent with Pareto optimality. On the other hand, a redundant
objective may appear to be relevant if it is correlated with a
relevant objective. While there are studies on the detection and
elimination of redundant objectives, which we review in the
next section, there is no prior research on the identification of
irrelevant and hidden objectives to the best of our knowledge.
Our focus here is to fill this gap and we propose a method to
tackle it in Section IV.

III. BACKGROUND AND LITERATURE REVIEW

We have carried out a thorough literature review of methods
for reducing the number of objectives, which we briefly
summarize here. Many of these studies use the term dimension
reduction to refer to the same concept. However, to avoid
confusion with methods that reduce the number of decision
variables [28], we use the term “objective reduction”.

Most of the studies on objective reduction focus on selecting
a priori a subset of objectives to facilitate the optimization
process while preserving Pareto optimal solutions as much
as possible. Early proposals [21, 29] make strict assumptions
about the problem structure that are impossible to meet for
real-life problems. Recent approaches [6, 8] sacrifice to exactly
identify the correct subset of objectives and capture the entire
PF in order to increase applicability.

Other approaches identify similar objectives and recombine
them into a single one. For example, harmonic levels [30]
and aggregation trees [31] are used to identify harmonious
objectives (improvement of one objective does not lead to
deterioration of the others). In particular, aggregation trees are
used a posteriori for facilitating the decision-making phase.
Similarly, principal component analysis (PCA) has been used
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to identify correlated objectives that may be combined into a
single objective a posteriori to facilitate decision-making [32]
or during the optimization process to increase computational
efficiency [33]. However, Costa and Oliveira [34] have shown
that objectives that are deemed redundant by PCA may be
“informative”, i.e., contain trade-off information that would
be lost if omitted.

Finally, projection methods map all objectives into two
or three dimensions for visualization [35]. These methods
aim to help decision-making a posteriori (after optimization),
however, they do not help the optimization process itself and
do not consider the DM’s preferences.

Interactive methods iteratively elicit the DM’s preferences
to direct the search toward preferred regions of the PF [36, 37].
However, it is possible to use the provided information to
identify objectives that are relevant to the DM, a task that has
not been achieved in existing iEMOAs. Generally, preference
elicitation and interaction style can take two forms [38].Direct
preference elicitation requires the DM to identify some param-
eters of the preference model directly, which can be in the form
of the reference point (aspiration level/goal) (see, e.g., PBEA
[39], WASF-GA [40]), reservation levels [41], and weights
(see, e.g., R-NSGAII [42]), among others. On the other hand,
in indirect approaches, the DM is required to provide some
holistic judgments, which tend to be less demanding, mainly
in the form of exemplary decisions. When indirect approaches
are used, the DM is not required to have prior knowledge
of solution space and the optimization algorithm [43]. In-
direct queries can be in the form of pairwise comparisons
[44, 45, 45–49], selecting the best among a small subset of
solutions [27, 50, 51], accepting or rejecting a presented trade-
off [52], or ordering a subset of solutions [53]. Generally,
iEMOAs that require the DM to rank a subset of solutions are
known as ranking-based iEMOAs. In this research, we propose
an approach that can use the solutions that are ranked by the
DM in ranking-based iEMOAs to identify relevant objectives
and update the set of active objectives accordingly.

IV. METHODS

As described above, existing approaches for objective re-
duction are mainly concerned with removing redundant or
correlated objectives without interacting with a DM. In this
section, we propose a method that is able to use the DM’s
preferences, elicited when interacting with an iEMOA, and
equip the iEMOA with the ability to identify irrelevant ob-
jectives as well as hidden ones, and switch them dynamically
during the optimization process. In practice, we have found
that it is relatively easy and efficient to extend iEMOAs with
this capability, as switching objectives can only happen after
an interaction and the number of interactions is always much
smaller than the number of generations of the iEMOA.

In a nutshell, our proposal works as follows. At some point
during its execution, the iEMOA interacts with the DM by
showing the value of all potential objectives of a selected
subset of solutions and asking the DM to rank the solutions
according to her preferences. Feature selection, applied to the
rankings and the objective values, is used to identify which

objectives have the most significant effect on the ranking. The
method uses this information to possibly activate currently
inactive objectives and/or deactivate currently active ones.
The iEMOA then continues its execution using not only the
ranking information provided but possibly a new set of active
objectives. In what follows, we describe our proposal in detail.

A. Feature Selection

We explore two feature selection methods in this study
to understand the relevance of this algorithmic component:
Uni-variate feature selection and recursive feature elimination
(RFE). Hereafter, feature and objective are used interchange-
ably in this context.

1) Uni-variate Feature Selection: We propose the applica-
tion of F-test1 uni-variate feature selection for identifying the
most relevant features. The F-test assumes that the data is
normally distributed and p-values may be unreliable for large
deviations from normality. If the normality assumption is not
valid, then the alternative approach is to use the non-parametric
mutual information [54, 55], which measures the dependency
between two random variables. Our explanation focuses on the
F-test but it is easily extended to the mutual information-based
test. Preliminary experiments have shown that the normality
assumption is valid for the problems considered in our study,
as verified by the D’Agostino-Pearson test [56], and the F-
test provides slightly better accuracy. These experiments also
indicate that the accuracy of the method is acceptable even
with a small sample size and improves significantly when
the training set increases to 10 and 15. The details of these
experiments are provided in Appendix II.

In uni-variate methods, each feature is considered indepen-
dently and any correlation between features is ignored [57].
Let T be the set of solutions presented to the DM at an
interaction, where zj ∈ T is the vector of objective values
of the jth solution presented to the DM, and zji denotes the
value of its ith objective out of the m potential objectives
(fi ∈ F ). The DM ranks the solutions according to her
own preferences (smaller rank values are more preferred).
The vector of rankings is given by r, where rj is the rank
corresponding to zj ∈ T . There is no restriction on the
rankings and two solutions may have the same rank.

The procedure for F-test uni-variate feature selection can
be described as follows (for a more detailed introduction to
F-test feature selection please refer to [58]):
Step 1: The correlation ρi between each objective (feature) i

and r is computed as

ρi =

|T |∑
j=1

(zji − z̄·i) · (rj − r̄)

Sz·iSr
, (2)

where z̄·i and Sz·i are the mean and standard deviation of
the ith objective value over all solutions in T , respectively,
and r̄ and Sr are the same for the vector of rankings.

Step 2: The F-statistic for each objective is computed as

Fi =
ρi

1− ρi
· (|T | − 2) . (3)

1The name of the test is unrelated to the set F of potential objectives.
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Table I
A NUMERICAL INSTANCE OF UNI-VARIATE FEATURE SELECTION.

NEXA = 5 SOLUTIONS ARE RANKED (r) BY THE DM ON A PROBLEM WITH
m = 4 OBJECTIVES. THE p-VALUE OF EACH OBJECTIVE IS CALCULATED

AS EXPLAINED IN THE ALGORITHM 1. k = 2 OBJECTIVES WITH MINIMUM
p-VALUES ARE ACTIVATED (f1 AND f4 IN BOLD-FACE) AND THE EMOA

CONTINUES THE OPTIMIZATION WITH THE NEW SET OF ACTIVE
OBJECTIVES.

Nexa = 5 f1 f2 f3 f4 r

1 0.71 0.63 0.37 0.45 4
2 0.65 0.08 0.89 0.40 3
3 0.51 0.64 0.75 0.12 1
4 0.65 0.84 0.79 0.31 2
5 0.95 0.32 0.86 0.82 5

p-values 0.03 0.45 0.82 0.01

Here, the F-statistic is a notion of how well an objective
can explain the rankings provided by the DM.

Step 3: The p-values corresponding to each F-statistic can be
calculated by any statistical software.

Step 4: Features with lower p-value are selected. Number of
selected features can be either fixed to a given value k
(2 ≤ k < |F |) or variable. In the latter case, objectives
with p-values less than a predetermined threshold τ ∈
(0, 1] are selected (or at least two objectives). These two
variants are explained in Section IV-B.

The lower the p-value, the better is the corresponding
objective function in explaining the DM’s rankings. The
pseudo-code of uni-variate feature selection is illustrated in
Algorithm 1.

To illustrate the procedure after a given interaction, we
outline an example in Table I. We assume a fixed number
of objectives (k = 2) is considered here. Nexa = 5 solutions
are evaluated by the DM as indicated by r. The p-value of
each objective is obtained as explained by uni-variate feature
selection. Regardless of the state of the algorithm and set of
active objectives before this interaction, the two objectives f1
and f4 are activated after this interaction, and other objectives
(f2 and f3) are deactivated.

2) Recursive Feature Elimination: RFE is different from
uni-variate feature selection in that it first uses logistic re-
gression to build a model based on all the features to predict
the rankings, and then excludes from the selected subset
the feature with the minimum contribution to the regression
model [59]. There are several ways to measure the contribution
of the ith objective to the regressed model, and here to
be consistent with uni-variate variant, we use the statistical
significance level (p-value), ϕ(fi) ∈ [0, 1], for the objective’s
coefficient in the regressed model, which can be calculated
with any statistical software. In the next iteration, the model
is built again using the pruned set of objectives. The process
is repeated until the size of the pruned set is equal to k in the
case of fixed number of objectives. For the variable number
of objectives, the pruning stops when the remaining objectives
are all significant. The detection method using RFE is depicted
in Algorithm 2.

Algorithm 1: Uni-Variate Feature Selection
Input:
F : Set of all potential objectives (features)
T : Set of objective vectors ranked by the DM
r : Vector of ranks
and either

• k ∈ [2, |F |) ⊂ N (for fixed number of objectives) or
• τ ∈ (0, 1] ⊂ R (for variable number of objectives)

1 for i← 1 to |F | do
2 Step 1: Calculate ρi using Eq. (2)
3 Step 2: Calculate Fi using Eq. (3)
4 Step 3: Calculate pi (p-value) from Fi

5 if Fixed number of objectives then
6 F̂ ← k objectives from F with lowest p-value
7 else
8 F̂ ← {fi ∈ F | pi < τ}
9 if |F̂ | < 2 then

10 F̂ ← 2 objectives from F with lowest p-value

11 return F̂ (selected objectives)

Algorithm 2: Recursive Feature Elimination
Input:
F : Set of all potential objectives (features)
T : Set of ranked solutions
r : Vector of ranks
and either

• k ∈ [2, |F |) ⊂ N (for fixed number of objectives) or
• τ ∈ (0, 1] ⊂ R (for variable number of objectives)

1 F̂ ← F

2 while |F̂ | > 2 do
3 Step 1: M ← Build_Model(T , r, F̂ )
4 Step 2: fj ← argmaxfi∈F̂ ϕ(fi)

5 if Fixed number of objectives then
6 if |F̂ | = k then
7 break
8 else if ϕ(fj) < τ then
9 break

10 Step 3: F̂ ← F̂ \ fj
11 return F̂ (selected objectives)

B. Fixed versus Variable Number of Active Objectives

The number of features (active objectives) selected can be
defined in different ways. Here we explore the following two
alternatives:

1) Fixed Number of Objectives (k): The optimization starts
with k active objectives and this number is kept constant
throughout the optimization process such that activating an
inactive objective implies deactivating an active one. The
benefit of this approach is that the iEMOA only needs to
handle a specific number of objectives, which is simpler than
handling a variable number of objectives. The downside is that
some relevant objectives may remain hidden if the number of
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relevant objectives |FDM| is larger than k. Thus, the goal is to
identify the k most relevant objectives for the DM out of all
potential objectives.

2) Variable Number of Objectives: We select the subset of
objectives that meets a predetermined threshold τ . The lower
the value of τ , the lower would be the number of objectives
with acceptable p-values. If there is only one objective with
a p-value lower than τ , then the two objectives with lowest
p-values are selected instead. For RFE, the process stops if
the size of the pruned set of objectives is reached 2.

Having two feature selection methods and two approaches
with fixed and variable number of objectives as explained
above, we have four total variations defined as follows:

1) k-HD: Uni-variate feature selection with fixed number of
objectives

2) τ -HD: Uni-variate feature selection with variable number
of objectives

3) k-HDR: RFE with fixed number of objectives
4) τ -HDR: RFE with variable number of objectives

The convention used for naming the variants can be described
as follows; the prefix k indicates the variants with fixed
number of objectives and the prefix τ specifies the variable
number of objectives. HD indicates that Hidden/irrelevant
objective Detection is on. The suffix R is added when the
recursive feature elimination is used. The proposed methods
can be applied to any ranking-based iEMOA for objective
reduction and/or detection of hidden objectives in order to
find the objectives that are relevant to the DM. Here, we will
focus on extending BCEMOA [44] with our proposed method.
We chose BCEMOA due to its popularity and availability of
the source code. The proposed method however, can be inte-
grated with any ranking-based algorithm. In what follows, the
modified BCEMOA, here called BCEMOA-HD, is explained
in detail.

C. BCEMOA-HD

BCEMOA [44] is an iEMOA based on NSGA-II. It starts
with a population of randomly generated solutions (pop), and
the population is evolved with NSGA-II for gen1 generations.
Next, at each interaction step, the best Nexa solutions are
selected from the evolved population, all potential objectives
are evaluated and presented to the DM for ranking. The
objective vectors and their ranks are then used to train a sup-
port vector machine (SVM) model to learn a utility function
(USVM). The learned USVM replaces the crowding distance in
the next generations. Further interactions with the DM provide
additional samples to re-train the SVM model and improve the
predictions of the learned utility function.

Similar to the original BCEOMA, the BCEMOA-HD algo-
rithm, proposed here, starts with a set of active objectives F̂ .
All inactive objectives (F \ F̂ ) do not need to be evaluated
during the optimization and do not participate in dominance
ranking and evolution of the population. At each interaction
with the DM, all objectives in F are evaluated for the
solutions that are presented to the DM. Immediately after each
interaction, the feature selection method described in Section
IV-A is applied to the objective vectors and their rankings to

Algorithm 3: BCEMOA-HD
Input:
Nint : Total number of interactions
Nexa : Number of training examples per interaction
pop : Population of solutions
gen1 : Generations before first interaction
geni : Generations between two interactions
F : Set of potential objectives
F̂ : Set of active objectives
and either

• k < |F | (for fixed number of objectives) or
• τ (for variable number of objectives)

1 T ← ∅, r ← ∅
2 pop← run NSGA-II for gen1 generations

optimizing only F̂
3 for 1 to Nint do
4 Ti ← select Nexa solutions
5 Evaluate solutions in Ti for all objectives in F
6 ri ← DM_ranks(Ti)
7 T ← T ∪ Ti

8 r← r ∪ ri
9 F̂ ← feature_selection(F , T , r, k or τ)

10 Evaluate pop for fi ∈ F̂

11 USVM ← train_SVM({zji | zj ∈ T ∧ fi ∈ F̂}, r)
12 Crowding_Distance← USVM

13 pop← run NSGA-II for geni generations
optimizing only F̂

14 return Best x ∈ pop ranked first by non-dominated
sorting and then USVM considering only F̂

identify relevant objectives and update F̂ . Consequently, the
population may need to be updated by evaluating any objective
fi ∈ F̂ that has become active. SVM is also used to learn USVM

based on active objectives in the updated F̂ and their rankings.
An overview of BCEMOA-HD is shown in Algorithm 3.

As described above, compared to the original BCEMOA,
we have modified the algorithm in Lines 9 and 10, where
feature selection is deployed and the set of active objectives
is updated, respectively. A further modification applied to the
original BCEMOA is in the selection of the best solutions
presented to the DM. When there is no variance in the values
of some objective, for example, because its values are near-
optimal, then their correlation with the rankings provided by
the DM is undefined, and their p-value will be set to 1. As a
result, the feature selection will deactivate the objective and
replace it with an irrelevant objective that might have a higher
correlation by chance. To preserve the elitism and avoid losing
the DM’s desired solution, the solution that was ranked best
by the DM in the last interaction is always included in the next
set of solutions presented to the DM by BCEMOA-HD. This
way, we make sure we will not lose the DM’s most desired
solution so far and the utility of the selected solution does not
decrease.
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V. EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed method, we
design a set of experiments that cover different aspects of the
problem of identifying hidden and irrelevant objectives. In the
experiments with variable number of objectives, we seek to
investigate how the methods perform for objective reduction
purposes, thus all objectives are active from the start of the
run (F̂ = F ). In the case of fixed number of objectives, only
specific objectives are active (F̂ ⊂ F ) at the start.

Although this research is motivated by real-world scenarios,
it would be very difficult to analyze the methods using
complex real-world problems and human DMs. Instead we
use well-known benchmarking problems from the literature,
which we extend to simulate hidden and irrelevant objectives,
and we simulate a human DM using various utility functions.

In what follows, a detailed description of the design of the
experiments is laid out.

A. Simulation of Active and Inactive Objectives

We create synthetic problems that feature irrelevant and
hidden objectives by extending existing benchmark problems
as follows: Given a problem with m = |F | potential objectives,
we extend it with d ⊆ [1,m], an ordered index set of active
objectives such that i < j → di < dj , specifying which objec-
tives are active (optimized), i.e., i ∈ d iff fi ∈ F̂ ⊆ F , where
fi is the ith potential objective function. That is, given a solu-
tion x, whose objective vector is f(x) = (f1(x), . . . , fm(x)),
the optimizer only considers f̂(x) = (fd1

(x), . . . , fdm̂
(x)) and

is able to change the set of active objectives by changing the
indices in d.

On the other hand, feature selection methods and the DM
have access to f(x). In particular, when asked to rank a
solution x, the simulated DM evaluates U(f(x)), where U
is the utility function that measures the DM’s preferences,
and U simulates irrelevant objectives by disregarding those
components of f , as we explain below.

The above technique can be applied to any multi-objective
optimization problem. We describe next the underlying bench-
mark problems used in our experiments.

B. Underlying Benchmark Problems

We applied the above technique to two well-known numer-
ical and binary benchmark problems, namely, multi-objective
NK landscape problems with correlation between objectives
(ρMNK) [19] and DTLZ problems [18] with m ∈ {4, 10, 20}
objectives. Problems with m = 4 help us to better understand
and investigate the dynamics of the proposed methods, while
larger number of objectives allows us to evaluate the efficiency
of the feature selection with variable number of objectives in
many-objective problems.

ρMNK problems allow us to analyse the effects of corre-
lation among objectives and smoothness of the landscape on
the performance of the proposed method. We consider ρMNK
instances with different values of correlation among objectives
ρ ∈ {−0.25, 0, 0.25, 0.5, 0.75, 0.9}, taking into account the
restriction that ρ ≥ −1/(m − 1) [19] and different values of

parameter K, which controls the smoothness of the landscape,
namely, K ∈ {1, 4, 6, 8} for problems with 4 objectives and
K ∈ {1, 5, 10, 15} for many objective problems, considering
the constraint K < n. The greater the value of K, the more
rugged is the fitness landscape. The value of n is kept fixed at
10 for problems with m = 4, 20 for problems with m = 10,
and 30 for problems with m = 20 for ρMNK problems.

From the DTLZ test suite, we focus on DTLZ1, DTLZ2
and DTLZ7, which were also used in the experiments of
the original BCEMOA [44] and also in [60] for objective
reduction. DTLZ1 contains 11k−1 local Pareto-optimal fronts.
Thus, it can be used to test the ability of the algorithm to
deal with multiple local attractors. DTLZ2 has a concave
Pareto front. Finally, DTLZ7 has 2m−1 disconnected Pareto-
optimal regions in the objective space and is used to check the
diversity of the solutions and the performance of the algorithm
in disconnected feasible space.

As suggested in [18], the decision space dimension (n) is
m+4 for DTLZ1, m+9 for DTLZ2 and m+19 for DTLZ7.
With DTLZ problems, optimizing a subset of objectives will
optimize the rest of the objectives as well. To make the
problem more challenging and also to avoid collapsing the PF
to one point when projected to k < m objectives, we follow
[60] and map xi to xi/2 + 0.25, i = 1, . . . , n, for DTLZ2
and bound xi within [0.25, 0.75] for DTLZ1, which is also
suggested in [44]. Please note that this modification is not
needed for DTLZ7 as it does not collapse to a single point.

C. Machine Decision Maker (MDM)

We adhere to the MDM framework introduced in [61] and
simulate the DM’s preferences with an utility function (UF)
that explicitly expresses which objectives are relevant, so that
we can assess the effectiveness of the methods proposed here
for identifying relevant objectives.

We define c as the ordered index set of relevant objectives
such that i < j → ci < cj , and consider the following
quadratic UFs that were proposed in experiments on the
original BCEMOA [44]:

UF1(f) = 0.28f2
c1 + 0.38f2

c2 + 0.29fc1fc2 + 0.05fc1 (4)

UF2(f) = 0.6f2
c1 + 0.05fc1fc2 + 0.23fc1 + 0.38fc2 (5)

UF3(f) = 0.44f2
c1 + 0.14f2

c2 + 0.09fc1fc2 + 0.33fc1 (6)

In addition, we consider the following Tchebychef UF

Utch(f) = max
i∈c

wi|fi − f∗
i | (7)

with 0 as the ideal point f∗. The weights wi of irrelevant
objectives (i /∈ c) are set to zero while the weights of relevant
objectives were manually selected for each problem such that
the most preferred solution is away from the corner points as
far as possible.2

In the UFs above, the DM only considers FDM = {fi|i ∈ c},
while other objectives are irrelevant. Our simulation strategy
assumes that relevant objectives are not strongly correlated
with irrelevant ones. Otherwise, an objective that does not
explicitly appear in the definition of a particular UF may still

2The weights used for each problem are given in the Appendix III.
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be identified as relevant by the proposed methods. We explain
how we selected relevant objectives for each problem in the
next section.

Although the UFs in Eqs. (4)–(7) are designed for minimiza-
tion, we reverse and scale all utility values in the experiments
to the range [0, 1], such that 1 corresponds to the best utility
value and 0 to the worst one, for consistency with multi-
attribute utility theory [62].

D. Selecting Relevant Objectives

Projection of the PF on lower dimensions might make it
collapse to a single point, for some problems. This is true
for DTLZ problems even when the problem is bounded [60].
Thus, careful consideration should be given when using these
problems to simulate active and inactive objectives. For in-
stance, the PF of DTLZ7 collapses to a point if the first
two objectives are active and the rest are inactive. After a
careful examination, here the first and fourth objectives are
selected as relevant for DTLZ problems (c = {1, 4}). In the
case of ρMNK problems the first two objectives are selected
(c = {1, 2}). For ρMNK problem with four objectives, having
FDM = {f1, f2} and given an initial d = {2, 4}, we can see
that f1 is a hidden objective (relevant but not optimized), f2 is
both relevant and optimized, f3 is irrelevant and not optimized,
and f4 is irrelevant and optimized.

E. Evaluation of the Results

The experiments are performed in three different modes to
enable the assessment of the proposed algorithms:

1) Golden mode: No interaction is done in this mode and the
algorithm directly accesses the true UF of the DM instead
of learning a UF. Moreover, only relevant objectives are
optimised from the start to end. This is the ideal scenario.

2) Only learning mode: This mode corresponds to the origi-
nal BCEMOA without any detection of hidden objectives.
The algorithm does not have access to the DM’s UF
and instead a UF is learned from the rankings provided
by the MDM, i.e. at each interaction the MDM uses its
true UF to rank solutions. Predictions from the learned
UF are used to rank non-dominated solutions, replacing
the crowding distance in NSGA-II. The algorithm still
uses non-dominated sorting as the first criteria to rank
solutions. Both non-dominated sorting and the learned
UF only consider the set of active objectives f̂(x). The
set of active objectives never changes, that is, d remains
constant throughout the run.

3) Learning + detection mode: This is our proposed
BCEMOA-HD that performs detection of hidden objec-
tives and is able to modify the set of active objectives.
Within this mode, we test 4 variants of the HD method
(see Section IV-B): k-HD, τ -HD, k-HDR, τ -HDR. Simi-
lar to the Only learning mode, the optimization algorithm
relies on non-dominated sorting and an UF that is learned
based on f̂(x), and not on the MDM’s true UF. However,
in this mode, d and subsequently f̂ may change after
each interaction with the ultimate goal of converging to
the objectives that are actually relevant for the DM (FDM).

Having these three modes makes it possible to evaluate the
performance of the proposed method compared to the original
BCEMOA and to the best solution that is achieved under an
ideal scenario in Golden mode. The criteria for evaluation
of the performance is the true utility value of the final
solution returned by the algorithm. For Learning + detection,
we also record the active objectives after each interaction
to investigate how good the proposed method performs in
detecting the relevant objectives during an optimization run.
This allows us to measure the number of objective evaluations
(see Definition II.3). Understanding the relationship between
utility and the computational/resource effort invested is of
particular relevance to problems where objective evaluations
are expensive, time-consuming and/or resource-intense [63]. In
such problems, identifying high-utility solutions with as few
as possible objective evaluations is preferred (or even needed
in order to avoid premature termination of the optimization
process due to a lack of resources). As a side effect, fewer
objective evaluations means a reduced level of complexity,
e.g. in case objectives are heterogeneous [64], and a reduced
cognitive load on the DM as ranking is done considering fewer
objectives comparisons in total.

Parameter Settings: All variants of BCEMOA use the pa-
rameter settings proposed in the original paper [44], including
the parameters of the SVM learning model. In particular,
the total number of generations is 500 and Nexa = 5 so-
lutions are shown to the DM at each interaction. Within
BCEMOA, NSGA-II uses a population size is 100 and creates
100 new solutions at each generation. NSGA-II runs for
gen1 = 200 generations before the first interaction and there
are geni = 30 generations between subsequent interactions.
The total number of generations after the last interaction is
calculated as 500−gen1−geni(Nint−1). Thus, changing the
number of interactions (Nint) would not alter total number of
generations. We run experiments with 1, 3 and 6 interactions
for DTLZ problems. For ρMNK problems, we only consider 6
interactions and, instead, we investigate the effect of different
levels of correlation (ρ) and ruggedness (K). Each algorithmic
run was repeated 40 times with different random seeds.

Implementations: The algorithms, machine DM and ρMNK
problems are implemented in Python 3.7.6. The implementa-
tions of NSGA-II within BCEMOA and DTLZ benchmarks
are provided by the Pygmo library 2.16.0 [65], the uni-
variate feature-selection and RFE implementations are based
on Scikit-learn 0.23.1 (http://scikit-learn.org/). To motivate
further research, we make our code [66] publicly available.

VI. EXPERIMENTAL RESULTS

The interactive methods are designed to help the DM reach
a satisfying solution and, thus, the utility value of the final
solution returned by the algorithm is used to evaluate the
performance of the interactive methods [24]. The utility values
are normalized to the [0, 1] interval in all the results. In this
section, we focus on the most important findings and some
figures are omitted to save space. The complete set of results
and figures can be found in Appendix I.
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Figure 1. Comparison of the performance of different modes for DTLZ
problems. The number of active objectives is fixed at k = 2. The vertical
axis is the utility value (larger is better). The horizontal axis indicates the
number of interactions.

A. DTLZ Problems with Fixed Number of Objectives

The results of experiments on DTLZ problems with a fixed
number of active objectives are illustrated in Figure 1. When
using BCEMOA-HD with DTLZ1 problem with m = 4 or
m = 20 and fixed number of active objectives, almost no
improvement is observed in utility value compared to Only
learning when comparing means, although the BCEMOA-HD
manages to find better solutions in some instances. However,
when m = 10, the performance of k-HD and k-HDR are
significantly better than Only learning and almost as good as
Golden mode except for UF2, which still shows no improve-
ment.

For DTLZ2, improvements in the performance can be seen
when BCEMOA-HD is used in the case of m = 10 and m =
20 together with UF1 and UF2. Another important observation
is the better performance of k-HDR with more interactions,
although it fails to get as good as k-HD.

For DTLZ7, there are slight improvements when detection
methods (k-HD, k-HDR) are used. Complete list of figures
can be found in the Appendix I.

In general, we observe that the proposed methods can
significantly improve the utility value of the final solutions
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Figure 2. Comparison of the performance of different modes for DTLZ
problems. The number of active objectives is not fixed (τ = 0.02) and
detection mode is used as an objective reduction technique. The vertical axis
is the utility value (larger is better). The horizontal axis indicates the number
of interactions.

with respect to Only learning for the UFs tested. In some cases
where it fails to do so, the utility value is not deteriorated by
the method.

B. DTLZ Problems with Variable Number of Objectives

In this set of experiments, the effectiveness of the
BCEMOA-HD is investigated with regard to objective reduc-
tion capabilities and thus the number of active objectives is not
fixed. Thus, the execution of the algorithms start with all the
objectives being active. The key results of these experiments
are illustrated in Figure 2. For DTLZ1 with m = 4, the τ -
HD and τ -HDR perform better than the Only learning mode
on Tchebychef UF, while for other UFs they have almost the
same performance in terms of the utility value. With m = 10
and m = 20, τ -HD and τ -HDR perform as well as the
Golden mode while τ -HDR is slightly outperformed by τ -
HD. Results for DTLZ2 are identical to those of DTLZ1,
i.e., τ -HD and τ -HDR perform as well as Golden mode and
outperform Only learning mode with m = 10 and m = 20.
For m = 4 τ -HD and τ -HDR outperform Only learning when
UF3 is used, but cannot perform as well as Golden mode.
In general, the superiority of τ -HD and τ -HDR compared to
Only learning becomes more prevalent with a higher number
of objectives. Although in some cases the algorithms return
solutions with similar utility, we will show in Section VI-D3
that the detection method results in significant computational
savings.
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Figure 3. Comparison of the performance of different modes for ρMNK
problems. The number of active objectives is fixed to k = 2. The vertical
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detection mode is used as an objective reduction technique. The vertical axis
is the utility value (larger is better). The horizontal axis indicates the ρ values.

C. ρMNK Problems

The results of experiments on ρMNK problems with a fixed
and variable number of objectives are depicted in Figures 3
and 4, respectively. In most of these experiments, the proposed
methods outperform the Only learning mode. In the case of
the fixed number of objectives, in 30% of the cases this better
performance of the proposed method is significant (based
on the Wilcoxon signed-rank test with Holm’s adjustment
for multiple comparisons, p-value < 0.05). For the variable
number of objectives, the significant observations increase to
50%. The detailed comparison of different modes related to
Figs 3 and 4 can be found in the Appendix. In the next section,
we will further analyze the results and show that the relevant
objectives are indeed detected, which means that a similar
solution utility is reached in fewer objective evaluations and
the proposed method can improve the computational efficiency
of the interactive methods.

D. Further Analysis

1) Anytime Behavior within Each Run: Figure 5 illustrates
the change in the utility value of the best solution gained after
each interaction in a single run of the algorithm averaged
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Figure 5. Utility of the best-so-far solution within a single run after each
interaction on DTLZ2 problem when using τ -HD (τ = 0.02). The lines show
the mean value over 40 runs and the shaded area shows the 95% confidence
interval around the mean. The results for other test problems are similar.

over 40 runs. We observe that all interactions lead to some
improvement in the utility of the best solution found, but the
improvements become smaller with subsequent interactions.

2) Power of Detection of Relevant Set of Objectives: In
terms of the power of the detection, a heatmap plot is provided
in Figure 6. The plot illustrates the number of times the
relevant and irrelevant objectives are activated by τ -HD across
all experiments on ρMNK problems with 10 objectives. The
x-axis shows interactions within a single run. Interaction 0
refers to the state of the algorithm before the first interaction,
when all objectives are active. The y-axis shows the index
of all potential objectives. Each cell in the heatmap indicates
the number of times the potential objective shown in the y-
axis was active after the interaction shown in the x-axis. It
can be observed that after the first interaction most of the
objectives are deactivated while the first and second objectives,
which are the relevant ones, are kept active. It can be easily
verified that the τ -HD converges fast towards the relevant
objectives. Another observation is that after the 6th interaction,
almost all objectives become active, although to a lesser degree
compared to the relevant ones. This observation is explained as
follows: When the relevant objectives are optimized to their
near-optimal value with respect to the DM’s UF, the values
of these objectives will be nearly constant in the solutions
presented to the DM. During feature selection, the correlation
for such objectives would be undefined (Eq. 2), the F-statistic
will be set to 0.0 and the p-value to 1.0, thus the objectives
would be identified as irrelevant and replaced with inactive
ones that, by chance, show some correlation with the rankings
of the DM.

3) Analysis of the Threshold Parameter (τ ) and Compu-
tational Efficiency: As an important parameter of τ -HD and
τ -HDR, τ indirectly controls the number of active objectives;
thus, careful examination should be given in determining its
value. To inspect the effect of parameter τ , the DTLZ problems
with m = 20 objectives are solved with different values of
τ . The results for other problems are similar and hence not
discussed here. Setting m = 20 provides a better illustration
of the efficiency of the proposed method in reducing the
computational requirements and objective evaluations. When
τ = 1, all objectives have p-value less than the threshold and,
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thus, all of them are active; this means no objective reduction
is performed and the mode is identical to Only learning. The
results in Figure 7 show that the performance of the τ -HD
improves with lower values of τ on DTLZ problems.

On the other hand, reducing the τ value would reduce the
number of active objectives (up to a minimum of 2 active
objectives). A lower number of active objectives increases
the efficiency of an EMOA and, by avoiding the evaluation
of inactive objectives, possibly translates to savings in com-
putational and economical costs. To illustrate these potential
savings, Figure 8 shows the changes in the number of active
objectives after each interaction, averaged over 40 runs. The
shaded areas show the 95% confidence interval around the
mean. It can be clearly verified that after the first interaction,
the number of active objectives experiences a steep decrease.
As expected, when τ = 1, no objective reduction is performed.

Another important criteria is the ratio of evaluations of
relevant objectives to those of irrelevant ones. Since inactive
objective are not evaluated during optimization, we measure
the total number of objective evaluations (Def. II.3) only for
active objectives and we observe that τ -HD effectively reduces
this total number. For instance, when τ = 1 (equivalent to
Only learning mode), an experiment on DTLZ1 with UF3,
uses 600, 000 objective evaluations and only 10% of these
evaluations pertain to relevant objectives. However, when τ -
HD is used, only 45, 000 objective evaluations are done of
which 30, 000 (67%) are dedicated to relevant objectives.
In general, objective evaluations are reduced by up to 80%
compared to Only learning when τ -HD or τ -HDR is used.
These savings could used to run the optimizer for longer,
leading to improved solutions (although we do not explore
this possibility here).

VII. CONCLUSION AND FUTURE WORK

This study has considered multi-objective problems that
are solved by means of iEMOAs and where only an un-
known subset of all the potential objectives are of relevance

to the DM. In this context, we provided formal definitions
of irrelevant, hidden and active objectives that complement
the definition of redundant objectives already studied in the
literature. We propose here a detection method that may
be incorporated into any ranking-based iEMOA to identify
irrelevant and hidden objectives. Furthermore, we show that
an iEMOA able to dynamically change the active objectives
can use this method to find solutions with higher utility for
the DM in fewer objective evaluations. In addition, for the
purpose of benchmarking, we propose a methodology for the
simulation of irrelevant, hidden, and active objectives.

Two variants of the method with a fixed and variable
number of active objectives were studied. The results show
that the variant with the variable number of objectives is useful
for dimension reduction purposes, reducing the number of
active objectives even after the first interaction. This eliminates
unnecessary evaluations of irrelevant objectives, thus saving
computational effort, and improves the utility of the final
solution returned by the iEMOA. The variant with a fixed
number of active objectives has shown to be able to both
remove irrelevant objectives and activate hidden ones. We
also explored the application of recursive feature selection.
However, the results indicate that there is no gain in using
this method over the uni-variate feature selection. Comparing
the results achieved for different test problems, we observed
that the improvements in the final utility value are more
significant for DTLZ problems. However, savings with regard
to objective evaluations are achieved for both test problems.
These savings may be most beneficial in problems where
objective evaluations are expensive in terms of computational
time, economical cost, or physical resources. We showed
experimentally that the value of τ affects the number of active
objectives and can be used as a tool to control this aspect. We
considered four different UFs to simulate DMs with different
preferences. Future studies should consider other UFs, such as
the Sigmoid UF [67].

There is scope to obtain further improvements. We observed
that, in some experiments, once the relevant objectives have
reached near-optimal values with respect to the DM’s UF,
the proposed methods may replace active relevant objectives
with irrelevant ones. Thus, it would desirable to introduce a
mechanism that avoids such a behavior. Future studies should
also consider DM simulations of learning and preference drift
and how our proposed detection method can cooperate with
an iEMOA to detect and adapt to such changes. Our proposal
relies on uni-variate feature selection based on the correlation
between objectives and DM’s rankings. Considering nonlinear
regression in feature selection would be a subject worth
studying. In the case of BCEMOA, the learned SVM model
could be used to identify relevant objectives. However, our
proposal here is more general and does not require that the
iEMOA uses a specific learning model.
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