
MultiObjective
Ant Colony Optimization

TECHNISCHE
UNIVERSITÄT
DARMSTADT

niversidad de

ranada
U
G

Manuel LópezIbáñez Infante

October 2003 – July 2004

Supervisors:

Luis Paquete Thomas Stützle

License

Multi-objective Ant Colony Optimization.
Diploma Thesis
by Manuel López-Ibáñez

Copyright c© 2004 Manuel López-Ibáñez. All rights reserved.

This work is licensed under the Creative Commons Attribution License.
To view a copy of this license, visit http://creativecommons.org/licenses/
by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

• to make commercial use of the work

Under the following conditions:

• Attribution. You must give the original author credit.

• For any reuse or distribution, you must make clear to others the license
terms of this work.

• Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code
(http://creativecommons.org/licenses/by/2.0/legalcode).

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/legalcode

Preface

Real world problems usually involve several and often conflictive objectives
that must be simultaneously optimized in order to achieve a satisfactory solu-
tion. Multi-objective optimization has its roots at the end of the nineteenth
century, in the studies of Edgeworth and Pareto, but had not experimented
a great development until the fifties. Since last decade, there is an ongo-
ing research effort to develop approximate algorithms and metaheuristic ap-
proaches to solve multi-objective problems. As a result, various metaheuris-
tic approaches have been applied to multi-objective optimization, including
simulated annealing (SA), taboo search (TS) and evolutionary algorithms.
Nevertheless, there are many important open questions in multi-objective
optimization, e.g., the adequate performance assessment of multi-objective
optimization algorithms.

Ant Colony Optimization (ACO) is a metaheuristic approach applied suc-
cessfully to single objective combinatorial problems, but few work has been
done to apply ACO principles to multi-objective combinatorial optimization
(MOCO) and most of the proposed algorithms are only applicable to problems
where the objectives can be ordered according to their importance. There-
fore, it is still unclear how ACO algorithms for these problems should be
designed.

This work examines the concepts involved on the design of ACO algo-
rithms to tackle MOCO problems, e.g., definition of multi-objective pher-
omone information, multiple cooperative ant colonies, pheromone update
strategies in the multi-objective context and local search methods for mul-
tiple objectives. Most of these concepts have been previously used in the
literature. Nevertheless, we examine them independently of any particular
problem and we propose alternative concepts still not considered. Moreover,
we study these concepts in relation to the available knowledge about the best
performing ACO algorithms for single objective optimization and the search
strategies currently used in multi-objective optimization. As well, these con-
cepts are studied as components of a general multi-objective ACO (MO-ACO)
algorithm.

Next, we apply these concepts to design an ACO algorithm for the bi-
objective case of a recently proposed multi-objective variant of the quadratic

iv Preface

assignment problem (QAP). Therefore, we consider various configurations of
the MO-ACO algorithm and compare their performance when applied to the
bi-objective QAP. These configurations use theMAX -MIN Ant System as
the underlying algorithm because it is considered the best performing ACO
algorithm for the single objective QAP. In addition, the particular compo-
nents of each configuration are chosen in such a way that the configuration
reflects a particular search strategy. This search strategy is either based on
dominance criteria or based on scalarizations of the objective vector. To ad-
dress the performance assessment of these experiments, we use a methodology
that combines up-to-date ideas from the research area of multi-objective op-
timization with well-known statistical techniques from experimental design.

The experimental results show that the use of local search with MO-ACO
is essential for the bi-objective QAP. Moreover, other parameters become
less significant when local search is applied. The underlying search strategy
followed by each configuration plays an important role in the shape of the
Pareto set obtained by the algorithm.

The organization of concepts of MO-ACO into modular components which
can be combined into various configurations allows applying MO-ACO to
other MOCO problems. The available knowledge of single objective ACO,
multi-objective optimization and about particular problems may be used to
design new components, e.g., different local search methods, which can be
combined into configurations of MO-ACO in order to tackle different MOCO
problems.

v

This document is structured as follows:

Chapter 1 introduces the basic concepts of multi-objective optimization in
terms of Pareto optimality.

Chapter 2 reviews the single objective QAP, describing the problem defi-
nition and briefly the current knowledge about types of QAP instances
and related measures. Afterward, this chapter introduces the proposals
on multi-objective QAP, and finally it describes the bi-objective QAP
instances used as test instances.

Chapter 3 gives a brief introduction to Ant Colony Optimization, the ap-
plication of ACO to the single objective QAP and the MAX -MIN
Ant System.

Chapter 4 examines the design of multi-objective ACO algorithms. Partic-
ularly, we discuss the use of multiple colonies, several pheromone update
strategies and different search strategies. Finally, several configurations
are considered in order to tackle the bQAP.

Chapter 5 describes the assessment methodology followed to evaluate the
configurations considered to tackle the bQAP.

Chapter 6 analyzes the results of the experiments performed with respect
to the assessment methodology.

Chapter 7 concludes and indicates future research directions.

Contents

Preface iii

1 Multi-objective Optimization 1
1.1 Multi-objective Optimization Problems 1
1.2 Pareto Optimality . 2
1.3 Relations between Pareto Sets 3
1.4 Weighted Sum Scalarization 4
1.5 Multi-objective Combinatorial Optimization Problems 4

2 The Quadratic Assignment Problem 7
2.1 The Single Objective QAP . 7

2.1.1 Types of QAP Instances 8
2.1.2 Measures of QAP Instances 9

2.2 The Multi-objective QAP (mQAP) 9
2.2.1 Bi-objective QAP (bQAP) Instances 10

3 Ant Colony Optimization 13
3.1 ACO Algorithms . 13
3.2 Ant System Applied to the QAP 15
3.3 Improvements on AS . 16
3.4 MAX -MIN Ant System . 17

4 Multi-objective ACO 19
4.1 ACO Algorithms for MOCO Problems 19
4.2 Multi-objective Pheromone Information 21

4.2.1 Multiple Pheromone Information 22
4.2.2 Single Pheromone Information 25
4.2.3 Computational Efficiency 26

4.3 Pheromone Update Strategies 27
4.4 Multiple Colonies . 29

4.4.1 Weight Vectors in the Multi-colony Approach 30
4.4.2 Candidate Set in the Multi-colony Approach 31
4.4.3 Pheromone Update Strategies with Multiple Colonies 31

4.5 Local Search Methods for MO-ACO 33

viii Contents

4.5.1 Local Search for Single Objective Problems 34
4.5.2 Pareto Local Search (PLS) 34
4.5.3 Bounded Pareto Local Search (BPLSA) 34

4.6 MO-ACO Applied to the bQAP 35

5 Performance Assessment 39
5.1 Binary ε-measure . 39
5.2 Unary ε-measure . 41

5.2.1 Lower Bound . 41
5.2.2 Analysis of Variance (ANOVA) 42

5.3 Median Attainment Surface 43
5.4 Reference Solutions . 44

6 Experiments 45
6.1 Experimental Setup . 45
6.2 Analysis of Experimental Results 46

6.2.1 Analysis Based on Binary ε-measure 46
6.2.2 Analysis Using Unary ε-measure and ANOVA 52

6.3 Median Attainment Surfaces 57

7 Conclusions 63
7.1 Multi-objective ACO . 63
7.2 MO-ACO Applied to the bQAP 64
7.3 Future Research . 65

A ANOVA Assumptions 67

Bibliography 73

List of Figures

3.1 Algorithmic schema of ACO algorithms 15

5.1 Pictorial view of the lower bound for the bQAP. 42

6.1 Lower bounds . 53
6.2 Interactions: unstructured (ξ = 0.75) instance, using LS . . . 55
6.3 Main factors: unstructured (ξ = 0.00) instance, using LS . . . 56
6.4 Interactions: unstructured (ξ = 0.00) instance, using LS . . . 56
6.5 Interactions: unstructured (ξ = −0.75) instance, using LS . . 57
6.6 Median attainment surfaces: unstructured instances 60
6.7 Median attainment surfaces: structured instances 61

A.1 ANOVA assumptions: unstructured instances, using LS . . . 69
A.2 ANOVA assumptions: unstructured instances, not using LS . 70
A.3 ANOVA assumptions: structured instances, using LS 71

List of Tables

2.1 bQAP unstructured instances 11
2.2 bQAP structured instances 11

4.1 Search strategies when applying MO-ACO to the bQAP . . . 38
4.2 Configurations of the MO-ACO algorithm for the bQAP . . . 38

6.1 Results using LS methods vs. not using LS methods 47
6.2 Results using Sall vs. using Sone 48
6.3 Results using class D vs. using class S 49
6.4 Results using iteration-best vs. using best-so-far strategies . . 50
6.5 Results using 1 colony vs. using 5 colonies 51
6.6 ANOVA: unstructured (ξ = 0.75) instance, using LS 55
6.7 ANOVA: unstructured (ξ = 0.00) instance, using LS 55
6.8 ANOVA: unstructured (ξ = −0.75) instance, using LS 56
6.9 ANOVA: unstructured (ξ = 0.75) instance, not using LS . . . 58
6.10 ANOVA: unstructured (ξ = 0.00) instance, not using LS . . . 58
6.11 ANOVA: unstructured (ξ = −0.75) instance, not using LS . . 58
6.12 Empirical correlation of bQAP instances 59

Chapter 1

Multi-objective Optimization

Many optimization problems arising in practice involve more than one optimization cri-
terion, requiring the simultaneous optimization of several, perhaps conflicting, objective
functions. Hence, a single optimal solution is not as interesting as information about the
trade-off between the various objectives. In multi-objective optimization, the abstract
concept of trade-off is usually defined in terms of Pareto optimality. Thus, the goal is to
obtain the set of all Pareto optimal solutions or, at least, a good approximation of this
set. An alternative method would be to transform the multi-objective problem into a
single objective problem using a weighted sum of the multiple objectives. Then, Pareto
optimal solutions can be found by solving several of such single objective problems us-
ing various weights. However, if certain conditions are not met, not all Pareto optimal
solutions will be found by means of such method. In this work we are only interested
in a certain class of multi-objective problems, multi-objective combinatorial optimization
problems.

1.1 Multi-objective Optimization Problems

As its very name suggests, in a multi-objective optimization problem (also
called multi-criteria optimization and vector optimization problem) every so-
lution is measured according to more than one objective function, each of
which must be minimized or maximized. Let Q be the number of objectives
in a multi-objective problem, let S be the set of feasible solutions and let
Z denote the set of all objective value vectors of feasible solutions. Each
element of Z is a vector referred to as objective vector formed by the values
of the objective functions. Formally,

∀s ∈ S, ∃z ∈ Z, z = (z1, . . . zQ) :

z1 =f1(s)

...
zQ=fQ(s)

The feasible set S is a subset of a space called the search space. The space
from which objective values are taken is called the objective space.

2 Multi-objective Optimization

Let us assume that all Q objectives should be minimized, without loss of
generality. Thus, the goal of multi-objective optimization is to solve

min
s∈S

(f1(s), . . . , fQ(s)) (1.1)

where the meaning of “min”, i.e., the concept of optimality in multi-objective
optimization, will be defined in the following section.

1.2 Pareto Optimality

Given two objective vectors u, v ∈ Z : u = (u1, . . . , uQ), v = (v1, . . . , vQ), we
need to define whether u is better than v in order to find an optimal objective
vector which is the solution to the multi-objective problem described above.
When objectives can be ordered according to their importance, optimality
can be defined in terms of lexicographic order. Let us suppose objectives are
arranged in decreasing order of importance, i.e., q = 1 is the most important
objective and q = Q is the least important one. Then, u <lex v if uq < vq,
where q is the smallest index such that uq 6= vq.

However, in the most general case, we cannot assume a priori that there
is a ranking among the objectives. Then, the only assumption we can make
is that u is better than or preferable to v, if u is not worse than v in all
objectives and better with respect to at least one objective. This relation is
commonly known as the concept of Pareto dominance.

More formally, we say that u dominates v (u ≺ v) if u 6= v ∧ uq 6 vq,
q = 1, . . . , Q. From this definition, if u ≺ v then v ⊀ u. When u ⊀ v ∧ v ⊀
u ∧ u 6= v, we say that u and v are nondominated vectors (u ‖ v).1

For simplification, given two solutions s, r ∈ S and their respective objec-
tive vectors u, v ∈ Z : u =

(
f1(s), . . . , fQ(s)

)
, v =

(
f1(r), . . . , fQ(r)

)
, we will

say that s dominates r if and only if u dominates v. Therefore, in the fol-
lowing, when referring to dominance relations between solutions, one means
that relations are applied in the objective space, i.e., to the objective vectors
that those solutions represent.

The Pareto dominance relation induces a partial order on the search space
such that we can define a Pareto optimal solution which is not dominated
by any other feasible solution. However, several such solutions may exist as
nondominated objective vectors, thus forming a set of nondominated Pareto
1 The notation used assumes a minimization problem. However, the notation found in the

literature (e.g., [58]), could have a different meaning. As well exposed by Papadimitriou
& Yannakakis [41]: “The dichotomy of maximization vs. minimization is a well-known com-
plication that is usually technically inconsequential, but burdens the exposition and notations.
[. . .] with multi-objective problems, in which each objective can be independently either a
maximization or minimization problem, the situation is exponentially more complicated.” For
the sake of clarity, we will never use a notation like u � v to show that v dominates
u. This situation will be noted as v ≺ u. Consequently, when u dominates v, we will
denoted it as u ≺ v. This rule will be followed in all the relations used in this work.

1.3. Relations between Pareto Sets 3

optimal objective vectors. The set containing all the Pareto optimal solutions
is called optimal Pareto set. In a more general sense, any set of nondominated
objective vectors, regardless of their optimality, will be called Pareto set. In
the literature, the Pareto set is sometimes called Pareto front, curve and
surface, since the image in the objective space of a Pareto set resembles a
frontier or surface.

Much of the current research on the field of multi-objective optimization
is concerned with the problem of how to identify the optimal Pareto set or,
at least, to produce Pareto sets which are good approximations of it. Thus,
the question that arises is how to describe whether a Pareto set is a good
approximation to the Pareto optimal set, that is, how to describe the quality
of a Pareto set.

1.3 Relations between Pareto Sets

The quality of a Pareto set, in general, cannot be completely described by
means of a numeric criterion, i.e., a unary measure that assigns a numeric
value to a given Pareto set [58]. However, we can completely describe the
quality of Pareto sets when they are compared with other Pareto sets.

Let A and B, A 6= B, be two Pareto sets which may be the respective
outcomes for a particular problem instance of two optimization algorithms
that we want to compare. First, we can say that A is better than B (A C B)
if any objective vector in B is dominated by or equal to at least one objective
vector in A. Formally, it is defined as

A C B ⇐⇒ ∀b ∈ B,∃a ∈ A : a ≺ b ∨ a = b

This relation represents the most general and weakest form of higher quality
between Pareto sets. It is also a transitive relation, i.e., given the Pareto sets
A, B and C, if A C B and B C C then A C C.

When neither A C B nor B C A, we say that the two sets are incompa-
rable (A ‖ B) in terms of Pareto dominance. This means that using only the
Pareto optimality criterion, we cannot state that one of these Pareto sets is
preferable to the other. Yet, they are not equal, thus there could be other
criteria to prefer one of them.

Finally, we can say that A is not worse than B, or in other words, that
B is not better than A, (B 6 A). Formally, B 6 A ⇐⇒ A C B ∨ A ‖ B.
This relation is interesting because existing comparison methods based on
unary measures at best allow to indicate whether a Pareto set is not worse
than another [58].

How to choose between Pareto sets that are incomparable in terms of
Pareto optimality is still an open question in multi-objective optimization,
since several vague criteria can be taken into account such as the number of
solutions and the spread distribution in the objective space.

4 Multi-objective Optimization

1.4 Weighted Sum Scalarization

Any multi-objective optimization problem can be transformed into a single
objective scalarized problem of the type

min
s∈S

Q∑
q=1

λqfq(s)

where λq is the qth component of a weight vector λ taken from the set of
weight vectors as

Λ =
{
λ ∈ RQ : λq ≥ 0,

Q∑
q=1

λq = 1
}

(1.2)

Optimal solutions for scalarized problems where all the weights are pos-
itive (λq > 0) are always Pareto optimal, and under certain assumptions
all Pareto optimal solutions are optimal solutions of scalarized problems
with nonnegative weights [15]. When these assumptions are not met, all
the Pareto optimal solutions may not be found by solving several scalarized
problems [15]. Nevertheless, a part of the current research on multi-objective
optimization is focused on search strategies based on solving several scalar-
izations of the objective vector by means of weighted sum.

1.5 Multi-objective Combinatorial Optimization
Problems

The fundamental property of combinatorial optimization problems is that
they have a finite set of feasible solutions, and thus the objective space is
discrete, as opposed to continuous problems.

Let E be a finite set E =
{
e1, . . . , en

}
and let w : E → Z be a weight

function2 on the elements of E. Then, a finite set of constraints Ω defines
the feasible set S of a combinatorial problem, with S ⊂ 2E ,

Finally, given an objective function f : S → R of the type of f(s) =∑
x∈s w(x) or f(s) = maxx∈s w(x) or even a more complex function, then a

combinatorial optimization problem (f,Ω) is formulated as

min
s∈S

f(s) (1.3)

An instance of a combinatorial optimization problem is given by a specific
set E and a specific weight function w, usually given as a vector or a matrix
of size |E| = n. For this reason, n is called the size of the instance.
2 This weight function should not be confused with the weight vector described in the

previous section. They are different concepts without any relationship.

1.5. Multi-objective Combinatorial Optimization Problems 5

Multi-objective combinatorial optimization (MOCO) deals with combi-
natorial problems with Q objective functions. Hence, the above formulation
(1.3) of a combinatorial problem is extended to a multi-objective variant
similar to Equation (1.1).

With regard to the difficulty of MOCO problems, there are three impor-
tant aspects that should be considered [16]. Firstly, the size of the optimal
Pareto set may be exponential with respect to the instance size, thus there
may not be any computational method to calculate the whole optimal Pareto
set in a reasonable time. Secondly, because of the discrete structure of MOCO
problems, there usually exist Pareto optimal solutions, called nonsupported
solutions, which are not optimal for any weighted sum of the objectives. Fur-
thermore, there may be many more nonsupported than supported Pareto
optimal solutions [56]. Lastly, even in the case of single objective problems
which are solvable in polynomial time, the respective MOCO versions may
be NP-hard.

Several MOCO problems have been tackled in the literature by means of
multi-objective versions of the shortest path, knapsack and traveling sales-
person problems, to mention only a few (see [16] for a complete survey). In
this work, we will use as a test problem a recently proposed multi-objective
formulation of the quadratic assignment problem.

Chapter 2

The Quadratic Assignment
Problem

Much of the current research on multi-objective combinatorial optimization (MOCO) is
based on the vast knowledge and literature of single objective problems. The quadratic
assignment problem (QAP) is an interesting benchmark problem and it has been broadly
studied, since it has a very simple formulation which does not need specialized heuristics
and/or repair mechanisms, the objective function is fast to compute and it can also be
delta-evaluated, enabling local search to be efficiently applied. Furthermore, the QAP is
both practically important and unusually difficult. Recently, multi-objective variants of
the QAP have been proposed. The present work will focus on structured and unstructured
instances of the bi-objective QAP.

2.1 The Single Objective QAP

The quadratic assignment problem (QAP) was introduced by Koopmans &
Beckmann [34] in 1957, becoming an important problem from the point of
view of practice and theory. The QAP is usually described as the problem of
assigning a set of facilities to a set of locations with given distances between
the locations and given flows between the facilities. The goal is to place the
facilities on locations in such a way that the sum of the products between
flows and distances is minimal.

More formally, given the set of integers N = {1, 2, . . . , n} and two n× n
matrices A = [aij] and B = [brs], the QAP is stated as follows:

min
φ∈Φ

n∑
i=1

n∑
j=1

aijbφiφj
(2.1)

where Φ is the set of all possible permutations of N .

8 The Quadratic Assignment Problem

In the usual description of the problem, aij is the distance between lo-
cations i and j, brs is the flow between facilities r and s, and φk gives the
facility assigned to the location k in the current solution.

Many different practical planning problems can be formulated as QAP in-
stances: backboard wiring [46], campus and hospital layout [7, 18], typewriter
keyboard design [4], scheduling [24], and many others [17, 35].

From the theory point of view, the QAP is an NP-hard combinatorial
optimization problem and even finding a solution within a factor of 1 + ε
of the optimal one remains NP-hard [45]. Even relatively small instances
(n > 30) cannot be solved to optimality. It is considered as one of the
hardest optimization problems, which has lead into a great research effort in
approximate methods. Moreover, the QAP is a broad problem class embrac-
ing both the graph partitioning problem and traveling salesman problem as
special cases [40].

2.1.1 Types of QAP Instances

The existence of various types of QAP instances and the influence of the
particular instance type on the performance of heuristic methods are widely
known [51, 53]. The best known classification differences between four classes
of instances:

(i) Unstructured, randomly generated, instances. Instances with
the distance and flow matrix entries generated randomly according to
a uniform distribution.

(ii) Grid-based distance matrix. In this class of instances the distance
matrix stems from a n1 × n2 grid and the distances are defined as the
Manhattan distance between grid points. These instances have multiple
global optima (at least 4 if n1 6= n2 and at least 8 if n1 = n2) due to
the definition of the distance matrices.

(iii) Real-life instances. These instances have been obtained from practi-
cal applications of the QAP. Real-life instances have in common that
the flow matrices have many off-diagonal zero entries and the remaining
entries are clearly not uniformly distributed.

(iv) Structured, real-life-like instances. Since the real-life instances are
of a rather small size, a particular type of randomly generated problems
has been proposed in [53]. These instances are generated in such a way
that the matrix entries resemble the distributions found for real-life
problems.

In the remainder of this work, we will only deal with unstructured and
structured instances.

2.2. The Multi-objective QAP (mQAP) 9

Structured instances stemming from applications are practically more in-
teresting than unstructured ones. In terms of difficulty, although finding the
optimum (or best known solution) is easier on structured instances of small
size, these instances are generally more difficult in terms of finding solutions
within a given percentage from the optimum. In contrast, in the unstruc-
tured instances there are far more solutions at a given percentage deviation
from the optimum and finding which of these is close in the search space to
the optimum is then difficult. Therefore, unstructured instances are among
the hardest to solve exactly, although most iterative search methods find
solutions within 1 – 3% from the best known solutions relatively fast [53].

2.1.2 Measures of QAP Instances

Some computationally tractable properties of the distance and flow matrices
are sufficient to characterize an instance as belonging to one of the above
classes.

In general, the dominance statistic dom(X) of a matrix X = [xij] is
defined as:

dom(X) = 100 · σ
µ

where

µ =
1
n2
·

n∑
i=1

n∑
j=1

xij and σ =

√√√√ 1
n2 − 1

·
n∑

i=1

n∑
j=1

(xij − µ)

Using the above definition, Vollmann & Buffa [57] introduced the flow
dominance as the dominance of the flow matrix, fd=dom(B). A high flow
dominance indicates that a large part of the overall flow is exchanged among
relatively few items. In an analogous way, the distance dominance dd can be
defined on the distance matrix A.

Unstructured instances have a rather low flow dominance, whereas struc-
tured ones, in general, have a rather high flow dominance. Furthermore,
structured instances often have many zero entries in the flow matrix. Hence,
the sparsity of the flow matrix, defined as sp = n0/n2 where n0 is the number
of zero matrix entries, can give additional information about the type of the
instance.

2.2 The Multi-objective QAP (mQAP)

The single objective QAP can be extended to a multi-objective variant which
models the situation where amounts of different goods are exchanged between
facilities (as modeled by different flow matrices) and the exchange can be done
with different speeds (as modeled by different distance matrices).

Two proposed definitions for the multi-objective QAP (mQAP) can be
found in the literature. Hamacher et al. [28] consider several matrices of

10 The Quadratic Assignment Problem

flows and distances for modeling problems found in facility layouts for social
institutions. Knowles & Corne [32] proposed a different variant using multiple
flow matrices and keeping the same distance matrix. They give an example
of a practical application in hospital layout problems where the flows are
doctors, patients, visitors and products.

The mQAP proposed by Knowles & Corne is formalized as

min
φ∈Φ

∑n

i=1

∑n
j=1 aijb

1
φiφj

...∑n
i=1

∑n
j=1 aijb

Q
φiφj

(2.2)

where Q is the number of objectives, bq
rs for q = 1, . . . , Q is the flow matrix

entry corresponding to the qth flow matrix and “min” is understood in terms
of Pareto optimality.

2.2.1 Bi-objective QAP (bQAP) Instances

In this work we focus on the bi-objective version of the proposal of Knowles
& Corne, i.e., the model in (2.2) with Q = 2. All the instances were obtained
using the generators1 for unstructured and structured instances provided by
Knowles & Corne [32]. Both generators produce instances with one distance
matrix and multiple flow matrices, all of them are symmetric matrices.

Unstructured instances have been previously generated by Luis Paquete2

using the uniformly random instance generator, resulting in symmetric bi-
objective QAP instances where the matrix entries of all matrices are drawn
randomly according to a uniform distribution in the interval [1, 100] and flow
matrices are generated with a correlation ξ which induces certain correlation
between the two objectives.

Structured instances have been generated using the real-life like instance
generator. In these instances, the distance matrix corresponds to the Eu-
clidean distance between n points on a plane. The program generates clus-
ters of a number of points in [1,K] which are uniformly distributed in a circle
of radius M and the points in a circle of radius m. The flow matrices are
also randomly generated following a distribution with parameters A and B.
Using parameters M = 1000, K = 20, m = 10, A = −10 and B = 5, the
instances generated resemble single objective QAP instances named Taixxb
in [53]. With A = −10 and B = 5 the flow matrices contain about 2/3 of zero
entries and the maximum value of the flows is 105. A correlation between the
objectives is induced by generating flow matrices with a certain correlation
ξ. Finally, an overlap parameter η indicates the fraction of entries in the

1 Source code is available at http://iridia.ulb.ac.be/~jknowles/mQAP/gens.html
2 These instances are available at http://www.intellektik.informatik.tu-darmstadt.

de/~lpaquete/QAP/

http://iridia.ulb.ac.be/~jknowles/mQAP/gens.html
http://www.intellektik.informatik.tu-darmstadt.de/~lpaquete/QAP/
http://www.intellektik.informatik.tu-darmstadt.de/~lpaquete/QAP/

2.2. The Multi-objective QAP (mQAP) 11

second flow matrix that are correlated with the corresponding entries in the
first flow matrix. As explained by Knowles & Corne [32], when η = 0, a
random uncorrelated value is placed in each entry of the second flow matrix
that corresponds to a zero entry in the first flow matrix. Conversely, a zero is
placed in each entry of the second flow matrix that corresponds to a non-zero
value in the first flow matrix. Thus, there is no overlap between the flows of
the first and second matrices when η = 0. We generated all the structured
instances using η = 1, thus all the flows overlap and are correlated.

The parameters and properties of instances used in this work are sum-
marized in Table 2.1 for the unstructured instances and in Table 2.2 for the
structured ones.

Instance qapUni.50.0.1 qapUni.50.n75.1 qapUni.50.p75.1

max(d) 100 100 100
max(f) 100 100 100
ξ(f1, f2) 0 −0.75 0.75
fd1, fd2 59.7, 59.1 58.5, 57.0 58.9, 56.8
dd 58.2 59.5 61.1
sp1, sp2 0.02, 0.02 0.02, 0.02 0.02, 0.02
Seed 635708 574477 550710

Table 2.1: bQAP unstructured instances. The parameters/properties are:
max(d), the maximum distance in the distance matrix; max(f), the maximum flow in
any of the flow matrices. ξ(f1, f2), the correlation parameter affecting corresponding
flow matrix entries of the flow matrices; fdi, the flow dominance of the ith flow matrix;
dd, the distance dominance; spi, sparsity of the ith flow matrix. The random seed to
the generator is also given for reference.

Instance qapStr.50.0.1 qapStr.50.n75.1 qapStr.50.p75.1

max(d) 1539 1539 1539
max(f) 98787 99860 98091
ξ(f1, f2) 0 −0.75 0.75
fd1, fd2 357.7, 399.5 425.3, 433.6 425.3, 459.9
dd 67.9 67.9 67.9
sp1, sp2 0.6536, 0.6776 0.6752, 0.6736 0.6752, 0.6664

Seed = 23453464, A = −10, B = 5, M = 1000,
K = 20, m = 10, η = 1.0

Table 2.2: bQAP structured instances. The parameters/properties are:
max(d), the maximum distance in the distance matrix; max(f), the maximum flow
in any of the flow matrices; ξ(f1, f2), the correlation parameter affecting correspond-
ing flow matrix entries of the flow matrices; fdi, the flow dominance of the ith flow
matrix; dd, the distance dominance; spi, sparsity of the ith flow matrix. Parameters
(random seed, A, B, M , K, m and η) to the generator are also given for reference.

Chapter 3

Ant Colony Optimization

Ant Colony Optimization (ACO) is an approach to tackle NP-hard combinatorial opti-
mization problems. The first ACO algorithm, called Ant System (AS), was applied to the
single objective QAP, yet its performance was not competitive with the state-of-the-art
algorithms. Therefore, several improved ACO algorithms have been developed, e.g., Ant
Colony System (ACS) and MAX -MIN Ant System (MMAS). For the single objec-
tive QAP in particular,MMAS is known to be among the best performing algorithms.

3.1 ACO Algorithms

Ant Colony Optimization (ACO) [14] is a metaheuristic inspired by the in-
direct communication of real ants by means of trails of a chemical substance
called pheromone. Artificial ants are simple agents that use numerical infor-
mation (artificial pheromone information) to communicate their experience
while solving a particular problem to other ants. These principles provide a
common framework for most applications of ant algorithms to combinatorial
optimization problems (see [9, 10, 14] for an overview). Therefore, algorithms
derived from the ACO metaheuristic are called ACO algorithms.

In ACO algorithms, an individual ant constructs candidate solutions to
a combinatorial optimization problem by starting with an empty solution
and then iteratively adding solution components until a complete candidate
solution is generated. The ants make use of information that reflects the
experience accumulated by previous ants, called pheromone information, and
of problem dependent information, called heuristic information, in order to
decide which solution component will be added to its current partial solution
by means of a stochastic construction policy. Every step in an ACO algorithm
at which all ants complete a feasible solution will be called iteration. Each
ant represents unequivocally a specific solution during a certain iteration.
Thus, when referring to an ant, we really mean the solution that this ant

14 Ant Colony Optimization

represents. After each iteration, the ants give feedback on the solutions they
have constructed by depositing pheromone on solution components which
they have used in their solution.1

The pheromone update strategy decides which ants are allowed to modify
the pheromone information and how the selected ants modifies it. Typically,
solution components which are part of better solutions or are used by many
ants will receive a higher amount of pheromone and hence, will more likely
be used by the ants in the following iterations of the algorithm.

Finally, in order to prevent unlimited accumulation of the pheromone
trail, typically before the pheromone information is updated, all pheromone
trails are decreased by a factor that models evaporation of the trails. This
way, the pheromone trail associated with a solution component decreases
exponentially if it does not receive any amount of pheromone. Evaporation
enables the algorithm to “forget” bad choices over time. Additionally, some
or all of the solutions constructed can be improved using local search (LS)
methods.

In principle, ACO algorithms can be applied to any combinatorial op-
timization problem by defining solution components which the ants use to
iteratively construct candidate solutions and on which they may deposit pher-
omone.

ACO algorithms considered in the present work follow the general al-
gorithmic scheme outlined in Fig. 3.1. First, parameters and pheromone
information are initialized. Then, a main loop is repeated until a termination
condition is met, which may be a given number of solution constructions or
a limit on the available computation time. In this main loop, ants construct
feasible solutions by adding solutions components. Additionally, these so-
lutions may be improved using a local search. Next, the new best solution
found (best-so-far solution) is determined. Subsequently, a number of solu-
tions which may include the best-so-far solution, are selected to update the
pheromone information. Before updating the pheromone information, evapo-
ration is performed by decreasing the pheromone trails by a factor ρ. Finally,
when the main loop ends, the algorithm returns the best solution found since
the start of the algorithm. Of course, the ACO metaheuristic is more general
than this algorithmic scheme.

The first ACO algorithm was called Ant System (AS) [8, 12, 13] and was
applied to the QAP. Since most of the ACO algorithms are improvements over
AS, the application of AS to the QAP illustrates how other ACO algorithms
can be applied to it.

1 The pheromone information can also be updated while ants are constructing the solution:
when each component is added to a partial solution (online step-by-step pheromone
update) or when each solution is completed (online delayed pheromone update). For
simplification purposes, we do not consider these alternatives.

3.2. Ant System Applied to the QAP 15

SetParameters
Initialize(PhInfo)
best-so-far ← ∅
while termination condition not met do

S ← ∅
for each ant do

solution ← ∅
while solution not completed do

component ← ConstrPolicy(PhInfo, HeurInfo)
solution ← solution ∪ component

end while
S ← S ∪ {solution}

end for
ApplyLocalSearch(S) # optional
best-so-far ← FindBest(S ∪ {best-so-far})
B ← Select(S ∪ {best-so-far}) # B ⊆ S ∪ {best-so-far}
Evaporation(PhInfo, ρ)
Update(PhInfo, B)

end while
return best-so-far

Figure 3.1: Algorithmic schema of ACO algorithms

3.2 Ant System Applied to the QAP

For the single objective QAP, the solution components are defined as the
assignments of facilities to locations. Hence, the pheromone trail τij corre-
sponds to the desirability of φi = j, that is, to assign a facility j to location
i in the current solution φ. The order on which locations are assigned does
not matter, thus when constructing a solution an ant k selects randomly or
sequentially a location i not assigned yet and stochastically decides which
facility j should be placed on it2 using the following probability

pk
ij(t) =

[τij(t)]α · [ηij]β∑
l∈N k

i

[τil(t)]α · [ηil]β
if j ∈ N k

i (3.1)

where τij(t) is the pheromone information in the current iteration, ηij is
QAP specific heuristic information, α and β are two parameters which deter-
mine the relative importance of the pheromone and the heuristic information

2 Alternatively, on which location should be placed the next facility. Both ways are equiv-
alent.

16 Ant Colony Optimization

respectively, and N k
i is the feasible neighborhood of ant k, that is, those

facilities not placed yet.
Despite the fact that specific heuristic information for the QAP can be

defined [38], it is not used in most of the recent ACO approaches to the
QAP [48]. This is achieved by setting β = 0 in the above equation.

This solution construction step is repeated until the feasible neighbor-
hood is empty and, hence, a complete assignment is obtained. After all
ants have completed the solution construction, the pheromone trails are up-
dated. Evaporation is performed by first decreasing the pheromone trails by
a constant factor and then ants are allowed to deposit pheromone on the
assignments they have constructed. Thus, every pheromone trail is updated
in the following way

τij(t + 1) = ρ · τij(t) +
m∑

k=1

∆τk
ij(t) (3.2)

where the parameter ρ (with 0 6 ρ < 1) is the trail persistence (thus, 1 − ρ
models the evaporation) and ∆τk

ij(t) is the amount of pheromone ant k adds
to each pheromone trail. In AS, this amount is defined as

∆τk
ij(t) =

1/f(φk) if φk

i = j in iteration t

0 otherwise
(3.3)

where φk is the solution constructed by ant k and f(φ) denotes the objective
value of the QAP for a solution φ, as defined in Eq. (2.1) on page 7.

3.3 Improvements on AS

Despite AS could be shown to perform better than other nature-inspired al-
gorithms, such as Simulated Annealing or Genetic Algorithms, on some com-
binatorial problems, its performance was not competitive with the state-of-
the-art algorithms [8, 13]. Therefore, many improvements over AS have been
developed, such as the rank-based version of Ant System (ASrank) [2], Ant
Colony System (ACS) [11, 20] andMAX -MIN Ant System (MMAS) [51].
In ASrank only the best solution found since the start of the algorithm (best-
so-far solution) and a fixed number of solutions of the current iteration are
used to update the pheromone information. The better the solutions are
ranked in the current iteration, the more weight they are given for the pher-
omone update. On the other hand, in ACS and MMAS the best solutions
found during the search are exploited by using only one solution to update
the pheromones.

3.4. MAX -MIN Ant System 17

3.4 MAX -MIN Ant System

MAX -MIN Ant System (MMAS) follows the general ACO algorithm
scheme described in Fig. 3.1, but differs in three key aspects from AS.

Firstly, after each iteration only one solution is used to update the pher-
omone information, either the iteration-best (sib) or the best-so-far solution
(sbf). When using only sbf, what is also proposed in ACS [11], the search may
concentrate too fast around this solution and the exploration of possibly bet-
ter ones is limited. On the other hand, a better exploration is achieved using
sib because the iteration-best solution may differ considerably from iteration
to iteration. Thus, a larger number of distinct solution components may be
reinforced. This fact leads to more variability in the solutions constructed by
the ants, but at the cost of a reduced exploitation of the search space around
the best solution found.

Secondly, in order to prevent stagnation of the search, the range of possible
pheromone trails is limited to an interval [τmin , τmax]. Stagnation occurs
when at each iteration, one solution component has a significantly higher
pheromone trail than all the other alternatives. In this case, an ant will prefer
this solution component over all the others. Moreover, after the iteration,
further reinforcement will be given to the solution component and evaporation
will occur for all the other alternatives, aggravating the situation. MMAS
prevents stagnation by imposing explicit limits τmin and τmax on the minimum
and maximum pheromone trails such that for all pheromone trails τij(t) ∈
[τmin , τmax]. Hence, the relative differences between the pheromone trails
never become too extreme during the run of the algorithm. Additionally, if
τmin > 0, the probability of choosing a specific solution component is never
zero.

Lastly, the pheromone trails are initialized to τmax , to achieve a higher
exploration of solutions at the start of the algorithm. Actually, all the pher-
omone trails would be initialized to some arbitrarily high value, τij(0) =∞,
and after the first iteration will be set to τij(1) = τmax (1), being forced to
take values within the imposed pheromone limits.

Empirical results given in [51] show thatMMAS is among the best avail-
able algorithms for the QAP, where it is compared with HAS-QAP [23] (other
ACO algorithm), Robust Taboo Search (RoTS) [52] and a genetic hybrid
(GH) method which uses short taboo search runs for the local search [19].
MMAS outperforms HAS-QAP for all classes of instances and RoTS and GH
for structured instances and achieves a similar performance for unstructured
instances (see Section 2.1.1 on page 8 for a review of the classes of instances
of the QAP).

Another study described in [40] compared MMAS with Robust Taboo
Search (RoTS) [52], Reactive Taboo Search (ReTS) [1], Fast Ant Colony
(FANT) incorporating local search [54, 55], Simulated Annealing (SA) [5]

18 Ant Colony Optimization

and a memetic algorithm described by the authors. The results showed that
for unstructured instances,MMAS achieves a similar performance as RoTS
and ReTS and outperforms all the others algorithms. For structured in-
stances,MMAS outperformed all algorithms except the fine-tuned memetic
algorithm.

Consequently, it makes sense to use the concepts of MMAS in order to
design a multi-objective ACO algorithm to tackle the bQAP.

Chapter 4

Multi-objective ACO

Despite previous research efforts on the application of ACO principles to multi-objective
optimization, very few studies have actually tackled MOCO problems defined in terms of
Pareto optimality. To address the design of a multi-objective ACO algorithm (MO-ACO)
for this type of problem, several concepts must be reviewed. The management of the
pheromone information in MOCO turns out to be a complex task that involves the defi-
nition of the pheromone information, how different pheromone information is aggregated
using weights, which solutions are selected to update the pheromone information and
how these solutions modify the pheromone information. In addition, some authors pro-
pose the use of multiple colonies, so that each colony weighs differently the relative
importance of the multiple objectives. When multiple colonies are considered, the man-
agement of the pheromone information is even more complicated. Finally, the use of
local search methods must be considered. All these features can be seen as components
of a certain configuration of a general MO-ACO algorithm. With regard to the bQAP we
consider configurations that may be related to two essentially different search strategies
used to tackle MOCO problems with approximate algorithms, namely (i) based on dom-
inance relations or (ii) based on several scalarizations of the objective vector. Finally,
knowledge of the best performing ACO algorithms for single objective optimization,e.g.,
ACS and MMAS, can be transferred into the multi-objective context using equivalent
principles to design MO-ACO algorithms.

4.1 ACO Algorithms for MOCO Problems

Relatively few approaches of ACO for MOCO problems have been proposed
so far. Moreover, many of the proposed algorithms are only applicable to
problems where a lexicographic ordering of the objectives is given, i.e., where
the objectives can be ordered according to their importance [22, 26, 39].

Gambardella, Taillard & Agazzi [22] studied a bi-objective vehicle routing
problem with time window constraints, where the first objective, the number
of vehicles, is considered to be more important than the second one, the
total travel time. They proposed an algorithm that uses two ant colonies,

20 Multi-objective ACO

one for each objective. A common best-so-far solution is used to update
the pheromone information in both colonies. The first colony tries to find a
solution with one vehicle less than the best-so-far solution while the second
colony tries to improve the best-so-far solution with respect to the second
objective. Whenever the first colony finds a better solution with respect to
the first objective, it becomes the new best-so-far solution.

Gravel, Price & Gagné [26] tested an ACO algorithm for solving a single
machine total tardiness problem with changeover cost and two additional
objectives, which arises in a real-world scheduling problem for an aluminum
casting center. In their approach, the heuristic information is constructed
by taking all the objectives into account, however for the pheromone update
only the most important objective is considered.

Mariano & Morales [39] studied a multi-colony approach for the design of
water irrigation networks where for each objective there exists one colony of
ants and every objective is determined knowing only the relevant part of a
solution. An order is imposed on the colonies corresponding to the order of
importance of the multiple objectives. In every generation, each ant from a
certain colony receives a partial solution from the previous colony and tries
to complete the partial solution with respect to the objective associated to
that colony. When the last colony completes the solution construction, all
the nondominated solutions are used to update the pheromone information.

None of the above approaches can be applied to problems where the ob-
jectives cannot be ordered according to their importance. A notable excep-
tion is the work of Iredi, Merkle & Middendorf [29], who tested a multi-colony
ACO algorithm for a bi-objective single machine total tardiness problem with
changeover costs. They proposed using one pheromone matrix for each ob-
jective, that is, two pheromone matrices. For the solution construction, each
ant uses a weight to combine the two pheromone matrices and to combine the
different heuristic information of each objective. In order to weigh the rela-
tive importance of each objective differently, each ant uses a different weight
(but the same one at each iteration). Each colony has its own two pheromone
matrices and set of weights and, thus, can focus the search on approximat-
ing to a certain “region” of the optimal Pareto set. Nondominated solutions
found in the current iteration are used to update the pheromone matrices.
Collaboration between the colonies is achieved by using the solutions of other
colonies to detect dominated solutions and by using nondominated solutions
from other colonies to update the pheromone matrices.

In the following sections, we examine the concepts involved in the design
of an ACO algorithm for MOCO problems in terms of Pareto optimality.
Many of these concepts have been considered previously in the literature.
Nevertheless, we would like to formalize these concepts so that they can be
applied to any MOCO problem. In addition, we discuss alternatives not yet
proposed and we seek to relate these alternatives to the concepts found in
the literature. All of these concepts can be seen as parameters of a certain

4.2. Multi-objective Pheromone Information 21

configuration of a general multi-objective ACO (MO-ACO) algorithm. Fi-
nally, we study possible configurations of this MO-ACO algorithm in order
to tackle the bi-objective QAP (bQAP).

4.2 Multi-objective Pheromone Information

Perhaps the most important step when designing an ACO algorithm for a spe-
cific problem is the definition of the pheromone and heuristic information.1

ACO algorithms for single objective problems represent the pheromone in-
formation by a pheromone matrix (or vector) where each entry in the matrix
corresponds to the desirability for a certain solution component. Thus, how
the pheromone information is actually represented depends on the definition
of solution components. A good example for illustrating this is the single
objective QAP (cf. Section 3.2 on page 15), where a solution component is
defined as the assignment of a facility j to a location i in the current solution
φ, thus each entry τij of the pheromone matrix corresponds to the desirability
for setting φi to j (φi = j).

In contrast, each objective in a MOCO problem may define the solution
components differently. For instance, let us consider a bi-objective scheduling
problem, where the first objective depends on which position of the schedule
a certain job is placed, whereas the second objective depends on the relative
position of a certain job with respect to the previous jobs.2 In this case, so-
lution components for the first objective can best be defined as assignments
of jobs to positions in the schedule, whereas for the second objective they
are defined depending on the predecessor/successor relationship among jobs.
Therefore, given a feasible solution φ to this problem, which represents a cer-
tain sequence of jobs, the pheromone information for the first objective is the
desirability that job j is on place i of the schedule (φi = j), whereas the phero-
mone information for the second objective corresponds to the desirability that
job j comes immediately after job h in the schedule (φi = j ∧ φi−1 = h). The
pheromone information for both objectives cannot be expressed as one pher-
omone matrix because an entry τij of the pheromone matrix cannot represent
the desirability for both solution components at the same time. Moreover,
if the total number of jobs is larger than the number of jobs that can be
scheduled at one time, then the dimension of the pheromone matrix for the
first objective is different from the one for the second objective.

On the other hand, for the multi-objective QAP (mQAP), the pheromone
information for all the objectives corresponds to the desirability that a fa-
cility j is assigned to location i in the current solution φ (φi = j), that is,

1 In the following sections we mainly study the definition of the pheromone information.
Yet, the conclusions can also be applied to the heuristic information.

2 This is the case, for example, for the Single Machine Total Tardiness Problem with
Changeover Costs that is described in [29].

22 Multi-objective ACO

all objectives define the solution components in a unique manner. Hence, in
other multi-objective optimization problems, solution components and, con-
sequently, pheromone information may have a single meaning.

In general, in the case of MOCO problems, there may be as many different
meanings for the pheromone information as the number of objectives.

In order to represent the pheromone information for a MOCO problem, an
initial approach may be to keep the pheromone information for only one of the
objectives. Then, solution components are defined only for this objective and
the pheromone information is represented consequently as if this objective
was the only one considered in the problem. This is the approach used by
some ACO algorithms [22, 26] for MOCO problems where one objective is
considered more important than the others. As would be expected, when only
one pheromone matrix is considered for a certain objective, solutions obtained
are better for that objective to the detriment of the remaining objectives [29].
Thus, this approach is not adequate without a priori knowledge about the
relative importance of the different objectives.

For this reason, we will discuss two different approaches to defining the
pheromone information when objectives cannot be ordered by importance.
The first one, proposed by Iredi et al. [29], uses multiple pheromone infor-
mation, such that the pheromone information is defined differently for each
objective, whereas in the second approach, we propose the definition of a
single pheromone information for all the objectives simultaneously.

4.2.1 Multiple Pheromone Information

We will assume that a MO-ACO algorithm uses multiple pheromone infor-
mation when different pheromone information is defined for each objective
and weights are used to aggregate them into a single value, in a similar way
that weights are used to aggregate different objectives in the weighted sum
scalarization of a multi-objective problem (cf. Section 1.4 on page 4).

Since each objective may differently define the solution components, dif-
ferent values may be needed by an ant in order to define the possible solution
components that can be added to its partial solution. These values can be
considered as components of a state vector which defines the current state
of the partial solution being constructed by an ant. In this state vector S,
two objectives (q and r) with different definitions of the solution components
will have different values on their corresponding elements of the state vector
(Sq 6= Sr), whereas if they have the same definition of a solution component
then they will have the same value (Sq = Sr). As well, an objective q may
define the solution components only in terms of the next element j to be
added to the partial solution. Consequently, their corresponding element of
the state vector will be null (Sq = ∅).

Let us assume an arbitrary MOCO problem with Q objectives. Then, an

4.2. Multi-objective Pheromone Information 23

ant k adds j to its partial solution with the following probability:

pk
Sj =

[
Q∏

q=1

(
τ q
Sqj

)λq
]α

·
[

Q∏
q=1

(
ηq

Sqj

)λq
]β

∑
l∈N k

S

([
Q∏

q=1

(
τ q
Sql

)λq
]α

·
[

Q∏
q=1

(
ηq

Sql

)λq
]β
) if j ∈ N k

S (4.1)

where S = {S1, . . . , SQ} is the state vector of the current partial solution, and
each element Sq of this vector is value needed by each objective q = 1, . . . , Q
to define a solution component; N k

S is the feasible neighborhood of ant k
given the current state vector S; τ q

sqj is the pheromone information of j given
Sq for the qth objective in the current iteration and, in an equivalent way,
ηq

Sqj is the heuristic information for j given Sq that corresponds to the qth

objective. Finally, λq is a value that weighs the relative importance of the
qth objective and it can be seen as the qth component of a weight vector λ
taken from the set Λ, as defined in (1.2) on page 4. Thus, when λq = 0 the
qth objective is not considered and when λq = 1 it is the only one considered.

For instance, in the bi-objective scheduling problem described above, each
solution component for the first objective is an assignment of a job to a
position, whereas for the second objective it is an assignment of a job to
the previous job scheduled. Thus, in order to decide which the next job
j scheduled is, an ant needs to know at which position i the job should be
scheduled and which the previous job h is. Therefore, in this case, the current
state of a partial solution is S = {i, h}. Following Eq. (4.1) with Q = 2, an
ant k adds a job j to its current schedule with probability:

pk
{i,h}j =

[(
τ1
ij

)(1−λ) ·
(
τ2
hj

)λ]α · [(η1
ij

)(1−λ) ·
(
η2

hj

)λ]β
∑

l∈N k
{i,h}

([(
τ1
il

)(1−λ) ·
(
τ2
hl

)λ]α · [(η1
il

)(1−λ) ·
(
η2

hl

)λ]β) if j ∈ N k
{i,h}

where N k
{i,h} is the feasible neighborhood of ant k, that is, those jobs that

have not been already scheduled; τ1
ij and η1

ij are the pheromone and specific
heuristic information for the first objective; τ2

hj and η2
hj are the pheromone

and specific heuristic information for the second objective; and finally, λ ∈
[0, 1] is a value that allows the weighing of the relative importance of the two
objectives differently.

In the case of the mQAP, the solution components for all objectives are
defined as assignments of facilities to locations. Thus, in order to decide the
next facility j to place, an ant only needs to know at which location i the
facility is going to be placed, therefore S = {i}. For simplicity, let us restrict
ourselves to the bi-objective case (Q = 2). Following Eq. (4.1), an ant k

24 Multi-objective ACO

places facility j with probability:

pk
ij =

[(
τ1
ij

)(1−λ) ·
(
τ2
ij

)λ]α · [(η1
ij

)(1−λ) ·
(
η2

ij

)λ]β
∑
l∈N k

i

([(
τ1
il

)(1−λ) ·
(
τ2
il

)λ]α · [(η1
il

)(1−λ) ·
(
η2

il

)λ]β) if j ∈ N k
i (4.2)

where N k
i is the feasible neighborhood of ant k, that is, those locations which

are still free; τ1
ij and τ2

ij are the pheromone information in the current iteration
for each of the two objectives of the bQAP; η1

ij and η2
ij are QAP specific

heuristic information for each of the two objectives; and finally, as before,
λ ∈ [0, 1] is a value that allows us to weigh the relative importance of the two
objectives differently.

Equation (4.2) illustrates a potential issue when using multiple phero-
mone information for problems where all the objectives define the solution
components in the same manner. In this type of problem, when updating the
multiple pheromone matrices, if the solution components receive the same
amount of pheromone independently of the particular objective then it oc-
curs that τ1

ij = τ2
ij = τ , and thus the aggregation of the pheromone matrices

is useless since τ (1−λ) ·τλ = τ . Therefore, when multiple pheromone items are
defined in terms of equivalent solution components, the pheromone update
strategy must ensure that the multiple pheromone items are in fact different.
We will address this issue when discussing the pheromone update strategies
(Section 4.3 on page 27).

Finally, an important issue is the definition of the weight vector. Multiple
pheromone information is aggregated into a single value using weights, or
more formally a weight vector λ as in Eq. (4.1). This weight vector regulates
the relative importance of the different objectives. We are not interested in
obtaining a single solution but a Pareto set. Thus, we cannot use only one
weight vector but a finite set Γ ⊂ Λ of maximally dispersed weight vectors [47],
i.e., the weight vectors in Γ are as much distributed as possible in the infinite
space defined by Λ.

Iredi et al. [29] proposed assigning each weight vector λk ∈ Γ to a different
ant k. Thus, the whole set of weight vectors is used at every iteration. As
well, in the ACO algorithms we are considering (AS and MMAS), at any
given iteration each ant constructs its solution independently from the others.
Therefore, it does not matter the order in which weights are assigned to ants.
An alternative method would be to assign each weight vector λt ∈ Γ to a
different iteration t. In this case, all the ants use the same weight at a given
iteration and a different weight in the following iteration. Since ants from
a given iteration are not independent from those in the previous iteration,
it makes sense in this case to assign each weight to each iteration in such
an order that two consecutive weight vectors differ only by ±z in any two
components [47], where z is the minimum difference between any two values

4.2. Multi-objective Pheromone Information 25

of any component for all the weight vectors in Γ.
The weight vector can be seen as a search “direction” in the objective

space. Then, the first method searches in all possible directions at each itera-
tion, while the second method tries to find a good solution in one direction at
one iteration and using this solution as a starting point in the next iteration
but in a slightly different direction. The best performing method will depend
on the underlying multi-objective landscape [31].

4.2.2 Single Pheromone Information

We will assume that a MO-ACO algorithm uses single pheromone informa-
tion when the pheromone information is defined in a unique manner for all
objectives and thus weights are not needed. The problem once again is how
to define the pheromone information for those objectives where the solution
components have a different meaning. The approach to solve this problem
will be similar to using multiple pheromone information, that is, to use a
state vector S that defines the current state of the partial solution being
constructed by an ant.

Therefore, when using single pheromone information, the pheromone in-
formation of a solution component is expressed as τ j

S for all the objectives,
which is the desirability for j given the state S. Then, an ant k adds j to its
partial solution with the following probability:

pk
S,j =

[
τSj

]α · [ηSj

]β∑
l∈N k

S

([
τSl

]α · [ηSl

]β) if j ∈ N k
S (4.3)

where [τSj] is a multi-dimensional matrix with as many dimensions as ele-
ments of the state vector S, namely the number of ways that solution com-
ponents may be defined by the objectives, plus one more dimension for j.

For the bi-objective scheduling problem, the state vector contain the posi-
tion i where a new job will be scheduled and also the job h that was scheduled
in the previous position, S = {i, h}. Therefore, the single pheromone infor-
mation is represented by a pheromone matrix [τihj] with dimensions I×J×J
where I is the size of the schedule and J is the number of jobs. Then, apply-
ing Eq. (4.3) with Q = 2, an ant k adds a job j to its current schedule with
probability:

pk
ihj =

[
τihj

]α · [ηihj

]β∑
l∈N k

ih

([
τihl

]α · [ηihl

]β) if j ∈ N k
ih

In the case of the mQAP, this approach is even more natural, since a so-
lution component has a unique meaning for all objectives and the state vector
has only one element, i.e., the location i where the next facility should be

26 Multi-objective ACO

placed, S = {i}. Therefore, the single pheromone information is represented
by a pheromone matrix [τij] as in AS and MMAS for the single objective
QAP.

4.2.3 Computational Efficiency Aspects of Multi-objective
Pheromone Information

In terms of computational resources required, at first it might seem that
using single pheromone information is very expensive because of the use of
a multidimensional matrix, but there are some situations in which the use
of single pheromone information is more efficient in terms of both space and
computation time required than the use of multiple pheromone information.

From the point of view of required space, single pheromone information
is represented with a multi-dimensional matrix with as many dimensions as
the number of manners that solution components may be defined by the Q
objectives, plus one more dimension. This number is equivalent to the size of
the state vector 1 ≤ |S| ≤ Q plus one. Therefore, the single pheromone infor-
mation leads to a memory requirement of O

(
n|S|+1

)
, where n is the largest

dimension of the pheromone matrix. In the worst case all the Q objectives
define the solution components differently and then, the single pheromone in-
formation is represented with a Q-dimensional matrix, leading to a memory
requirement of O

(
nQ+1

)
. On the other hand, multiple pheromone informa-

tion is represented in any case with Q different matrices, leading to a memory
requirement of O

(
Q · (n · n)

)
. However in some problems, as we have seen

for the mQAP, the number of meanings of the solution components may be
small compared to the number of objectives, and therefore the memory re-
quirements for using multiple pheromone information are much higher than
for using single pheromone information.

With regard to computation time, when multiple pheromone informa-
tion is used, the calculation of pk

Sj implies the evaluation of
∏Q

q=1

(
τ q
Sqj

)λq .
Consequently, the computation time required is O(Q). Moreover, the power
and the product are very expensive operations in terms of computation time.
Hence, there would be a large multiplicative constant hidden in the previ-
ous expression. On the other hand, when single pheromone information is
considered, there is only one pheromone value, thus the evaluation takes a
constant time without expensive operations. As well, the evaporation proce-
dure implies that all the entries of the pheromone matrices must be modified.
Therefore, when single pheromone information is used, the computation time
of the evaporation procedure is O

(
n|S|+1

)
where n is again the largest dimen-

sion of the pheromone matrix, whereas for multiple pheromone information
the computation time is O

(
Q · (n · n)

)
.

In conclusion, which definition of the multi-objective pheromone informa-
tion actually requires fewer computational resources depends on the number
of objectives of the particular problem being considered and how these ob-

4.3. Pheromone Update Strategies 27

jectives define the solution components.

4.3 Pheromone Update Strategies

The best performing ACO algorithms for single objective problems typically
update the pheromone information by using only the best or a few of the
best solutions found in the current iteration (iteration-best strategy) or since
the start of the algorithm (best-so-far strategy) [11, 51]. In multi-objective
problems, the best solutions can also be taken from a candidate set including
all solutions found in the current iteration Cib or since the start of the algo-
rithm Cbf. The real difficulty lies in the definition of the best solutions of the
candidate set.

With a single objective, the comparison criterion between solutions is evi-
dent because the best solution is that one with the best value of the objective
function. On the other hand, with multiple objectives, the straightforward
criterion is the Pareto optimality and thus the best solutions of the candidate
set (either Cib or Cbf) are those that are nondominated, or in other words,
those solutions that belong to the Pareto set. We will refer to this strategy
as selection by dominance.

When using selection by dominance and multiple pheromone information,
if each objective defines the solution components in a different manner, the
selected solutions update each pheromone matrix differently because each
solution component has a different meaning for every pheromone matrix.3

However, a problem arises when different pheromone matrices define the so-
lution components in the same manner because they will be reinforced equally,
becoming the same matrix, causing the aggregation to turn out to be useless.
Furthermore, when using selection by dominance and multiple pheromone in-
formation, the meaning of each pheromone matrix is no longer the desirability
of a certain objective, but for a certain set of solution components (which are
defined by each pheromone information) and then the weight vector regulates
the relative importance of different solution components.

On the other hand, when selection by dominance is used with single pher-
omone information, the pheromone trails of the solution components that
belong to nondominated solutions are reinforced in a natural way. There
is exactly one entry of the single pheromone information for each possible
solution component, thus each selected solution will deposit pheromone in
the entries of the single pheromone information associated with its solution
components.

Alternatively, we can define a weight vector and select the best solution
with respect to a weighted sum scalarization of the multiple objectives. How-
ever, this selection by scalarization is even more problematic because (i) for
3 This is exactly the strategy followed by the algorithm proposed by Iredi, Merkle &

Middendorf [29].

28 Multi-objective ACO

each weight vector all the solutions are scalarized and compared in order to
select the best solution with respect to the weight vector (ii) it is not clear
how the selected solutions should update the multi-objective pheromone in-
formation, particularly when multiple pheromone information is considered.
Therefore, we will restrict ourselves to a simplified form of the selection by
scalarization. In this simpler strategy, only the best solutions with respect
to each objective are selected to update the pheromone information. Then,
when multiple pheromone information is considered, each pheromone matrix
associated with each objective is updated by the solution with the best ob-
jective value for the respective objective. Consequently, this simplified form
of the selection by scalarization is called selection by objective.

Selection by objective has two main advantages over selection by scalar-
ization. First, only one ant per pheromone matrix will be allowed to deposit
pheromone as inMMAS and ACS, which has led to improved performance
over the original AS (see Section 3.3 on page 16). As a result, advanced
techniques used in these algorithms can be easily adapted to multi-objective
problems. Second, each pheromone matrix focuses on one objective, thus the
aggregation of all of them by means of a weight vector truly regulates the rel-
ative importance of each objective. This is not the situation in the selection
by dominance when using multiple pheromone information. Therefore, the
problem described above which occurs when the solution components have
the same meaning for different pheromone information is avoided with this
strategy, because each pheromone matrix is updated by a different solution
and thus the pheromone matrices are actually different.4 In this way, the con-
cept of multiple pheromone information can be applied to MOCO problems
similar to the mQAP.

It must be noted that when two solutions both have the best value for
a certain objective, the strategy of selection by objective always chooses the
one that dominates the other. However, with Q > 3 it may happen that
two nondominated solutions have the best value for an objective. In this
situation, either we can choose one of them or we can select both, although
in the latter case more than one ant is allowed to deposit pheromone and we
give up one of the properties of this strategy.

Finally, the amount of deposited pheromone must be defined. The only
restriction is that the solution cost cannot be used at all because the values
of different objective functions are not comparable. When multiple phero-
mone information is considered, we must take special care to ensure that the
amount of deposited pheromone is independent from the pheromone matrix
on which it is deposited, otherwise some objectives are implicitly consid-

4 Of course, it may happen that an ant is the best of the candidate set with respect to
more than one objective and then it will deposit pheromone in more than one pheromone
matrix. When this situation occurs frequently, we should ask ourselves if using multiple
pheromone information is the correct approach to solve that specific problem.

4.4. Multiple Colonies 29

ered more important than others. Taking these restrictions into account, the
amount of deposited pheromone can be defined in any manner. Finally, with
regard to the pheromone evaporation procedure, the only difference between
the multi-objective and the single objective case is the size and the number
of pheromone matrices, thus in principle any method can be used although
efficient techniques would of course be preferred.

4.4 Multiple Colonies

The image of the optimal Pareto set in the objective space is a trade-off sur-
face between the different objectives. Over this surface, two solutions can be
said to belong to different regions with respect to the differences in their ob-
jective vectors, e.g., if the distance between their respective objective vectors
is more than a given value or if we divide the objective space somehow into
hyper-boxes such that their objective vectors belong to different hyper-boxes.
Notice that the solution vector in the search space is not considered, thus the
desirable solution components of two Pareto optimal solutions belonging to
different regions could be very different or not. Nevertheless, as the real cor-
relation between the objectives decreases, it is to be expected that solution
components that are desirable for minimizing one objective will not be desir-
able for minimizing the others. Therefore, it could be advantageous to focus
the search on a certain region, independently from the search in other regions.

In a multi-colony approach, the total number of ants is divided into dis-
joint sets, each of these sets being called a colony. In the following, we will
assume that every colony has the same number of ants, or more formally,
that there are m ants, c colonies and m

c ants per colony. Multi-colony ant
algorithms have been previously used to parallelize ACO algorithms in order
to solve single objective problems. In the multi-objective context, the main
idea behind the multi-colony approach is not parallelization, but the fact that
different colonies can weigh the objectives differently [29]. In other words,
each colony can be seen as trying to approximate a different region of the
optimal Pareto set.

Each colony is independent from the others in the sense that it has its own
ants and pheromone information, such that each ant from a certain colony
constructs its solution guided only by the pheromone information from its
own colony. If no cooperation takes place between colonies, then we would
have a multi-start single colony ant algorithm where at each restart the al-
gorithm tries to approximate a different region of the optimal Pareto set.
Nonetheless, the solutions found by one colony can help to identify weak so-
lutions (i.e., dominated solutions) found by other colonies and one colony can
find good solutions by chance which belong to the region of other colonies.
Therefore, cooperation between colonies can increase the overall performance
of the algorithm. Cooperation is achieved by exchanging solutions between

30 Multi-objective ACO

colonies so the updating of the pheromones of one colony is influenced by
solutions from other colonies.

Three aspects define the behavior of the multiple colonies: (i) the set of
weight vectors used to aggregate multiple pheromone information can force
each colony explicitly to approximate a different region of the optimal Pareto
set, (ii) a candidate set formed by solutions from all colonies enforces cooper-
ation between colonies, and (iii) the pheromone update strategy must select
the colony where each solution updates the pheromone information.

4.4.1 Weight Vectors in the Multi-colony Approach

The use of single pheromone information does not in itself force each colony
to focus on a certain region. When multiple pheromone information is used,
on the other hand, the set of weight vectors that each colony uses in order to
aggregate its multiple pheromone information defines in some way a region
in the objective space on which the colony focuses the search.

The infinite set Λ defines all the possible directions that can be taken
to approximate the optimal Pareto set. Any finite subset Γ of maximally
dispersed weight vectors defines a region for the whole optimal Pareto set.5

Thus, a partition of Γ defines regions in the optimal Pareto set that can be
either disjoint or overlapping regions depending on whether disjoint partitions
of Γ are considered or not. Then, the multiple colonies can use the same set
Γ, disjoint or overlapping partitions of it.

For the bi-objective case, a single value λ is enough to define each weight
vector {1 − λ, λ}. Then, given the number of colonies c and the number of
weight vectors per colony w, Iredi et al. [29] proposed the following possibil-
ities to define each weight value λki with k = 1, . . . , w and i = 1, . . . , c

– Single Region: for all colonies the values of λ are in the interval [0, 1].

λki =
k − 1
w − 1

– Disjoint Regions:

λki =
(i− 1)w + (k − 1)

c · w − 1

– 50% Overlapping regions: the interval of values of λ for colony i overlaps
by 50% with the interval for colony i− 1 and colony i + 1.

λki =
(i− 1)(w − 1) + 2(k − 1)

(w − 1)(c + 1)
(4.4)

5 Nonsupported solutions cannot be obtained using a weighted sum scalarization. There-
fore, a region that only contains nonsupported solutions cannot be defined using weight
vectors.

4.4. Multiple Colonies 31

4.4.2 Candidate Set in the Multi-colony Approach

Turning to the candidate set from which the best solutions are selected in
order to update the pheromone information, there are two alternatives: either
the set is formed with solutions from all colonies or each colony defines its own
set with its own solutions. When the candidate set is formed by solutions
of only one colony at a time, there is no cooperation mechanism because
the decision about which solutions are selected to update the pheromone
information only depends on the solutions found in that colony. Nevertheless,
cooperation can still be imposed by other mechanisms, simply by exchanging
the selected solutions between colonies or even more complicated methods
that have been studied for parallelized ACO algorithms. In the present work,
restrictions on communications between colonies are not considered.6 Hence,
the cooperation between colonies is enforced by using a candidate set formed
with solutions from all colonies.

As for the single colony approach, the candidate set can be the set of all
solutions obtained by all colonies in the current iteration Cib (iteration-best
strategy) or since the start of the algorithm Cbf (best-so-far strategy).

4.4.3 Pheromone Update Strategies with Multiple Colonies

The pheromone update strategies described for the single colony approach
can also be used with multiple colonies. To enforce the specialization of the
colonies, each ant deposits pheromone on only one colony.

The selection by dominance method is straightforwardly adapted to the
multi-colony approach, i.e., the ants belonging to the Pareto set of the can-
didate set are distributed between colonies and are allowed to deposit pher-
omone.

The case of the selection by scalarization is somewhat more complicated.
Let us consider only the simplified method described above, namely selection
by objective. In the single colony approach, this method updates the pher-
omone information using the best solution with respect to each objective.
Solution components of these selected solutions will have a high probability
of belonging to solution constructed in the next iteration. Since all of the
selected solutions update the same pheromone information, solution compo-
nents which belong to more than one selected solution at one time will have a
higher probability of being part of solutions constructed in the next iteration.
However, if the selected solutions are distributed between several colonies, the
solution components common to solutions which are the best with respect to
the different objectives will not have a higher probability. Furthermore, when
multiple pheromone information and multiple colonies are considered, some
pheromone matrices are not updated. In this case, for each colony there is

6 Restrictions on cooperation can come from distributed systems where communications
may be expensive.

32 Multi-objective ACO

one pheromone matrix for each objective. Then, when using selection by
objective, if solutions selected from the candidate set are distributed among
colonies, the number of selected solution will be much smaller than the num-
ber of pheromone matrices which must be updated because the maximum
number of solutions selected to update is equal to the number of objectives.

For these reasons, we propose a definition of selection by objective with
multiple colonies which distributes the candidate solutions among colonies
before selecting the best solutions.7 Under this definition, the minimum
number of ants allowed to update the pheromone information in a colony
is equal to the number of objectives. As well, since an ant cannot update the
pheromone information of more than one colony, the selection by objective
method enforces the specialization of the colonies.

The selection by scalarization with a single colony also assures that a
selected solution always belongs to the Pareto set of the candidate set. As
well, the collaboration between colonies in the multi-colony approach aims
to detect weak solutions (dominated by known solutions). In order to also
have these properties when selection by scalarization is used with multiple
colonies, the set that is distributed among colonies is actually the Pareto set
of the solutions from all the colonies.

In summary, in selection by objective, the Pareto set of the candidate set
is somehow distributed among the colonies and then for each colony the best
solution with respect to each objective is allowed to deposit pheromone ei-
ther on the single pheromone matrix (when single pheromone information is
considered) or on the pheromone matrix associated with the respective ob-
jective (when multiple pheromone information is considered). Finally, when
the number of colonies is one, this definition of selection by scalarization is
consistent with the one previously proposed.

Whenever multiple colonies are considered, the pheromone update strat-
egy must also decide on which colony each solution updates the pheromone
information, i.e., it must define how solutions are distributed among the mul-
tiple colonies. Iredi et al. [29] proposed two methods. The first strategy,
called update by origin, allows each ant to deposit pheromone only in the
colony from which that ant comes. Hence, this is not essentially a collabora-
tive strategy because it does not enforce the exchange of solutions between
colonies. Moreover, it does not explicitly force the colonies to focus on dif-
ferent regions. The second method is called update by region and explicitly
forces each colony to focus on a different region. The regions are defined im-
plicitly by sorting the Pareto set of the candidate set and then dividing it as
equally as possible into parts that are distributed among the colonies. This
method can only be used with bi-objective problems because for more than

7 The drawback of this approach is that if the number of solutions assigned to a colony is
less than the number of objectives, then a solution will update the pheromone information
of the colony more than one time, however this can also occur with a single colony.

4.5. Local Search Methods for MO-ACO 33

two objectives a set of non-dominated objective vectors can only be partially
sorted. More formally, let C∗ be the Pareto set of the candidate set (either
Cib or Cbf) and let c be the number of colonies. Firstly, the update by region
strategy sorts C∗ in order of increasing values of the first objective. Next,
C∗ is divided into disjoint partitions C∗1 , C∗2 , . . . , C∗c in such a way that their
respective sizes differ by at most one.8 Lastly, all solutions in C∗i update the
pheromone information of colony i.

The order in which the solutions are sorted only matters if we are us-
ing another mechanism to force colonies to focus on different regions. For
instance, when using multiple pheromone information, the weights can be
defined to force colonies to focus on different regions. Therefore, if the ants
from the first colony construct solutions considering more importance to the
first objective because of the weight vectors and the ants from the colony
c attach more importance to the second objective, then the solutions in C∗
must be sorted in increasing order of the first objective.

4.5 Local Search Methods for MO-ACO

For many single objective combinatorial optimization problems, ACO algo-
rithms obtain the best performance only when the solutions constructed by
the ants are improved using local search methods [11, 21, 38, 48, 49, 50].
Furthermore, the best configuration of settings and parameters for ACO al-
gorithms depends greatly on whether local search is used or not. Therefore,
when local search can be efficiently applied to a certain problem and it may
improve the performance of an ACO algorithm, then the algorithm should
be analyzed, taking into account the use of local search since the beginning
of the analysis.

Local search methods for MOCO can be based on methods for single
objective problems applied to several scalarizations of the objective vector of
the MOCO problem. On the other hand, they can use the Pareto optimality
criteria to keep an archive of Pareto locally optimal solutions, as done by
Pareto Local Search (PLS) [42, 43]. In the former case, the number of Pareto
locally optimal solutions obtained is bounded by the number of scalarizations
considered. In the latter case, the size of the optimal locally Pareto set may
be exponential in the instance size. For this reason, we propose adapting the
concepts for bounded archiving in multi-objective evolutionary algorithms
(MOEA) [33, 37] in order to obtain a more efficient variant of PLS.

8 Notice that |C∗| = c · p + r, hence each partition C∗1 , . . . , C∗r has size p + 1 and each
partition in C∗r+1, . . . , C∗c has size p.

34 Multi-objective ACO

4.5.1 Local Search for Single Objective Problems

Local search methods for single objective problems can be applied to their
multi-objective variants because any MOCO problem can be transformed into
a single objective problem using a weighted sum scalarization of the objective
vector. Therefore, local search methods for MOCO problems may be based
on several scalarizations of the objective vector by altering the weight vectors.

It is well-known that globally optimal solutions for scalarized problems
are also Pareto globally optimal solutions. Furthermore, local optima for
scalarized problems where all the weights are positive are also local Pareto
optima,i.e., there is no other solution in its neighborhood that dominates
it [42]. However, these local search methods will not be able to find nonsup-
ported solutions.

4.5.2 Pareto Local Search (PLS)

Local search methods for MOCO problems can be based on the Pareto op-
timality criterion. For example, Pareto Local Search (PLS) [43] is a multi-
objective extension of local search algorithms for single objective problems
which uses the Pareto optimality as the acceptance criterion. PLS starts
from a solution and examines its neighborhood. Next, any nondominated
solution found is added to an archive and the dominated ones are removed
from it. PLS terminates when all the neighboring solutions of all solutions
in the archive have been explored. The size of the locally optimal Pareto set
obtained may be exponential in the instance size. Thus, for some problems
or specifically in some instances, because of the large size of the archive, PLS
may be very inefficient in terms of space and computation time required, even
more so if it is to be used by a MO-ACO algorithm.

4.5.3 Bounded Pareto Local Search (BPLSA)

In order to address the previously described problem, we propose a bounded
variant of Pareto Local Search (BPLSA), which is a simplified approach of
concepts previously studied in MOEA [33, 37].

The only difference with respect to PLS is the procedure which adds a new
neighborhood solution to the archive. This procedure ensures an upper bound
to the size of the archive by placing a hyper-grid in the objective space and
only allowing one objective vector to be in each grid cell at one same time [37].
When a new solution is added to the archive, there are three possibilities: (i)
the solution is dominated by any in the archive; it is discarded and thus the
size of the archive does not change; (ii) the solution dominates at least one
solution in the archive; all dominated solutions are discarded and the new
solution is added to the archive; thus the size of the archive does not change
or may even decrease; or (iii) in any other case, the solution is compared

4.6. MO-ACO Applied to the bQAP 35

with the ones in the archive in order to ensure that there is no other solution
in the same cell.

Each cell is represented by a box vector and two solutions belong to the
same cell when they have the same box vector. Given A as the upper bound
of the size of the archive, then the number of divisions at each axis is given
by A+1

2 . Thus, for any solution with objective vector a = {a1, . . . , aQ}, its
corresponding box vector is B(a) = {B1, . . . , BQ}, with

Bi =
⌊

(ai −mini) · (A + 1)
2(maxi −mini)

⌋
i = 1, . . . , Q

where maxi and mini are the respective maximum and minimum values of
objective i for all solutions in the archive and A+1

2(maxi−mini)
is the length of

each grid cell in the dimension i.
The ranges (maxi,mini) are adapted over time [36]. When a new solution

with objective vector a = {a1, . . . , aQ} is added to the archive and for any
objective i a value is lower than the respective minimum range (ai < mini),
then the respective minimum range is updated (mini = ai). In this case,
the maximum values are also checked and updated, if any value of the re-
maining objectives is greater than its respective maximum value (aj > maxj ,
j = 1, . . . , Q∧ j 6= i). Whenever the ranges for objective i change, the corre-
sponding components of the box vector for every solution in the archive must
be calculated again and all the box vectors must be compared to ensure that
every solution belongs to a different grid cell.

In the case where two solutions belong to the same grid cell, one of them
should be removed. In order to keep the “tails” of the archive, solutions with
an objective value equal to any minimum are protected from removal. In any
other case, we keep the oldest solution.

4.6 MO-ACO Applied to the bQAP

An ACO algorithm applied to a certain MOCO problem may use any com-
bination of the concepts described above. A certain combination of concepts
or strategies can be seen as a particular configuration of a general MO-ACO
algorithm. Therefore, we would like to test several configurations in order to
find the best one. Ideally, the available knowledge from previous or similar
experiments would help us to decide which configurations may be interesting
to consider. Nowadays, there is very limited knowledge about the mQAP or
about MO-ACO algorithms. In contrast, there is a vast literature on multi-
objective evolutionary algorithms (MOEA). Two essentially different search
strategies are usually considered in MOEA, either based on the dominance
criteria (class D) or based on several scalarizations of the objective vector
(class S). Consequently, in the study of MO-ACO applied to the bQAP, we
will focus on straightforward configurations which reflect these different types
of search strategies.

36 Multi-objective ACO

The use of multiple pheromone matrices which are aggregated by means
of weights resembles the scalarization of the multiple objective functions. On
the other hand, when single pheromone information is considered, there is
no need of weights. Moreover, if we use the dominance criteria to select the
best solutions that will update the single pheromone information (selection
by dominance), then the search strategy is based only on the dominance cri-
teria. For the bQAP in particular, the selection by dominance method does
not suggest the utilization of multiple pheromone matrices in a natural man-
ner simply because a solution component has a unique meaning. Thus, some
other mechanism is needed to distinguish between the multiple pheromone
matrices. In contrast, the strategy of selection by objective allows us to use
multiple pheromone information. For these reasons, we consider a configura-
tion of class D that comprises the use of single pheromone information and
selection by dominance, and a configuration of class S that comprises the
use of multiple pheromone information (Eq. 4.2) and selection by objective.
In addition, weights can be defined so that the algorithm searches in all di-
rections or in one direction at each iteration. Therefore, we consider search
configurations of class Sall and Sone, respectively.

The available knowledge about ACO for the single objective QAP indi-
cates that multi-objective local search methods may improve the performance
of the MO-ACO algorithm applied to the bQAP. Therefore, we will study
configurations which apply local search to the solutions constructed by the
ants versus configurations which do not use local search. In order to be con-
sistent with the search configuration of class D and class S, we use two essen-
tially different local searches for each class but with the following similarities.
Firstly, both local searches use the same underlying 2-exchange neighborhood
(2-opt), that is, the set of all solutions where the location of two different fa-
cilities is exchanged. Secondly, both explore the whole neighborhood before
applying the acceptance criterion, that is, they are best improvement local
searches. Lastly, both make use of the fast delta evaluation of the bQAP,
which is well-known in the single objective case [52] and was extended to the
mQAP by Paquete & Stützle [43]. In contrast, the local search method for
class S is based on the weighted sum scalarization of the objective function
vector (W-LS), whereas for class D is based on Pareto Local Search (PLS)
or its bounded variant (BPLSA). For W-LS, in particular, each solution is
improved by W-LS using the same weight that the ant used before while con-
structing the solution. The various classes of search strategy are summarized
in Table 4.1.

We would also like to compare the multi-colony approach to the use of a
single colony. Hence, we consider a cooperative multi-colony approach where
the exchange of solutions between colonies is performed using the “update
by region” strategy and the candidate set is comprised of solutions from all
colonies. In particular, when combined with search configurations of class S,

4.6. MO-ACO Applied to the bQAP 37

the set of weight vectors is defined using 50% overlapping regions (Eq. 4.4).
A similar configuration has already been tested over a bi-objective scheduling
problem [29], but by using a search strategy based on multiple pheromone
information and selection by dominance.

As well, we examine configurations where the candidate set is the set of
all the solutions obtained by all colonies (or the single colony) in the current
iteration Cib (iteration-best strategy) or since the start of the algorithm Cbf

(best-so-far strategy).
Additionally, the concepts of MMAS are applied to the MO-ACO al-

gorithm for the bQAP with minor differences. Firstly, each ant deposits a
constant amount of pheromone when updating the pheromone information.
Hence, the pheromone limits are calculated by means of this constant value.
Secondly, some configurations allow more than one ant to update the pher-
omone information at a time. For this reason, the upper pheromone limit
(τmax) is only used to initialize the pheromone information but does not
restrict the maximum value that this pheromone information can take on.
Finally, evaporation is done as in Eq. (3.2) on page 16.

The configurations considered in the design of a MO-ACO algorithm for
the bQAP are summarized in Table 4.2. The following chapter explains the
experimental setup and the performance assessment methodology used in the
experiments performed with these configurations.

38 Multi-objective ACO

Class Selection Ph. Inform. Weights

D by Dominance Single (Eq. 3.1) —

Sall by Objective Multiple (Eq. 4.2) In all directions

Sone by Objective Multiple (Eq. 4.2) In one direction

Table 4.1: Classes of search strategy used by MO-ACO when applied to the bQAP.
Selection methods are explained in Sec. 4.3; the possible definitions of multi-objective
pheromone information are discussed in Sec. 4.2; the different alternatives in order
to define the set of weight vectors are examined at the end of Sec. 4.2.1.

Colonies Candidate Set Class LS method

Single

D PLS, BPLSA, w/o LS

Cib Sall W-LS, w/o LS

Sone W-LS, w/o LS

D PLS, BPLSA, w/o LS

Cbf Sall W-LS, w/o LS

Sone W-LS, w/o LS

Multiple

D PLS, BPLSA, w/o LS

Cib Sall W-LS, w/o LS

Sone W-LS, w/o LS

D PLS, BPLSA, w/o LS

Cbf Sall W-LS, w/o LS

Sone W-LS, w/o LS

Table 4.2: Configurations of the MO-ACO algorithm for the bQAP. The column
Colonies refers to the single colony approach compared to use of multiple colonies.
For both approaches, an iteration-best strategy (Cib) or a best-so-far strategy (Cbf)
may define the candidate set. For each of these possibilities, various classes of search
strategies (either D, Sall or Sone) will be tested. Finally, the appropriate local search
method for each class will be applied (PLS or BPLSA for class D and W-LS for class
S) versus the same configurations without local search (w/o LS).

Chapter 5

Performance Assessment

The performance assessment of a multi-objective algorithm is not an easy task. In the
single objective case the quality of the outcome of an algorithm is defined with respect
to the objective value. However, it is not clear how to define the quality of a Pareto set
of objective vectors. Consequently, many different quality measures have been proposed
in the literature. These quality measures can be classified into unary measures, which
assign a quality value to a Pareto set independently from other Pareto sets, and binary
measures, which compare two Pareto sets. The binary ε-measure indicates whether
a Pareto set is better than another in terms of Pareto optimality and the number of
times that an outcome obtained by one algorithm is better than an outcome obtained
by the other can give an idea of their performance. Unfortunately, in many cases the
outcomes may be incomparable in terms of Pareto optimality. An unary ε-measure can
be defined in the case that the optimal Pareto set is known. This unary ε-measure is
used to discriminate among incomparable Pareto sets. Because the Pareto optimal set
is not known for the bQAP instances considered, we calculate a lower bound of the
Pareto optimal set and use this lower bound in order to define the unary ε-indicator.
Additionally, an Analysis of Variance (ANOVA) of the values of this unary ε-measure
may indicate which parameters of an algorithm contribute to its overall performance and
which interactions occur between these parameters.

5.1 Binary ε-measure

Nowadays, an important research effort in multi-objective optimization aims
to clarify the performance assessment of multi-objective algorithms. In single
objective problems, the quality of the outcome of an optimization algorithm
is defined in terms of the scalar value of the single objective function. In con-
trast, in multi-objective optimization, the concept of the quality of a Pareto
set is rather vague.

The relations between Pareto sets provide a solid quality classification in
order to compare the outcomes of multi-objective optimization algorithms.
Particularly, the relation “better” is the most general form of superior quality

40 Performance Assessment

between two Pareto sets. Then, given that the outcome of the algorithm X
is the Pareto set A and the outcome of algorithm Y is the Pareto set B,
when A C B we can say that algorithm X performs better than algorithm
Y for these two outcomes. However, the outcomes of two algorithms may be
incomparable (A ‖ B) in terms of Pareto optimality.

Which other quality criteria can be define over Pareto sets is still an open
question. Despite this fact, many different quality measures have been defined
in the literature. These quality measures can be classified in unary measures,
which assign a quality value to a Pareto set independent of other Pareto sets
under consideration, and binary measures, which evaluate the comparison of
two Pareto sets. Binary measures require to calculate N · (N − 1) values in
order to compare N Pareto sets because for each pair of Pareto sets a binary
measure returns two values.1 On the other hand, unary measures are most
commonly used in the literature because they are more efficient to calculate,
i.e., only N values must be calculated to compare N Pareto sets.

Unfortunately, there is no unary measure which can indicate whether a
Pareto set is better than another [58]. On the other hand, some binary mea-
sures are able to indicate whether a Pareto set is better than another. Thus,
the inference power of unary measures is insufficient to achieve conclusions
as solid as those that can be obtained using binary measures.

The binary ε-indicator gives the factor by which an approximation set
is worse than another with respect to all objectives [58]. Formally, given
two Pareto sets, A and B, of an arbitrary multi-objective problem with Q
objectives, the binary ε-indicator can be calculated as

Iε(A,B) = max
b∈B

min
a∈A

max
q∈Q

(
aq

bq

)
(5.1)

Using this indicator we can define a binary ε-measure which detects
whether a Pareto set is better than another as follows

Iε(A,B) ≤ 1 ∧ Iε(B,A) > 1 ⇐⇒ A C B

In order to compare two groups of outcomes, obtained for example by two
different algorithms, we calculate the percentage of outcomes from one group
that are better than an outcome from the second group using this binary
ε-measure. We must also calculate the percentage of outcomes from the
second group that are better than an outcome from the first group. The sum
of these percentages is never greater than 100%. Moreover, the remainder
percentage not included in the sum of those percentages corresponds to the
outcomes that are incomparable or equal.

1 For simplification, we do not take into account symmetric binary measures or combina-
tions of unary measures because their properties are similar to the properties of unary
measures [58].

5.2. Unary ε-measure 41

5.2 Unary ε-measure

We would also like to distinguish between Pareto sets which are incomparable
in terms of Pareto optimality. To address this issue, we define an unary
ε-measure using a lower bound of the optimal Pareto set that gives the factor
by which a Pareto set is worse than the lower bound with respect to all
objectives.

When the optimal Pareto set P is known, an unary ε-indicator can be
defined as

Iε(A) = Iε(A,P)

This indicator gives the factor by which a Pareto set A is worse that the
optimal Pareto set P with respect to all objectives [58]. Thus, Iε(A) ≮ 1 and
Iε(A) = 1 implies A = P. Although there is no unary measure which can
detect whether a Pareto set is better than other, the above unary ε-indicator
is able to detect whether a Pareto set is not worse than other [58]. Thus, an
unary ε-measure can be defined as

Iε(A) < Iε(B)⇒ B 6 A

As well, B 6 A ⇐⇒ (A C B) ∨ (A ‖ B) ∨ (A = B), thus this unary
ε-measure is consistent with the Pareto optimality criterion: if the value of Iε

for one Pareto set is lower than for another, then the former is better, thus we
get the right answer, or both are incomparable, thus we are choosing among
two incomparable sets.

Additionally, this unary ε-measure can be related to the worst case ap-
proximation ratio used in approximation algorithms and specially to the no-
tion of ε-approximate Pareto curve [41]. Given a Pareto set A with Iε(A) =
1 + ε, then there is not other Pareto set B such that for any b ∈ B then for
all a ∈ A, bq 6 (1 + ε)aq for some q = 1, . . . , Q. Hence, this is a worst case
measure and a reasonable answer to present to the decision-maker.

Nevertheless, the optimal Pareto set for the bQAP is usually not known.
In this case, a lower bound B, such that B C P, can be used instead. Hence,
Iε(A) = Iε(A,B). It turns out that Iε(A) > Iε(P,B), i.e., the unary ε-measure
is always greater or equal than the factor by which the optimal Pareto set is
worse than the lower bound.

5.2.1 Lower Bound

In order to compute a lower bound to the optimal Pareto set for the bQAP,
we extend the Gilmore-Lawler lower bound [25]. For the single objective
QAP, the Gilmore-Lawler bound is given by the optimal objective value of
an associated Linear Assignment Problem (LAP) which can be solved in cubic
time (see [3] for more details).2

2 Code in Fortran is available at QAPLIB.

42 Performance Assessment

Figure 5.1: Pictorial
view of the lower bound
for the bQAP.

In this case, we define a bi-objective LAP
(bLAP) where each objective is the LAP associ-
ated to each objective of the bQAP. Then, we
solve several scalarizations of the bLAP, obtain-
ing a number of solutions which are not domi-
nated by any Pareto optimal solution of the as-
sociated bQAP. However, these solutions are
not guaranteed to dominate all the Pareto opti-
mal solutions of the bQAP. Therefore, we added
points as follows. First, we sort the objective
vectors lexicographically and for each successive
pair of objective vectors u, v we added another
point w with coordinates w1 = min{u1, v1} and
w2 = min{u2, v2}. The resulting set is guar-
anteed to dominate all Pareto optimal solutions of the associated bQAP.
Figure 5.1 gives a pictorial perspective of this worst case lower bound: the
white points corresponds to the optimal points for several scalarizations of
the bLAP and the dark points refer to the additional points. For the instances
considered, we used 5000 weight vectors maximally dispersed in [0, 1].

5.2.2 Analysis of Variance (ANOVA)

The performance assessment of an algorithm or a set of algorithms usually
involves setting the values of certain parameters, e.g., the evaporation factor
in ACO algorithms. Each experiment characterizes a certain configuration of
the values of these parameters. In order to decide which algorithm or which
of its possible configurations performs better than the others, it normally
suffices to repeat several times each experiment, calculate the quality mea-
sure for each repetition and compare the mean values of the measure for each
experiment. However, this sort of analysis does not generally explain why a
certain configuration is better or worse than another. Analysis of Variance
(ANOVA) is a statistical technique that may be used to find out which param-
eters of an algorithm are relevant to explain its performance. Furthermore,
ANOVA may also indicate the relations between these parameters.

The parameters which vary depending on the experiment and may affect
the performance are called factors. The levels of the factor are the different
values that each factor takes on for every experiment. Finally, the quality
measure used to assess performance is the response variable. In our analysis,
the response variable is the value of the unary ε-measure using the lower
bound and the factors are the different components of a certain configuration
of MO-ACO when applied to the bQAP.

Essentially, two key question can be asked: does a factor influence the
response variable? is the effect of a factor in the response variable modified
by the influence of another factor? The first question is whether there is a

5.3. Median Attainment Surface 43

main effect, whereas the second one asks for an interaction effect. The initial
hypothesis is there is not effect, i.e., for each factor or interaction the null
hypothesis is that it does not influence on the response variable. ANOVA
tests this null hypothesis and gives the probability that it is in fact true.
This probability is called a p-value. When the p-value is lower than a certain
value, by convention 0.05, it is said to be statistically significant and then
the null hypothesis is rejected, i.e., there is a significant effect of the factor or
interaction. On the other hand, when the p-value is not statistically signifi-
cant the null hypothesis cannot be rejected, thus the experimental results do
not evidence any significant difference on the response variable for any level
of the factor.

The results of ANOVA are expressed as a characteristic table. Each row
shows the results for a certain factor or for a certain interaction. Each column
shows the results of calculations involved in the test of the hypothesis. The
most important element of this table is the column of the p-value.

In the case of main effects, if the null hypothesis is rejected then some
levels of a factor have a different effect on the response variable than the other
levels of the factor. However, ANOVA does not tell which pairs of levels are
significantly different. For this purpose, all possible pairs of the means for
each level can be compared using confidence intervals. The Tukey method
obtains confidence intervals at the 95% for all the pairwise comparisons. Each
interval indicates that there is a 95 percent of probability that the interval
contains the real mean of the response variable for a certain level. Therefore,
if the intervals do not themselves overlap, the means are significantly different.

For interaction effects, the means of the levels of one factor can be plotted
for each level of other factor. The interaction effect is indicated by non
parallel lines. However, this interaction plot neither proves whether there is
a significant interaction effect nor it shows the real difference between the
combinations of levels. The first issue is achieved by ANOVA. The second
one is attained by plotting error bars that represents the upper and lower
bounds of a 95 percent confidence interval around each mean. Thus, the
Tukey method is used to calculate these intervals for each combination of
levels.

The ANOVA is based on some assumptions that must be checked before
performing the actual statistical analysis. Appendix A explains briefly how
these assumptions are checked.

5.3 Median Attainment Surface

The probability of obtaining an arbitrary goal in the objective space during
a single run of an arbitrary algorithm can be represented by an attainment
function [27]. This attainment function can be estimated using data collected
from several runs of the particular algorithm. The median attainment surface

44 Performance Assessment

is the line that connects objective vectors assigned to an empirical frequency
of 50% of being attained [27]. The median attainment surface gives a clear
visual information of how the objective space is covered by the outcomes
of an algorithm. Particularly, we will use median attainment surfaces to
assess the similarities and differences between those configurations that are
incomparable with respect to the binary ε-measure.

5.4 Reference Solutions

We would like to obtain reference solutions in order to compare with the
outcomes of the configurations of MO-ACO studied here. However, there
is no exact algorithm for the bQAP. Robust Taboo search (RoTS) [52] is
among the best performing algorithms for unstructured instances of the single
objective QAP and it obtains good solutions for structured instances [19, 51].
Paquete & Stützle [43] used Robust Taboo Search (RoTS) to solve several
scalarizations of the bQAP using maximally dispersed weight vectors. The
solutions generated by the several runs are filtered by removing dominated
solutions in order to obtain a Pareto set. This algorithm is called W-RoTS.

Chapter 6

Experiments

6.1 Experimental Setup

The experimental setup involved three factors: (i) the search configuration,
which can be of class D, Sall or Sone; (ii) iteration-best versus best-so-far
strategies for defining the candidate set; and (iii) one or multiple colonies. In
addition, each combination of these factors was run with and without local
search. The local search methods tested were W-LS for classes Sall and Sone;
and PLS and BPLSA for class D. For BPLSA we tested three different values
of the upper bound limit of the archive size, A ∈ {100, 500, 1000}. Therefore,
when local search was used, the search configurations were: class D with PLS,
BPLS100, BPLS500, and BPLS1000; class Sall with W-LS and class Sone with
W-LS.

The total number of ants (m) was always equal to the size of the instance.
Five colonies (c = 5) were used in the multi-colony approach, thus there were
m/5 ants per colony. We followed the rules of MMAS for the management
of pheromones with α = 1 and β = 0 (heuristic information is not used);
ρ = 0.9 for the pheromone evaporation; pbest = 0.05 to derive the factor
between the lower and the upper pheromone trail limits; and τmax was set to
the theoretically largest value [51].

The algorithms were tested on the six instances of size n = 50 presented
in Section 2.1.1 on page 8. Three of these instances are unstructured and
the other three are structured instances. These three instances were gener-
ated with ξ ∈ {0.75, 0.00,−0.75}, where ξ is a parameter that influences the
correlation between the flow matrices.

Every experiment was run for a maximum time of 300 CPU seconds and
was repeated 20 times. The algorithms were coded in C and the experiments
were done on a computer with a Pentium III 933 MHz CPU and 512 MB
RAM running under Debian Linux.

46 Experiments

6.2 Analysis of Experimental Results

The analysis of the results is done in three phases. The first phase uses
the binary ε-measure to detect which configurations perform clearly better.
In the second phase, a lower bound of the optimal Pareto set is calculated
for each instance and we perform an Analysis of Variance (ANOVA) on the
values of the unary ε-measure with respect to the lower bound. Finally, the
results are visualized using median attainment surfaces.

Additionally, we obtained reference solutions using W-RoTS. We ran W-RoTS
for a total time of 300 CPU seconds for each instance, as done for each ex-
periment of MO-ACO. Each run of the underlying taboo search algorithm
was stopped after 100 · n iterations. With this time limit, approximately 136
scalarizations could be run. These scalarizations used a set of maximally
dispersed weight vectors in the interval [0, 1].

6.2.1 Analysis Based on Binary ε-measure

The first phase of the experimental analysis allows us to obtain solid conclu-
sions about the performance of the different configurations. The aim of this
phase is to identify which configurations of MO-ACO perform clearly better
than others. The binary ε-measure indicates whether one outcome is better
than another, the latter is better than the former or they are incomparable in
terms of Pareto optimality. Using this binary ε-measure, we compare two set
of outcomes, comparing each outcome from the first set with each outcome
from the second set. First, we calculate the percentage of times one outcome
from the first set is better than one outcome from the second set. Next, we
must also calculate the percentage of times one outcome from the second set
is better than one outcome from the first set. The remainder of the sum of
these two values is the percentage of times one outcome from any of the sets
is incomparable or equal to one outcome from the other set.

Table 6.1 compares configurations using local search methods with con-
figurations not using local search. Comparison are grouped according the
local search methods tested: BPLS100, BPLS500, BPLS1000 and PLS for class
D and W-LS for class S. Within each group, separated by a vertical line,
configurations using the respective local search are compared with the same
configurations not using local search (w/o). Each value of the two columns
within each group, that is, each of the pair of values between vertical lines,
is the percentage of times an outcome corresponding to one column is better
than an outcome corresponding to the other column. For each pair of percent-
ages, the first one, corresponding to configurations using a particular local
search method, is always greater than 25%, while the second value, corre-
sponding to the same configurations without local search, is always less than
0.8% with only two exceptions. Moreover, the difference between the first
value minus the second one is always greater than 15% and for any instance

6.2. Analysis of Experimental Results 47

Type ξ BPLS100 w/o BPLS500 w/o BPLS1000 w/o PLS w/o W-LS w/o

Un. 0.75 35.4 15.0 82.7 0.0 97.4 0.0 99.9 0.0 100.0 0.0
0.00 99.1 0.0 99.1 0.0 99.1 0.0 98.8 0.0 99.4 0.0
−0.75 69.9 0.0 90.5 0.0 93.0 0.0 86.1 0.0 100.0 0.0

Str. 0.75 88.4 0.0 86.8 0.0 79.3 0.0 34.3 5.7 99.5 0.0
0.00 97.7 0.0 95.4 0.0 93.5 0.0 44.3 0.8 99.9 0.0
−0.75 82.4 0.0 72.7 0.0 61.7 0.0 26.3 0.4 100.0 0.0

Table 6.1: Comparison of configurations using local search methods (either
BPLS100, BPLS500, BPLS1000 and PLS for class D and W-LS for class S) with con-
figurations not using local search (w/o). Each group of comparisons is separated by
a vertical line. Each entry gives the percentage of times an outcome corresponding
to one of the two columns of the group was better than an outcome corresponding
to the other column.

there is always at least two local search methods for which this difference
is greater than 80%. Therefore, the results show that configurations using
local search methods obtain better results that configurations not using local
search. Furthermore, for the structured instances (Str.), the three last rows of
Table 6.1 show that the highest differences of percentages are obtained when
using W-LS, always greater than 99%, and the bounded variant BPLSA, al-
ways greater than 80% for at least one value of A = {100, 500, 1000}. In
contrast, for PLS this difference is less than 45% for any structured instance.
Thus, BPLSA is a better local search method than PLS for configurations of
class D when tackling structured instances.

Additionally, we have the intuition that the results obtained with certain
configurations can be very different depending on whether local search is
used. In the following, in order to show this difference, we study separately
those configurations which use local search of the ones that do not use it.

Next, we compare those configurations based on scalarizations in all di-
rections at each iteration (Sall) with configurations based on scalarizations in
one direction at one iteration and a different direction in the next iteration
(Sone). Results are summarized in Table 6.2, for configurations which use
W-LS, which are of class S, and for configurations of class S which do not
use any local search. Since the differences between the pairs of percentages
are almost zero independently of the instance and of the use of local search,
we conclude that the strategies (Sall) and (Sone) are mainly incomparable in
terms of Pareto optimality. This incomparability, however, can be caused by
two different situations: either the outcomes of configurations of classes Sall

and Sone are very similar, that is, the shape of the outcomes is very similar,
or the outcomes are very different but incomparable in terms of Pareto opti-
mality, that is, the outcomes are different but for both strategies Sall and Sone

the outcomes obtained using one strategy are not better than the outcomes
obtained by the other. This first phase of the analysis cannot answer to this

48 Experiments

Instance W-LS w/o LS

Type ξ Sall Sone Sall Sone

Un. 0.75 7.1 10.1 11.9 16.9
0.00 0.7 0.3 2.9 6.0
−0.75 0.0 0.0 2.1 2.8

Str. 0.75 0.0 0.0 4.1 4.0
0.00 0.0 0.0 4.4 1.8
−0.75 0.0 0.0 2.8 3.3

Table 6.2: Comparison of configurations using Sall with configurations using Sone.
Each entry gives the percentage of times an outcome obtained by a configuration of
that column was better than an outcome obtained by a configuration of the other
column. The same comparison is made separately for configurations using W-LS and
for configurations not using local search (w/o LS).

question. Nonetheless, we visualized these results by means of the median
attainment surfaces (as explained in Section 5.3) to obtain the answer. We
find out that for configurations where the only difference was the use of Sall

or Sone, the outcomes were very similar. Therefore, we conclude that for the
bQAP there is no difference between the approaches used by Sall and Sone.

The next question is which approach among class D and class S obtains
the best outcomes. In order to have the same number of outcomes in each
group, we consider only one of the search configurations of class S, particularly
we consider only Sall.1

Table 6.3(a) compares configurations of class S using W-LS with config-
urations of class D using either BPLS100, BPLS500, BPLS1000 or PLS. In the
unstructured instance with ξ = 0, the percentage of times an outcome ob-
tained by class D using any local search was better that one obtained by
class S using W-LS is at least 30%, while none of the outcomes obtained by
class S using W-LS was better than one obtained by class D using any local
search. In the case of the unstructured instance with ξ = −0.75, the highest
difference (12%) is obtained when class D uses BPLS1000. For the unstruc-
tured instance with ξ = 0.75, the highest difference is obtained when class D
uses PLS (32.2 − 21.6 = 10%), while this difference is 0.0 − 97.7 = −97.7%
for BPLS100, 1.3 − 63.3 = −62% for BPLS500, and 11.6 − 30.6 = −19% for
BPLS1000, where the negative percentage means that class S using W-LS was
better than class D using that particular local search. In summary, for the
unstructured instances the results obtained by class D improve as the upper
bound A on the archive size of BPLSA increases, and class D using PLS or
BPLS1000 is slightly better than class S using W-LS.2

1 As explained in the previous paragraph, the results are very similar if Sone is considered
instead of Sall.

2 Actually, PLS is equivalent to BPLSA when A = ∞.

6.2. Analysis of Experimental Results 49

Type ξ D
BPLS100

S
W-LS

D
BPLS500

S
W-LS

D
BPLS1000

S
W-LS

D
PLS

S
W-LS

Un. 0.75 0.0 97.7 1.3 63.3 11.6 30.6 32.2 21.6
0.00 40.7 0.0 46.1 0.0 45.7 0.0 30.2 0.0
−0.75 0.1 0.0 8.9 0.0 12.0 0.0 1.3 0.0

Str. 0.75 0.0 2.4 0.0 3.7 0.0 16.6 0.0 83.6
0.00 0.0 0.0 0.0 1.0 0.0 2.6 0.0 63.7
−0.75 0.0 1.1 0.0 3.0 0.0 8.9 0.0 71.2

(a) D vs. S with LS

Type ξ D
w/o LS

S
w/o LS

Un. 0.75 59.5 0.1
0.00 52.6 0.0
−0.75 27.7 1.0

Str. 0.75 29.2 0.5
0.00 25.9 0.1
−0.75 28.8 0.1

(b) D vs. S without LS

Table 6.3: Comparison of configurations of class D with configurations of class S.
Within each group delimited by vertical lines, each entry gives the percentage of
times an outcome obtained by a configuration of that column was better than an
outcome obtained by a configuration of the other column. The same comparison
is made separately for (a) configurations using local search, W-LS for class S and
either PLS or BPLSA with A = {100, 500, 1000} for class D, and (b) configurations
not using local search (w/o LS).

With regard to the structured instances, the results are completely differ-
ent: the results obtained by class D improve as the size A of the archive in
BPLSA decreases. For all the values of ξ, at least 63.7% of times class S using
W-LS was better than class D using PLS, while if class D uses BPLS100 that
value is never greater than 2.4%. Thus, in the case of structured instances,
class D with PLS is outperformed by class S with W-LS, but if BPLS100 is
used instead of PLS, then the outcomes obtained by class D and class S are
mainly incomparable.

When local search is not used, Table 6.3(b) shows that in all the six in-
stances the percentage of times class D was better than class S is always
greater than 25%, while the percentage of times class S was better is almost
zero. Therefore, configurations of class D are slightly better than configura-
tions of class S when they do not use any local search method.

Since results vary remarkably depending on which local search method is

50 Experiments

Instance with LS w/o LS

Type ξ ib bf ib bf

Un. 0.75 8.5 17.9 3.5 51.1
0.00 0.0 25.2 0.1 54.9
−0.75 0.0 0.1 0.0 34.2

Str. 0.75 5.6 2.2 3.1 31.6
0.00 1.1 0.6 0.7 24.4
−0.75 2.1 3.6 0.1 26.2

Table 6.4: Comparison of configurations using iteration-best (ib) with configura-
tions using best-so-far (bf) strategies. Each entry gives the percentage of times an
outcome obtained by a configuration of that column was better than an outcome
obtained by a configuration of the other column. The same comparison is made
separately for configurations not using local search (w/o LS) and for configurations
using local search (with LS). The local search methods considered in this comparison
are W-LS for class Sall, BPLS1000 for class D on unstructured (Un.) instances, and
BPLS100 for class D on structured (Str.) instances.

used with class D, we will consider only one local search method for config-
urations of class D in the analysis of the remaining parameters: the strategy
used to define the candidate set (either iteration-best or best-so-far strate-
gies) and the number of colonies c = {1, 5}. In particular, we will concentrate
on BPLS1000 in the case of the unstructured instances and on BPLS100 for
the structured ones, because they are the best overall local search methods
to use in combination with class D according to Table 6.3(a).

Turning now to the strategy used to define the candidate set from which
solutions used to update the pheromone information are taken, we studied
two strategies: iteration-best (ib) and best-so-far (bf). Table 6.4 shows that
for the unstructured instances the maximum differences of percentages are ob-
tained by best-so-far for ξ = 0.75, where the difference is 8.5−17.9 = −9.4%,
and for ξ = 0, where the difference is 0.0−25.2 = −25.2%; while for ξ = −0.75
and for the structured instances the difference is almost zero. Therefore,
when local search is used, best-so-far is slightly better than iteration-best
for unstructured instances with positive and zero correlation, while there is
no clear difference between these two strategies in the case of the unstruc-
tured instance with negative correlation and the three structured instances.
In contrast, when local search is not used, the best results are obtained by
best-so-far with a difference of at least 24% for any of the instances.

With regard to the number of colonies, Table 6.5 compares using a single
colony approach (c = 1) with using a multi-colony approach (c = 5), for
configurations using local search methods and not using local search meth-
ods. When using local search methods, the only remarkable difference is in
the unstructured instance with high positive correlation where using a single
colony is better than using five colonies with a difference of percentages of

6.2. Analysis of Experimental Results 51

Instance with LS w/o LS

Type ξ c = 1 c = 5 c = 1 c = 5

Un. 0.75 42.2 16.4 55.0 2.6
0.00 2.6 0.9 38.7 4.9
−0.75 3.4 1.6 12.4 12.1

Str. 0.75 0.0 4.5 37.4 4.9
0.00 0.0 0.0 26.2 3.8
−0.75 0.0 1.6 17.2 1.6

Table 6.5: Comparison of configurations using one colony (c = 1) with configura-
tions using five colonies (c = 5). Each entry gives the percentage of times an outcome
obtained by a configuration of that column was better than an outcome obtained
by a configuration of the other column. The same comparison is made separately
for configurations not using local search (w/o LS) and for configurations using local
search (with LS). The local search methods considered in this comparison are W-LS
for class Sall, BPLS1000 for class D on unstructured (Un.) instances, and BPLS100

for class D on structured (Str.) instances.

42.2 − 16.4 = 25.8%. In contrast, when local search methods are not used,
there are differences of percentages which are greater than 30%, in favor of
the single colony approach, for unstructured instances with ξ = 0.75 and
ξ = 0, and for the structured instance with ξ = 0.75.

In summary, this phase of the analysis strongly indicates that any of the
studied configurations of MO-ACO that uses local search methods outper-
forms any configurations not using local search methods (Table 6.1). Ad-
ditionally, the results obtained by configurations of class D vary depending
on whether PLS or BPLSA is used, and on the particular value of the upper
bound A of the size of the archive (Table 6.3). Particularly, for unstruc-
tured instances the outcomes obtained by configurations of class D are as
good as those obtained by configurations of class S with W-LS only when
class D is combined with PLS for the instance with ξ = 0.75, and either with
BPLS1000 or with BPLS500 in the case of ξ = 0.00 and ξ = −0.75. As well,
for ξ = 0.00, class D combined with any of the bounded variants is slightly
better than class S. In the case of structured instances, the best results are
obtained when class D is combined with BPLS100. This analysis showed also
that there is no clear difference between using configurations of class Sall and
using Sone (Table 6.2). However, this analysis was not able to tell whether the
two approaches are equivalent or their outcomes are incomparable in terms
of Pareto optimality.

In addition, we analyzed the results of the same configurations when they
do not use any local search method, in order to show that the conclusions
would be different if the use of local search is not taken into account from
the beginning of the analysis. When local search is not considered, the con-
figurations of class D are better than configurations of class S (Table 6.3(b)),

52 Experiments

and using a best-so-far strategy (Table 6.4) and one colony (Table 6.5) are
also advantageous. By comparison with the previous analysis, it is obvious
that these conclusions are no longer valid when local search is applied.

The analysis based on the binary ε-measure shows that many outcomes
are incomparable in terms of Pareto optimality. In the next phase of our
analysis we use the unary ε-measure and the Analysis of Variance (ANOVA)
in order to choose between configurations that produce outcomes that are
mostly incomparable in terms of Pareto optimality.

6.2.2 Analysis Using Unary ε-measure and ANOVA

The second phase of our analysis aims to find differences between the con-
figurations established as incomparable in the previous phase. Moreover, the
usage of an statistical analysis tool like Analysis of Variance (ANOVA), al-
lows us to find interactions between the different parameters of the MO-ACO
algorithm. However, the conclusions obtained by this analysis are neither as
general nor as solid as those obtained when using the binary ε-measure, and
the results of the analysis depend in a high degree on the quality of the lower
bound, i.e., on how well the lower bound represents the optimal Pareto set.
A good example of this issue is given by the lower bound for the structured
instances. Figure 6.1 shows the lower bounds calculated for each instance and
the reference solutions obtained using W-RoTS. In the case of the structured
instances, the lower bound does not have enough quality in order to perform
this analysis. Moreover, the assumptions needed to perform ANOVA are not
fulfilled for the structured instances (see Fig. A.3). Therefore, this second
phase of the analysis only considers the unstructured instances.

Unstructured instances are analyzed for each value of ξ. Furthermore,
since we already know that any configuration that uses local search is better
than any other without local search, we would only need to analyze config-
urations with local search. However, we will also analyze separately config-
urations that do not use local search in order to show that the conclusions
obtained without local search are not valid when local search is used, and,
hence, local search cannot be simply “added” to the algorithm a posteriori.

As a first step in this analysis, the value of the unary ε-measure is calcu-
lated for each outcome using the lower bound of the respective instance. Next,
these values are analyzed using ANOVA. The requirements of ANOVA are
checked by means of the appropriate plots, which are shown in Appendix A.
The ANOVA tables tell us which factors are statistically significant, i.e., which
factors actually affect the value of the unary ε-measure. The factors taken
into account in the ANOVA analysis are the same as those considered previ-
ously, with the exception of the class of configuration, where each of the local
search methods tested when using class D is considered as a different class.
Therefore, the levels of the factor Class are class D with BPLS100 (BPLS100),
class D with BPLS500 (BPLS500), class D with BPLS1000 (BPLS1000), class D

6.2. Analysis of Experimental Results 53

4200000 4600000 5000000

42
00

00
0

46
00

00
0

50
00

00
0

objective 1

ob
je

ct
iv

e
2

Lower Bound
W−RoTS

0.0e+00 1.0e+09 2.0e+09 3.0e+09

0.
0e

+0
0

1.
0e

+0
9

2.
0e

+0
9

3.
0e

+0
9

objective 1

ob
je

ct
iv

e
2

Lower Bound
W−RoTS

4500000 5500000 6500000

45
00

00
0

55
00

00
0

65
00

00
0

objective 1

ob
je

ct
iv

e
2

Lower Bound
W−RoTS

0e+00 2e+09 4e+09 6e+09

0e
+0

0
2e

+0
9

4e
+0

9
6e

+0
9

objective 1

ob
je

ct
iv

e
2

Lower Bound
W−RoTS

5e+06 6e+06 7e+06 8e+06

5e
+0

6
6e

+0
6

7e
+0

6
8e

+0
6

objective 1

ob
je

ct
iv

e
2

Lower Bound
W−RoTS

0e+00 2e+09 4e+09 6e+09

0e
+0

0
2e

+0
9

4e
+0

9
6e

+0
9

objective 1

ob
je

ct
iv

e
2

Lower Bound
W−RoTS

Figure 6.1: Lower bounds for unstructured (left) and structured (right) instances
with ξ = {0.75 (top), 0.0 (center) and −0.75 (bottom)}. The objective vectors
obtained by W-RoTS are also plotted (points) for comparison.

54 Experiments

with PLS (PLS), class Sall with W-LS (Sall), and class Sone with W-LS (Sone).
The other factors are the strategy followed to define the candidate set (C
set) from which the solutions used to update the pheromone information are
taken, which may be iteration-best (ib) or best-so-far (bf); and the number
of colonies (Colonies), which can be 1 or 5.

An example of ANOVA table is Table 6.6, where each of the first three
rows is a main factor and the following three rows are the interactions of
these main factors, denoted by the symbol “×”. We are only interested in the
column labeled p-value because when this value is lower than 0.05 then the
main factor or interaction of that row shows a statistically significant effect on
the value of the unary ε-measure. In order to easily identify the statistically
significant effect, the symbol “***” denotes that the p-value is in the interval
(0, 0.001), “**” denotes it is in (0.001, 0.01), “*” denotes it is in (0.01, 0.05),
“.” denotes it is in (0.05, 0.1), and p-values greater than 0.1 are denoted by a
blank space. The other values are calculated during ANOVA and are given
for informative purpose only. This output format of the Analysis of Variance
is given by [44], an environment for statistical computing.

In order to evidence which levels of a factor show a statistically significant
difference and which level is the one with the lowest value of the unary ε-
measure, we plot the mean value of each level (or combination of levels for
interactions) and a confidence interval around this mean. If two intervals do
not overlap, there is a 95% confidence that the two levels are actually different,
whereas if the intervals overlap then there is no statistically significant reason
to reject the hypothesis that the two levels have the same effect on the value
of the unary ε-measure.

Table 6.6 shows the results of ANOVA for the unstructured instance with
ξ = 0.75. There are two statistically significant interaction effects, Class ×
Colonies and C set × Colonies, that comprise all the main effects. These two
interaction effects are plotted in Fig. 6.2. The plot on the left shows that the
best value of the unary ε-measure is obtained by class S using 1 colony or by
class D with PLS using 5 colonies. In the plot on the right we observe that
the use of a candidate set based on an iteration-best strategy combined with
5 colonies gives worse results than the other alternatives.

For ξ = 0.00, the results of the ANOVA are quite different. In this
case, as shown in Table 6.7, there is an interaction effect between the class
of search strategy and the candidate set used, Class × C set. Additionally,
there is a main effect of the number of colonies. This main effect shows
that those configurations with one colony achieve better values of the unary
ε-measure than configurations with five colonies (Fig. 6.3). The interaction
effect, plotted in Fig. 6.4, shows that for configurations of class S there is a
significant difference between using an iteration-best candidate set (ib) or a
best-so-far strategy (bf). In contrast to the instance with ξ = 0.75, in this
case it is better to use the best-so-far strategy.

In the negative correlated instance (ξ = −0.75), the interaction effect

6.2. Analysis of Experimental Results 55

Df Sum Sq Mean Sq F value p-value

Class 5 0.033008 0.006602 226.7388 < 2.2e-16 ***
C set 1 0.000157 0.000157 5.3764 0.02085 *
Colonies 1 0.000478 0.000478 16.4332 5.915e-05 ***
Class × C set 5 0.000279 0.000056 1.9161 0.09027 .
Class × Colonies 5 0.002618 0.000524 17.9807 2.645e-16 ***
C set × Colonies 1 0.001007 0.001007 34.5702 7.900e-09 ***

Residuals 461 0.013422 0.000029

Table 6.6: ANOVA table for configurations using local search applied to an un-
structured instance of size 50 with ξ = 0.75.

1.31

1.27

1.30

1.29

1.28

5

1
Colonies

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

SoneSall

bf
ib

u
n
ar

y
ε
-m

ea
su

re

Class

BPLS100 BPLS500 BPLS1000 PLS

5

1
Colonies

1.292

1.284

1.290

1.288

1.286

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

Sone

Sall

bf
ib

u
n
ar

y
ε
-m

ea
su

re

Class

C Set
ibbf

BPLS100

BPLS500

BPLS1000

PLSFigure 6.2: Interactions for configurations using local search applied to an unstruc-
tured instance of size 50 with ξ = 0.75.

Df Sum Sq Mean Sq F value p-value

Class 5 0.000409 0.000082 12.1967 4.069e-11 ***
C set 1 0.001420 0.001420 211.8403 < 2.2e-16 ***
Colonies 1 0.000054 0.000054 7.9874 0.004915 **
Class × C set 5 0.001754 0.000351 52.3159 < 2.2e-16 ***
Class × Colonies 5 0.000030 0.000006 0.8992 0.481370
C set × Colonies 1 0.000001 0.000001 0.1006 0.751218

Residuals 461 0.003091 0.000007

Table 6.7: ANOVA table for configurations using local search applied to an un-
structured instance of size 50 with ξ = 0.00.

56 Experiments

1.2730

1.2728

1.2726

1.2724

1.2722

1.2720

1.2718

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

Sone

Sall

bf
ib

u
n
ar

y
ε
-m

ea
su

re

Class

Colonies

C Set
ib
bf

1 5
BPLS100

BPLS500

BPLS1000

PLS Figure 6.3: Main effect for configu-
rations using local search applied to
an unstructured instance of size 50
with ξ = 0.00.

1.280

1.266

1.268

1.270

1.272

1.274

1.276

1.278

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

SoneSall

bf
ib

u
n
ar

y
ε
-m

ea
su

re

Class

Colonies

C Set

ib
bf

1
5

BPLS100 BPLS500 BPLS1000 PLS

Figure 6.4: Interaction effect for configurations us-
ing local search applied to an unstructured instance
of size 50 with ξ = 0.00.

Df Sum Sq Mean Sq F value p-value

Class 5 0.006822 0.001364 120.1964 <2e-16 ***
C set 1 0.000840 0.000840 74.0430 <2e-16 ***
Colonies 1 0.000013 0.000013 1.1472 0.2847
Class × C set 5 0.002300 0.000460 40.5326 <2e-16 ***
Class × Colonies 5 0.000051 0.000010 0.9053 0.4774
C set × Colonies 1 0.000002 0.000002 0.1351 0.7134

Residuals 461 0.005233 0.000011

Table 6.8: ANOVA table for configurations using local search applied to an un-
structured instance of size 50 with ξ = −0.75.

shown by ANOVA (Table 6.8), Class × C set, comprises the search strategy
class and the type of candidate set, whereas there is no statistically signif-
icant effect that involves the number of colonies (Colonies). Thus, there is
no significant difference between using one or five colonies. The interaction
plot (Fig. 6.5) shows that configurations of class S should use the best-so-far
candidate set in order to obtain the lowest values of the unary ε-measure.

We already know from the previous phase of our analysis that the use
of local search produces better results and, hence, we do not really need
to perform the ANOVA analysis for configurations not using local search.
However, we briefly summarize the results of ANOVA: for each of the three
unstructured instances, we report its ANOVA table and the best performing
configuration. For the instance with high positive correlation (ξ = 0.75), as
shown in Table 6.9, all interaction factors are significant. The best configura-
tion uses a search configuration of class D with one colony and a best-so-far
candidate set. For the instance with zero correlation (ξ = 0), there is no in-
teraction effect between the search configuration and the number of colonies

6.3. Median Attainment Surfaces 57

1.288

1.284

1.280

1.276

1.272

1.268

1.264

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

SoneSall

bf
ib

u
n
ar

y
ε
-m

ea
su

re

Class

Colonies

C Set

ib
bf

1
5

BPLS100 BPLS500 BPLS1000 PLS

Figure 6.5: Interaction effect for configurations using local search applied to an
unstructured instance of size 50 with ξ = −0.75.

(Table 6.10). Here, the best results are obtained also with a search config-
uration of class D with a best-so-far strategy but using five colonies. In the
negatively correlated instance (ξ = −0.75), all interaction factors are signifi-
cant (Table 6.11). The best configuration uses a best-so-far strategy and five
colonies with a search configuration of class S (either Sall or Sone).

These results show that the conclusions obtained when local search is
not considered are very different from the results obtained when using local
search and, therefore, local search cannot be simply “added” after choosing
the best parameters.

6.3 Visualizing the results using Median Attain-
ment Surfaces

The last phase of the analysis gives a visual representation of the conclusions
obtained in the previous phases by means of median attainment surfaces. The
median attainment surface connects objective vectors that are attained by a
certain configuration with a frequency of 50% [27]. The objective vectors
obtained by W-RoTS are also plotted for reference.

For unstructured instances, Figure 6.6 compares the best configurations,
according to the previous analysis, when using local search and without local
search. Firstly, for all the values of ξ, the use of local search is clearly advan-
tageous. Secondly, for ξ = {0.00,−0.75}, there is a clear difference between
using class D and class S but they are still incomparable. Configurations
of class D obtain objective vectors better with respect to both objectives,
whereas configurations of class S obtain objective vectors better with respect
to each objective. Informally, configurations of class D obtain results closer
to the “center” of the optimal Pareto set, whereas configurations of class S
obtain better results with respect to the “tails”.

Turning to structured instances, only configurations using local search are

58 Experiments

Df Sum Sq Mean Sq F value p-value

Class 2 0.016877 0.008438 237.193 < 2.2e-16 ***
C set 1 0.157272 0.157272 4420.779 < 2.2e-16 ***
Colonies 1 0.168395 0.168395 4733.436 < 2.2e-16 ***
Class × C set 2 0.002037 0.001018 28.627 7.910e-12 ***
Class × Colonies 2 0.000747 0.000373 10.493 4.354e-05 ***
C set × Colonies 1 0.159925 0.159925 4495.356 < 2.2e-16 ***

Residuals 230 0.008182 0.000036

Table 6.9: ANOVA table for configurations not using local search applied to an
unstructured instance of size 50 with ξ = 0.75

Df Sum Sq Mean Sq F value p-value

Class 2 0.013684 0.006842 191.793 < 2.2e-16 ***
C set 1 0.120641 0.120641 3381.698 < 2.2e-16 ***
Colonies 1 0.037942 0.037942 1063.569 < 2.2e-16 ***
Class × C set 2 0.000764 0.000382 10.704 3.589e-05 ***
Class × Colonies 2 0.000153 0.000076 2.142 0.1198
C set × Colonies 1 0.067171 0.067171 1882.878 < 2.2e-16 ***

Residuals 230 0.008205 0.000036

Table 6.10: ANOVA table for configurations not using local search applied to an
unstructured instance of size 50 with ξ = 0.00

Df Sum Sq Mean Sq F value p-value

Class 2 0.002611 0.001305 15.1781 6.432e-07 ***
C set 1 0.188601 0.188601 2193.0117 < 2.2e-16 ***
Colonies 1 0.001282 0.001282 14.9078 0.0001468 ***
Class × C set 2 0.014371 0.007186 83.5539 < 2.2e-16 ***
Class × Colonies 2 0.001243 0.000621 7.2257 0.0009048 ***
C set × Colonies 1 0.006664 0.006664 77.4869 3.259e-16 ***

Residuals 230 0.019780 0.000086

Table 6.11: ANOVA table for configurations not using local search applied to an
unstructured instance of size 50 with ξ = −0.75

6.3. Median Attainment Surfaces 59

considered and, specifically, we compare the configurations of class D using
BPLS100 and class Sall using W-LS (Fig. 6.7).3 One interesting result is that all
these configurations are better than W-RoTS. As well, the difference between
configurations of class D and S is still present, but it is not as strong as before:
configurations of class S are slightly better with respect to the“tails”, whereas
configurations of class D obtain a few better objective vectors in the “center”.
The other settings do not influence clearly the quality of the outcomes.

Finally, for the unstructured instances, the shapes of median attainment
surfaces vary depending on the correlation parameter ξ given to the instance
generator. However, in the case of the structured instances this is no longer
true. As well, from our previous analysis we concluded that for unstructured
instances the results depend on the value of ξ, whereas for structured in-
stances the results are similar for different values of ξ. In order to explain
these results, we must remember that the value of ξ is a parameter given to
the instance generator that induces a correlation between the flow matrices,
what should also result in different correlation between the values of the ob-
jective vectors. We determined the empirical correlation between objectives
through samples of 1000 random solutions generated for each instance. Ta-
ble 6.12 shows that in the case of unstructured instances, the parameter ξ
induces a clear correlation between the objectives, whereas there is no clear
correlation in the case of structured instances. This difference is probably
because of the fact that in structured instances there are many zero entries
in the flow matrices. Thus, we conclude that the value of ξ does not affect
clearly the correlation between objectives in the structured instances and,
hence, the performance of the different configurations of MOACO on struc-
tured instances is independent of the value of ξ.

Type ξ corr

Unstructured 0.75 0.90
0.00 −0.01
−0.75 −0.90

Structured 0.75 0.23
0.00 0.03
−0.75 −0.08

Table 6.12: Correlation parameter (ξ) and empirical
correlation (corr) for the bQAP instances with size 50.

3 The results obtained with Sone are similar to those obtained using Sall.

60 Experiments

5160000 5200000 5240000 5280000

51
60

00
0

52
00

00
0

52
40

00
0

52
80

00
0

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

5200000 5300000 5400000

52
00

00
0

53
00

00
0

54
00

00
0

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colonyD w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

5600000 6000000 6400000

56
00

00
0

60
00

00
0

64
00

00
0

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

5600000 6000000 6400000

56
00

00
0

60
00

00
0

64
00

00
0

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

5500000 6000000 6500000 7000000

55
00

00
0

60
00

00
0

65
00

00
0

70
00

00
0

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

5500000 6000000 6500000 7000000

55
00

00
0

60
00

00
0

65
00

00
0

70
00

00
0

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies
D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

Figure 6.6: Median attainment surfaces obtained for unstructured instances of size
50 and ξ of 0.75 (top), 0.0 (center) and −0.75 (bottom) using local search methods
(left column) and without local search (right column). In addition, the objective
vectors obtained by W-RoTS are plotted (points). (See text for details)

6.3. Median Attainment Surfaces 61

1.0e+09 2.0e+09 3.0e+09 4.0e+09

1.
0e

+0
9

2.
0e

+0
9

3.
0e

+0
9

4.
0e

+0
9

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

1.0e+09 2.0e+09 3.0e+09 4.0e+09

1.
0e

+0
9

2.
0e

+0
9

3.
0e

+0
9

4.
0e

+0
9

objective 1
ob

je
ct

iv
e

2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

2e+09 3e+09 4e+09 5e+09 6e+09

2e
+0

9
3e

+0
9

4e
+0

9
5e

+0
9

6e
+0

9

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

2e+09 3e+09 4e+09 5e+09 6e+09

2e
+0

9
3e

+0
9

4e
+0

9
5e

+0
9

6e
+0

9

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

1e+09 2e+09 3e+09 4e+09 5e+09

1e
+0

9
2e

+0
9

3e
+0

9
4e

+0
9

5e
+0

9

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

1e+09 2e+09 3e+09 4e+09 5e+09

1e
+0

9
2e

+0
9

3e
+0

9
4e

+0
9

5e
+0

9

objective 1

ob
je

ct
iv

e
2

PSfrag replacements

D w. PLS bf 5 colonies

Sall w. W-LS ib 1 colony

Sone w. W-LS ib 1 colony

D w. BPLS500 bf 1 colony

D w. BPLS500 ib 1 colony

Sall w. W-LS bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

Sone w. W-LS bf 5 colonies

Sone w. W-LS bf 1 colony

D w. BPLS1000 ib 5 colonies

D w. BPLS1000 bf 5 colonies

D w. BPLS100 ib 5 colonies

D w. BPLS100 bf 5 colonies

D w. BPLS100 ib 1 colony

D w. BPLS100 bf 1 colony

Sall w. W-LS bf 5 colonies

Sall w. W-LS ib 5 colonies

D w/o LS bf 1 colony

D w/o LS ib 1 colony

Sall w/o LS bf 1 colony

Sone w/o LS bf 1 colony

D w/o LS bf 5 colonies

Sall w/o LS bf 5 colonies

Sone w/o LS bf 5 colonies

Figure 6.7: Median attainment surfaces obtained for structured instances of size 50
and ξ of 0.75 (top), 0.0 (center) and −0.75 (bottom) when using search configuration
of class D with BPLS100 (left column) and class Sall with W-LS (right column). In
addition, the objective vectors obtained by W-RoTS are plotted (points). (See text
for details)

Chapter 7

Conclusions

7.1 Multi-objective ACO

We have examined several alternatives in order to design an ACO algorithm
to tackle MOCO problems. These alternatives have been explained as con-
figurations of a general MO-ACO algorithm that can be adapted as needed.
These configurations can be related to the two essential search strategies used
in MOCO, i.e., based on dominance criterion and based on scalarizations of
the objective vector. As well, we have studied the issue of defining multi-
objective pheromone information. An important observation is that two dif-
ferent objectives may define the solution components either in a similar way
or in an essentially different manner. Hence, the pheromone information for
these objectives may be equivalent or essentially different. We have exam-
ined these possibilities and how to solve the problems associated with each
of them. Furthermore, the computational resources required by each of these
possibilities have been discussed. The result is such that these resources not
only depend on the number of objectives of the particular problem being
considered but also on how these objectives define the solutions components.
In addition, we have considered the use of multiple colonies and how the
previous alternatives can be used with a multi-colony approach.

It is also clear from our examination that the knowledge available of single
objective ACO can be applied to design MO-ACO algorithms, simply by
using the best performing ACO algorithms as an underlying algorithm. An
example of this is the use ofMAX -MIN Ant System in order to tackle the
bQAP. Furthermore, the best-so-far and iteration-best strategies known in
single objective ACO have been adapted to the multi-objective context.

Finally, we have examined local search methods which can be used in
combination with MO-ACO algorithms. W-LS and PLS have already been
proposed in the literature and both are multi-objective extensions of local
search methods for single objective problems. BPLSA is a variant of PLS
which uses bounded archiving techniques known from Multi-Objective Evo-

64 Conclusions

lutionary Algorithms. All of these local search methods can be adapted to
several MOCO problems.

To conclude, we have proposed an approach using ACO algorithms for
MOCO problems which combines the concepts of multi-objective optimiza-
tion and the knowledge of ACO for single objective optimization. As well,
this approach embraces many concepts already proposed in the literature in
order to deal with MOCO problems using ACO algorithms. The results of
this examination are presented as a general, modular and highly configurable
MO-ACO algorithm.

7.2 MO-ACO Applied to the bQAP

It is clear from our results that the use of local search methods is essen-
tial to obtain the best performance with MO-ACO algorithms when applied
to the bQAP. Moreover, there are evident differences in the effect of the
other parameters of MO-ACO depending on whether local search is used or
not. Therefore, in order to design the best configuration of MO-ACO for the
bQAP, the use of local search must be taken into account from the very first
step of the design process. As well, when local search is not considered, the
remaining parameters, i.e., the number of colonies and the type of candidate
set, gain in importance. From this observation, we would say that the use of
local search has an attenuation effect on the influence of the other parameters.

We also reported that for structured instances, the size of local optima
Pareto sets is much larger than in the case of unstructured instances, i.e.,
the number of solutions that are mutually nondominated is much larger on
structured instances than on unstructured ones. Thus, any method that aims
to obtain the whole optimal Pareto set becomes infeasible. Furthermore, lo-
cal search methods which stop when a locally optimal Pareto set is found, as
PLS does, will need high computation times and huge memory requirements.
We showed that the solution to this problem is the use of bounded archiving
methods; e.g., BPLSA performed clearly better than PLS on structured in-
stances. Because of its lower computation times, local search methods using
bounded archiving techniques are particularly suitable for combination with
MO-ACO. Therefore, for the unstructured instances with zero or negative
correlation, BPLSA also obtains better Pareto sets than PLS.

Another observation is that the search configuration is the second-most
important factor to influence the performance of the algorithm. First, there
is no evident difference between using a search configuration based on scalar-
izations in all directions at each iteration (class Sall) and based on one scalar-
ization in one direction at one iteration and another slightly different scalar-
ization in the next iteration (class Sone). From the first phase of our analysis,
we concluded that the outcomes obtained using these two search configu-
rations were incomparable in terms of Pareto optimality, i.e., the outcomes

7.3. Future Research 65

obtained using one of these search configurations were not clearly better than
the outcomes using the other. Additionally, the attainment surfaces showed
that the outcomes of these approaches are very similar to each other. Hence,
we conclude that for the instances of the bQAP and the parameters studied
here, Sall and Sone are to a large extent equivalent.

In contrast, there is a clear difference between using a search configura-
tion based on scalarizations (class S) and based on dominance criteria (class
D). Both approaches with the appropriate parameters achieve high quality
results, mostly incomparable in terms of Pareto optimality. However, their
outcomes are quite different. The search configurations based on scalariza-
tions obtain results closer to the “tails” of the optimal Pareto set, where
solutions are good with respect to only one objective. In contrast, the out-
comes of the search configurations based on dominance criteria are closer to
the “center” of the optimal Pareto set, where solutions are good with respect
to both objectives at the same time.

With regard to the unary ε-measure, the best configuration of MO-ACO
depends heavily on the correlation between the objectives. In general terms,
when the correlation decreases, it seems advantageous to exploit the best
solutions found during the run of the algorithms using the best-so-far candi-
date set to update the pheromone information. Therefore, the best solutions
found should be exploited in order to improve the worst-case performance.

Finally, it is clear from these initial experiments that for the bQAP, MO-
ACO algorithms are a competitive approach when compared with high per-
forming algorithms like W-RoTS, particularly on structured instances and
negatively correlated unstructured instances. Nevertheless, there are many
possibilities for improving MO-ACO algorithms.

7.3 Future Research

The future development of MO-ACO will depend on the ongoing research
on both Ant Colony Optimization and Multi-Objective Optimization. With
regard to ACO, different underlying ACO algorithms can be considered in
place of MMAS. Hence, the research on ACO for single objective prob-
lems may influence the application of MO-ACO to multi-objective variants
of these problems. As well, the research on Multi-Objective Optimization will
influence the future of MO-ACO. An example of this would be the recently
proposed improvements on the run-time complexity of procedures used by
many multi-objective meta-heuristics [30]. Consequently, the computation
time of MO-ACO may be reduced using these improved procedures.

There are also particular issues solely concerning MO-ACO algorithms.
For instance, in order to tackle problems with more than two objectives
(Q > 2) several aspects must be taken into account. Firstly, the definition of
the weight vectors is not as straightforward as it is with two objectives. This

66 Conclusions

problem has been previously investigated in the multi-objective optimization
literature [47], thus these approaches should be adapted to MO-ACO algo-
rithms. Secondly, the“update by region”strategy for multiple colonies cannot
be applied to more than two objectives. Although the “update by origin” can
be used instead, this strategy does not force the colonies to focus on differ-
ent regions of the objective space. Therefore, there is a need for a sound
procedure which (i) distributes the ants allowed to update the pheromone
information among the different colonies; (ii) forces the colonies to focus on
different regions of the objective space; and (iii) can be used with an arbi-
trary number of objectives. Lastly, a further promising research direction is
the use of heterogeneous configurations to combine search strategies based on
scalarizations of the objective vector and on dominance relations. The goal
of these heterogeneous configurations of MO-ACO is to obtain Pareto sets
that are good in the “tails” and in the “center” at the same time.

Given the importance of local search methods for MO-ACO, more research
is needed to develop multi-objective local search methods to combine with
MO-ACO algorithms. As well, known local search methods can be adapted to
be used by MO-ACO. For instance, we believe that the results obtained here
for the unstructured instances of the bQAP can be improved simply by using
W-RoTS instead of W-LS in the local search phase of the ACO algorithm.

In conclusion, this work could be extended by studying MO-ACO applied
to other MOCO problems. Because of its modularity, the application of MO-
ACO to various MOCO problems is a straightforward procedure.

Appendix A

ANOVA Assumptions

In the Analysis of Variance (ANOVA) [6], the response variable is described
by the factors and interactions considered, i.e., there is a model for the factors
and their interactions that approximates the response variable. The differ-
ences between the expected values of the response variable and the real values
obtained in the experiments are modeled as random noise error variables and
are described as residuals. Therefore, ANOVA assumes that the error vari-
ables (i) are independent, (ii) have constant variance for each combination of
levels of the factors (homoschedasticity), and (iii) have a normal distribution
(normality).

Before proceeding to check these assumptions, it is advisable to check for
outliers. An outlier is an unusual result, i.e., a result much larger or much
smaller than what is expected, and it is usually caused by some error or
unusual situation while the experiment was performed. A few outliers are
expected, whereas too many outliers will invalidate the results of ANOVA.
One measure used to identify outliers is Cook’s distance.

In the next step, the independence assumption is checked because the
checks for homoschedasticity and normality assume that the error variables
are independent. The independence of the error variables is checked by plot-
ting the standardized residuals1 for each observation. When the independence
assumption is satisfied, the residuals are randomly distributed around zero
with no discernible pattern.

To check the homoschedasticity of the error variables, the standardized
residuals are plotted against the fitted values of the response variable. The
homoschedasticity assumption is not satisfied if the residuals exhibit a clearly
nonrandom pattern around zero, being too often positive for some levels of
the response variable and too often negative for others. Hence, the model
assumed by ANOVA does not adequately describe the observed values of
the response variable. The most common pattern resembles a megaphone
in shape (or its mirror image) and occurs when the error variance increases

1 Standardized residuals are obtained by dividing the residuals by their standard deviation.

68 ANOVA Assumptions

as the mean response increases. Generally, a transformation of the response
variable, e.g., to a logarithmic scale, corrects this situation. However, if there
is a different pattern, then a transformation would not suffice to satisfy the
homoschedasticity assumption.

Finally, the normality assumption is checked by testing if the residuals
appear to be a random sample from a normal distribution. This is often
done by a quantile-quantile normal probability plot, which is a plot of the
standardized residuals against the theoretical quantiles of a population in
fact having the normal distribution. In a quantile-quantile plot, a solid line
passes through the first and third quantile. When the normality assumption
is satisfied, then the points should follow roughly the straight line.

The checks of the requirements to perform ANOVA when MO-ACO was
applied to unstructured instances of bQAP with ξ ∈ {0.75, 0.00,−0.75} are
plotted on Fig. A.1 for the configurations using local search methods and on
Fig. A.2 for the configurations without local search. For comparison purposes,
Figure A.3 shows the plots corresponding to configurations using local search
when applied to structured instances.

The top row of every figure shows the Cook’s distance plots. An un-
usual high value of the Cook’s distance identifies an outlier and the numbers
indicate the particular experiment (observation number) which caused the
respective outlier. For every figure a few expected outliers are shown. The
second row of the three figures shows the error independence plots. While in
the first two figures the residuals are randomly distributed around zero with
no discernible pattern, this is not the case in the third figure. In the third row,
the Homoschedasticity plots show a random pattern around zero in the first
figure, a less random pattern in the case of the second figure, and a evident
megaphone-shaped pattern in the third figure. Various transformations of
the data which corresponds to the third figure were not sufficient to eliminate
the megaphone-shaped pattern. Finally, with regard to the quantile-quantile
plots at the bottom row, in the first two figures the points follow roughly the
straight line but the same is not true in the third figure. This fact indicates
that the normality assumption is met for the data corresponding to unstruc-
tured instances and it is not met for the data of configurations using local
search when applied to structured instances.

In summary, we conclude that the assumptions of ANOVA are in general
met for the results obtained by MO-ACO for unstructured instances. In con-
trast, we conclude that the assumptions are not met for the configurations
using local search methods when applied to structured instances. Nonethe-
less, in the latter case, the poor quality of the lower bound for structured
instances (Fig. 6.1) would not allow us to obtain any conclusion from this
data, even in the case that assumptions of ANOVA would have been satis-
fied.

Appendix A 69

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

Obs. number

C
oo

k’
s

di
st

an
ce

396

242 374

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
Obs. number

C
oo

k’
s

di
st

an
ce

335134

347

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Obs. number

C
oo

k’
s

di
st

an
ce

311

72

159

0 100 200 300 400

−4
−2

0
2

Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 100 200 300 400

−3
−2

−1
0

1
2

3

Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 100 200 300 400

−3
−2

−1
0

1
2

3
Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

1.280 1.285 1.290 1.295 1.300 1.305

−4
−2

0
2

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

1.268 1.270 1.272 1.274 1.276

−3
−2

−1
0

1
2

3

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

1.270 1.275 1.280

−3
−2

−1
0

1
2

3

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Figure A.1: Cook’s distance (top row), Error Independence (2nd row), Ho-
moschedasticity (3rd row) and Normality of residuals (bottom row) plots for un-
structured instances with ξ of 0.75 (left column), 0.00 (middle column), −0.75 (right
column), when using local search methods.

70 ANOVA Assumptions

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

Obs. number

C
oo

k’
s

di
st

an
ce

99

11
240

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Obs. number
C

oo
k’

s
di

st
an

ce

138

127

15

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Obs. number

C
oo

k’
s

di
st

an
ce

137

12975

0 50 100 150 200

−3
−2

−1
0

1
2

3

Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 50 100 150 200

−3
−2

−1
0

1
2

3

Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 50 100 150 200

−4
−3

−2
−1

0
1

2

Obs. number
S

ta
nd

ar
di

ze
d

re
si

du
al

s

1.30 1.32 1.34 1.36 1.38 1.40 1.42

−3
−2

−1
0

1
2

3

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

1.32 1.34 1.36 1.38 1.40

−3
−2

−1
0

1
2

3

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

1.32 1.34 1.36 1.38 1.40

−4
−3

−2
−1

0
1

2

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3
4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−3 −2 −1 0 1 2 3

−4
−3

−2
−1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Figure A.2: Cook’s distance (top row), Error Independence (2nd row), Ho-
moschedasticity (3rd row) and Normality of residuals (bottom row) plots for un-
structured instances with ξ of 0.75 (left column), 0.00 (middle column), −0.75 (right
column), when not using local search methods.

Appendix A 71

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Obs. number

C
oo

k’
s

di
st

an
ce

440

314
311

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

Obs. number

C
oo

k’
s

di
st

an
ce

437

199

200

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Obs. number

C
oo

k’
s

di
st

an
ce

318

71

431

0 100 200 300 400

−2
0

2
4

6

Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 100 200 300 400

−2
0

2
4

6
8

Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 100 200 300 400

−2
0

2
4

6
Obs. number

S
ta

nd
ar

di
ze

d
re

si
du

al
s

26 28 30 32

−2
0

2
4

6

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

23 24 25 26 27

−2
0

2
4

6
8

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

34 36 38 40 42 44 46 48

−2
0

2
4

6

Fitted values

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

−3 −2 −1 0 1 2 3

−2
0

2
4

6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−3 −2 −1 0 1 2 3

−2
0

2
4

6
8

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−3 −2 −1 0 1 2 3

−2
0

2
4

6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Figure A.3: Cook’s distance (top row), Error Independence (2nd row), Ho-
moschedasticity (3rd row) and Normality of residuals (bottom row) plots for struc-
tured instances with ξ of 0.75 (left column), 0.00 (middle column), −0.75 (right
column), when using local search methods.

Bibliography

[1] R. Battiti and G. Tecchiolli. The reactive taboo search. ORSA Journal
on Computing, 6(2):126–140, 1994.

[2] B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system al-
gorithm for the vehicle routing problem. Annals of Operations Research,
89:319–328, 1999.

[3] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis. The
quadratic assignment problem. In P. M. Pardalos and D.-Z. Du, edi-
tors, Handbook of Combinatorial Optimization, volume 2, pages 241–338.
Kluwer Academic Publishers, 1998.

[4] R. E. Burkard and J. Offerman. Entwurf von Schreibmaschinentas-
taturen mittels quadratischer Zuordnungsprobleme. Zeitschrift für Op-
erations Research, 21:B121–B132, 1977.

[5] D. T. Connolly. An improved annealing scheme for the quadratic assign-
ment problem. European Journal of Operational Research, 46(1):93–100,
1990.

[6] A. Dean and D. Voss. Design and Analysis of Experiments. Springer,
1999.

[7] J. W. Dickey and J. W. Hopkins. Campus building arrangement using
TOPAZ. Transportation Science, 6:59–68, 1972.

[8] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD the-
sis, Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Milano, Italy, 1992. (In Italian).

[9] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion, pages 11–32. McGraw-Hill, London, 1999.

[10] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for
distributed discrete optimization. Artificial Life, 5:137–172, 1999.

74 Bibliography

[11] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1):53–66, April 1997.

[12] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search
strategy. Technical Report 91-016, Dipartimento di Elettronica e Infor-
matica, Politecnico di Milano, Italy, 1991.

[13] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man
and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[14] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, 2004.

[15] M. Ehrgott. Multicriteria optimization, volume 491 of Lecture Notes in
Economics and Mathematical Systems. Springer-Verlag, Berlin, 2000.

[16] M. Ehrgott and X. Gandibleux. A survey and annoted bibliography of
multiobjective combinatorial optimization. OR Spectrum, 22(4):425–460,
2000.

[17] H. A. Eiselt and G. Laporte. A combinatorial optimization problem
arising in dartboard design. Journal of the Operational Research Society,
42:113–118, 1991.

[18] A. N. Elshafei. Hospital layout as a quadratic assignment problem. Op-
erations Research Quaterly, 28:167–179, 1977.

[19] C. Fleurent and J. A. Ferland. Genetic hybrids for the quadratic as-
signment problem. In P. Pardalos and H. Wolkowicz, editors, Quadratic
assignment and related problems, DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science, volume 16, pages 173–187.
American Mathematical Society, 1994.

[20] L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric
TSPs by ant colonies. In Proceedings of the IEEE International Confer-
ence on Evolutionary Computation (ICEC’96), pages 622–627, Piscat-
away, USA, 1996. IEEE Press.

[21] L. M. Gambardella and M. Dorigo. An ant colony system hybridized
with a new local search for the sequential ordering problem. INFORMS
Journal on Computing, 12(3):237–255, 2000.

[22] L. M. Gambardella, É. D. Taillard, and G. Agazzi. MACS-VRPTW:
A multiple ant colony system for vehicle routing problems with time
windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in
Optimization, pages 63–76. McGraw-Hill, London, 1999.

Bibliography 75

[23] L. M. Gambardella, É. D. Taillard, and M. Dorigo. Ant colonies for
the quadratic assignment problem. Journal of the Operational Research
Society, 50(2):167–176, 1999.

[24] A. M. Geoffrion and G. W. Graves. Scheduling parallel production
lines with changeover costs: Practical applications of a quadratic as-
signment/LP approach. Operations Research, 24:595–610, 1976.

[25] P. C. Gilmore. Optimal and suboptimal algorithms for the quadratic
assignment problem. Journal of the SIAM, 10:305–313, 1962.

[26] M. Gravel, W. L. Price, and C. Gagné. Scheduling continuous casting
of aluminum using a multiple objective ant colony optimization meta-
heuristic. European Journal of Operational Research, 143(1):218–229,
2002.

[27] V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall. Inferential per-
formance assessment of stochastic optimisers and the attainment func-
tion. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion
Optimization, volume 1993 of Lecture Notes in Computer Science, pages
213–225. Springer-Verlag, 2001.

[28] H. Hamacher, S. Nickel, and D. Tenfelde-Podehl. Facilities layout for
social institutions. In Operation Research Proceedings 2001 (OR2001),
pages 229–236, Duisburg, September 2001.

[29] S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with
multi colony ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C. C.
Coello, and D. Corne, editors, First International Conference on Evo-
lutionary Multi-Criterion Optimization, (EMO’01), volume 1993 of Lec-
ture Notes in Computer Science, pages 359–372. Springer Verlag, Berlin,
Germany, 2001.

[30] M. T. Jensen. Reducing the run-time complexity of multi-objective EAs:
The NSGA-II and other algorithms. IEEE Transactions on Evolutionary
Computation, 7(5):502–515, 2003.

[31] J. Knowles and D. Corne. Towards landscape analysis to inform the
design of hybrid local search for the multiobjective quadratic assignment
problem. In A. Abraham, J. Ruiz del Solar, and M. Koppen, editors,
Soft Computing Systems: Design, Management and Applications, pages
271–279, Amsterdam, 2002. IOS Press. ISBN 1-58603-297-6.

[32] J. Knowles and D. Corne. Instance generators and test suites for the
multiobjective quadratic assignment problem. In C. Fonseca, P. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion

76 Bibliography

Optimization, EMO 2003, volume 2632 of Lecture Notes in Computer
Science, pages 295–310. Springer, 2003.

[33] J. Knowles and D. Corne. Bounded Pareto archiving: Theory and prac-
tice. In X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’Kindt, editors,
Metaheuristics for Multiobjective Optimisation, volume 535 of Lecture
Notes in Economics and Mathematical Systems. Springer, January 2004.
To appear.

[34] T. C. Koopmans and M. J. Beckmann. Asignment problems and the
location of economic activities. Econometrica, 25:53–76, 1957.

[35] G. Laporte and H. Mercure. Balancing hydraulic turbine runners: A
quadratic assignment problem. European Journal of Operational Re-
search, 35:378–381, 1988.

[36] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. On the convergence
and diversity-preservation properties of multi-objective evolutionary al-
gorithms. Technical Report 108, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.

[37] M. Laumanns, L. Thiele, E. Zitzler, and K. Deb. Archiving with guaran-
teed convergence and diversity in multi-objective optimization. In W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Bal-
akrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter,
A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 439–447, New York, 9-13 July 2002. Morgan Kaufmann
Publishers, San Francisco, CA 94104, USA.

[38] V. Maniezzo, A. Colorni, and M. Dorigo. The ant system applied to
the quadratic assignment problem. Technical Report IRIDIA/94-28,
IRIDIA, Université Libre de Bruxelles, Belgium, 1994.

[39] C. E. Mariano and E. Morales. MOAQ an ant-Q algorithm for multi-
ple objective optimization problems. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors,
Proceedings of the Genetic and Evolutionary Computation Conference,
volume 1, pages 894–901, Orlando, Florida, USA, 13-17 July 1999. Mor-
gan Kaufmann Publishers, San Francisco, CA 94104, USA.

[40] P. Merz and B. Freisleben. Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem. IEEE Transactions
on Evolutionary Computation, 4(4):337–352, 2000.

Bibliography 77

[41] C. H. Papadimitriou and M. Yannakakis. On the approximability of
trade-offs and optimal access of Web sources. In Proceedings of the
41st Annual Symposium on Foundations of Computer Science: 12–14
November, 2000, Redondo Beach, California, pages 86–92. IEEE Com-
puter Society Press, 2000.

[42] L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets
in the biobjective traveling salesman problem: An experimental study.
In X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’Kindt, editors,
Metaheuristics for Multiobjective Optimisation, volume 535 of Lecture
Notes in Economics and Mathematical Systems. Springer Verlag, 2004.

[43] L. Paquete and T. Stützle. A study of local search algorithms for the
biobjective QAP with correlated flow matrices. European Journal of
Operational Research, 2004. Tam.

[44] R Development Core Team. R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria,
2004.

[45] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal
of the ACM, 23:555–565, 1976.

[46] L. Steinberg. The backboard wiring problem: a placement algorithm.
SIAM Review, 3:37–50, 1961.

[47] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and
Application. Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, New York, NY, 1986.

[48] T. Stützle. Local Search Algorithms for Combinatorial Problems: Anal-
ysis, Improvements, and New Applications, volume 220 of DISKI. Infix,
Sankt Augustin, Germany, 1999.

[49] T. Stützle and H. H. Hoos. The MAX–MIN ant system and local
search for the traveling salesman problem. In T. Bäck, Z. Michalewicz,
and X. Yao, editors, Proceedings of the 1997 IEEE International Con-
ference on Evolutionary Computation (ICEC’97), pages 309–314. IEEE
Press, Piscataway, NJ, 1997.

[50] T. Stützle and H. H. Hoos.MAX–MIN ant system and local search for
combinatorial optimization problems. In S. Voss, S. Martello, I. Osman,
and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Lo-
cal Search Paradigms for Optimization, pages 137–154. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1999.

[51] T. Stützle and H. H. Hoos.MAX -MIN ant system. Future Generation
Computer Systems, 16(8):889–914, 2000.

78 Bibliography

[52] É. D. Taillard. Robust taboo search for the quadratic assingnment prob-
lem. Parallel Computing, 17:443–455, 1991.

[53] É. D. Taillard. A comparison of iterative searches for the quadratic
assignment problem. Location Science, 3:87–105, 1995.

[54] É. D. Taillard. Fant: Fast ant system. Technical Report IDSIA-46-98,
IDSIA, Lugano, Switzerland, 1998.

[55] É. D. Taillard and L. M. Gambardella. Adaptative memories for the
quadratic assignment problem. Technical Report IDSIA-87-97, IDSIA,
Lugano, Switzerland, 1997.

[56] M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu. Two-phases method
and branch and bound procedures to solve the bi-objective knapsack
problem. Journal of Global Optimization, 12:139–155, 1998.

[57] T. Vollmann and E. Buffa. The facilities layout problem in perspective.
Management Sciencie, 12(10):450–468, 1966.

[58] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assessment of multiobjective optimizers: an analysis and
review. IEEE Transactions on Evolutionary Computation, 7:117–132,
2003.

	Preface
	Multi-objective Optimization
	Multi-objective Optimization Problems
	Pareto Optimality
	Relations between Pareto Sets
	Weighted Sum Scalarization
	Multi-objective Combinatorial Optimization Problems

	The Quadratic Assignment Problem
	The Single Objective QAP
	Types of QAP Instances
	Measures of QAP Instances

	The Multi-objective QAP (mQAP)
	Bi-objective QAP (bQAP) Instances

	Ant Colony Optimization
	ACO Algorithms
	Ant System Applied to the QAP
	Improvements on AS
	MAX-MIN Ant System

	Multi-objective ACO
	ACO Algorithms for MOCO Problems
	Multi-objective Pheromone Information
	Multiple Pheromone Information
	Single Pheromone Information
	Computational Efficiency

	Pheromone Update Strategies
	Multiple Colonies
	Weight Vectors in the Multi-colony Approach
	Candidate Set in the Multi-colony Approach
	Pheromone Update Strategies with Multiple Colonies

	Local Search Methods for MO-ACO
	Local Search for Single Objective Problems
	Pareto Local Search (PLS)
	Bounded Pareto Local Search

	MO-ACO Applied to the bQAP

	Performance Assessment
	Binary epsilon-measure
	Unary epsilon-measure
	Lower Bound
	Analysis of Variance (ANOVA)

	Median Attainment Surface
	Reference Solutions

	Experiments
	Experimental Setup
	Analysis of Experimental Results
	Analysis Based on Binary epsilon-measure
	Analysis Using Unary epsilon-measure and ANOVA

	Median Attainment Surfaces

	Conclusions
	Multi-objective ACO
	MO-ACO Applied to the bQAP
	Future Research

	ANOVA Assumptions
	Bibliography

