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Abstract

Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible independently of the
computation time allowed. Designing algorithms with good anytime behaviour is a difficult task, because performance is often
evaluated subjectively, by plotting the trade-off curve between computation time and solution quality. Yet, the trade-off curve may
be modelled also as a set of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic
configuration tool and the hypervolume measure, which assigns a single quality measure to a nondominated set. This allows us
to improve the anytime behaviour of optimisation algorithms by means of automatically finding algorithmic configurations that
produce the best nondominated sets. Moreover, the recently proposed weighted hypervolume measure is used here to incorporate
the decision-maker’s preferences into the automatic tuning procedure. We report on the improvements reached when applying the
proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN Ant System, and (ii) the
tuning of the anytime behaviour of SCIP, an open-source mixed integer programming solver with more than 200 parameters.
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1. Introduction

Many optimisation algorithms are designed without a spe-
cific termination criterion, and generate a sequence of feasible
solutions that are increasingly better approximations of the op-
timal solution. However, the performance of an algorithm is
often crucially determined by the choice of the termination cri-
terion and the parameters of the algorithm. If the parameter
settings of an algorithm result in fast convergence to good solu-
tions, this may prevent the algorithm from adequately exploring
the search space to find better solutions if given ample time. On
the other hand, parameter settings that give higher exploration
capabilities may produce poor results if the termination crite-
rion is too short. Hence, there is a trade-off between solution
quality and the runtime of the algorithm that can be adjusted by
appropriately setting the parameters of the algorithm.

In many practical scenarios, an optimisation algorithm may
be terminated at an arbitrary time, and, upon termination, the
algorithm returns the best solution found since the start of the
run. In such scenarios, the termination criterion is not known
in advance, and, hence, the algorithm should produce as high
quality solutions as possible at any moment of its run time. Al-
gorithms that show a better trade-off between solution quality
and runtime are said to have a better anytime behaviour [58].

There are two classical views when analysing the anytime be-
haviour [30]. One view defines a number of termination criteria
and analyses the quality achieved by the algorithm at each ter-
mination criterion. In this quality-over-time view, the anytime
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behaviour can be analysed as a series of plots of time-dependent
solution quality distributions. A different view defines a num-
ber of target quality values and analyses the time required by the
algorithm to reach each target. In this time-over-quality view,
algorithms are often analysed in terms of a series of qualified
runtime distributions.

In this paper, we consider a third view that does not favour
time over quality or vice versa. Instead, this third view mod-
els the performance profile of an algorithm as a nondominated
set in a multi-objective space. An algorithm has better anytime
behaviour when it produces better nondominated sets, where
“better” means better in terms of Pareto optimality. Surpris-
ingly, this third view has received little attention [15, 19, 30],
despite the important advances in theory and practice achieved
in performance assessment of multi-objective optimisers in the
last decade. Essentially, this model allows us to apply the same
unary quality measures used in multi-objective optimisation to
assign a single numerical value to the anytime behaviour of an
algorithm’s run. In this paper, we use the hypervolume mea-
sure as the unary quality measure for this purpose. The main
reason is that the hypervolume is the quality measure with the
highest discriminatory power among the known unary quality
measures [60]. In addition, recent work has made possible to
describe user preferences in terms of a weighted hypervolume
measure [6], and, hence, our proposal allows incorporating user
preferences when analysing the anytime behaviour of an algo-
rithm. Moreover, as shown in this paper, evaluating the anytime
behaviour of an algorithm in terms of the hypervolume allows
applying automatic algorithm configuration methods to find pa-
rameter settings of an algorithm that optimise the trade-off be-
tween quality and time.
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Recent advances in automatic configuration of algorithms
(also called offline parameter tuning) have shown that such
methods can save a significant amount of human effort and
improve the performance of optimisation algorithms, when de-
signing and evaluating new algorithms and when tuning exist-
ing algorithms to specific problems [9, 11, 24, 29, 31, 32]. Our
proposal here is to combine automatic configuration with the
use of the hypervolume as a surrogate measure of anytime be-
haviour in order to enable the automatic configuration of algo-
rithms in terms of anytime behaviour.

In the scenario described above, where the algorithm does
not know its termination criterion in advance, techniques such
as parameter adaptation are often applied to improve the any-
time behaviour of the algorithm [3, 25, 54]. However, design-
ing such parameter adaptation strategies is an arduous task, and
they usually add new parameters to the algorithm that need to
be tuned. The method proposed in this paper will help algo-
rithm designers to compare and fine-tune such parameter adap-
tation strategies to find the settings that improve the anytime
behaviour of the algorithm on the problem at hand. Indeed, the
first case study reported here derives from our own efforts on
designing parameter adaptation strategies for ant colony opti-
misation algorithms. This experience motivated us to develop
the method proposed here, since the classical trial-and-error
approach for designing such strategies proved extremely time-
consuming.

The second case study reported here deals with a differ-
ent scenario, in particular, a general purpose black-box solver
(SCIP [1]) with a large number of parameters. The default pa-
rameter settings of such solvers are tuned for solving problem
instances to optimality as fast as possible. However, in some
practical scenarios, users may not want to wait until a prob-
lem instance is solved to optimality, and may decide to stop the
solver at an arbitrary time. Using our method for fine-tuning
the parameters of the solver with respect to anytime behaviour,
users can improve the quality of the solutions found when the
solver is stopped before reaching optimality, without knowing
in advance the particular termination criterion.

The outline of the paper is as follows. Section 2 provides a
background on automatic algorithm configuration, summarises
the state of the art and describes the automatic configuration
method (irace) used throughout this paper. Section 3 intro-
duces the two classical views of the analysis of anytime algo-
rithms and the less-explored multi-objective view. In Section 4,
we describe our proposal in detail. We explain the benefits of
using the hypervolume to evaluate the anytime behaviour of an
algorithm in the context of an automatic configuration method.
We discuss the choice of reference point and how to combine
irace with the hypervolume measure. An additional section
summarises related work and highlights the differences with our
proposed approach. Section 5 describes our first case study,
where we apply this proposal to the design of parameter adapta-
tion strategies for MMAS. Section 6 discusses how our proposal
enables a decision maker to incorporate preferences regarding
the anytime behaviour of an algorithm to the automatic config-
uration procedure. A second case study is considered in Sec-
tion 7, where we tune the anytime behaviour of SCIP. Finally,

Section 8 provides a summary of our results and discusses pos-
sible extensions of the present work.

2. Preliminaries: Automatic algorithm configuration

This section is a brief introduction to automatic algorithm
configuration. We define the algorithm configuration problem,
give an overview on the state of the art of automatic configura-
tion methods, and describe irace, the automatic configuration
method used throughout this paper. A more detailed and formal
introduction is available from the literature referenced here and
in the extended version of the paper [39].

2.1. The algorithm configuration problem

Most algorithms for computationally hard optimisation prob-
lems have a number of parameters that need to be set. As an
example, ACO algorithms [21] often require the user to spec-
ify not only numerical parameters like the evaporation factor
and the number of ants, but also components like the type of
heuristic information and update method. Another example is
mixed-integer programming solvers, such as SCIP [1], which
often have a large number of configurable parameters affecting
the main algorithm used internally, e.g., selecting among dif-
ferent branching strategies. The process of designing complex
algorithms from a framework of algorithm components can be
seen as an algorithm configuration problem [34, 41, 48].

Given a parametrised algorithm, where each parameter may
take different values (settings), a configuration of the algorithm
is a unique assignment of values to parameters. When consid-
ering a problem to be solved by this parametrised algorithm,
the goal of automatic configuration is to find the configuration
that minimises a particular cost function over the set of possible
instances of the problem. The cost function assigns a value to
each configuration when applied to a single problem instance.
In the case of stochastic algorithms, this cost measure is a ran-
dom variable. Since most algorithms and problems of practical
interest are sufficiently complex to preclude an analytical ap-
proach, the configuration of such algorithms follows an experi-
mental approach [9, 11].

2.2. Automatic configuration methods

The traditional approach to algorithm configuration consists
of ad-hoc experiments testing relatively few configurations.
The use of experimental design techniques [2, 17] began a trend
in which the task of finding the most promising configurations
to be tested is performed automatically. The natural evolution
of this trend has been to tackle algorithm configuration as an op-
timisation problem [4, 9, 10, 31, 32, 49]. It is becoming widely
accepted that automatic configuration methods may save sub-
stantial human effort during the empirical analysis and design
of optimisation algorithms, and, at the same time, lead to better
algorithms [9, 11, 24, 29].
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2.3. Iterated racing (irace)
Iterated F-race (I/F-Race) [8, 13] is a method for automatic

configuration that consists of three steps: (1) sampling new con-
figurations according to a probability distribution, (2) selecting
the best configurations from the newly sampled ones by means
of F-Race, and (3) updating the probability distribution in or-
der to bias the sampling towards the best configurations. These
three steps are repeated until a termination criterion is met, usu-
ally a predefined budget of runs of the algorithm being tuned.
F-Race [12] is a racing procedure [46] for the selection of the
best among a given set of algorithm configurations, by means
of the non-parametric Friedman’s two-way analysis of variance
by ranks, and its associated post-hoc test [16].

The irace software [43] implements a general iterated rac-
ing procedure, which includes I/F-Race as a special case. There
are some notable differences between irace and the original
description of I/F-Race, such as the use of truncated normal
distribution for sampling numerical parameters, a restart mech-
anism for avoiding premature convergence, and other features
described in the irace documentation [43]. For an outline of
the iterated racing algorithm, we refer the reader to the extended
version of the paper [39].

3. Preliminaries: Anytime Algorithms

This section is an introduction to the analysis of stochastic
optimisation algorithms and, in particular, anytime algorithms.
We describe the two classical views, and the lesser studied
multi-objective view. The concepts of bivariate runtime dis-
tributions (RTD), performance profiles, and the two classical
views are described in textbooks [30]. The extended version of
the paper provides a more detailed introduction to these con-
cepts [39].

3.1. Classical views of the analysis of runtime distributions
Dean and Boddy [18] describe an anytime algorithm as one

that, first, may be interrupted at any moment and return a solu-
tion and, second, it keeps steadily improving its solution until
interrupted, eventually finding the optimal. Most metaheuris-
tics and other optimisation algorithms satisfy this condition,
and, hence, they are anytime optimisation algorithms. A con-
cept of anytime behaviour more useful in the context of meta-
heuristics was introduced by Zilberstein [58], who highlights
that algorithms with good anytime behaviour return as high-
quality solutions as possible at any moment of their execution.
A single run of an anytime algorithm generates a sequence of
solutions that are increasingly better approximations of the op-
timal solution. Hence, in the context of anytime algorithms, an
algorithm run is often described as a performance profile:

Definition 1 (Performance profile [58]). Let us consider a sin-
gle run r of an anytime optimisation algorithm A on a problem
instance π, and record the computational effort (ti, measured,
for example as CPU-time in seconds) and the solution qual-
ity (qi, measured, for example, as relative percentage deviation
from the optimal solution quality), whenever a new best-so-
far solution is found during the run of the algorithm. The set
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Figure 1: Performance profiles of three algorithms A, B, and C
(or three independent runs of the same stochastic algorithm).

Pr = {(t1, q1), (t2, q2), . . . } is called the performance profile of
run r, where (ti, qi) are sampled with probability rtd(t, q), and
ti < t j ∧ qi > q j, ∀i < j, where rtd(t, q) is called the bivariate
runtime distribution (RTD) [30].

Figure 1 gives an example of performance profiles for three
runs A, B, and C. The above definition of performance profile
does not favour quality over time, or vice versa. It would be
equivalent to plot quality or time on either axis. Nonetheless,
performance profile plots traditionally place time on the x-axis
and quality on the y-axis, and we follow this custom here. A
problem arises, however, when one wants to aggregate the in-
formation from several performance profiles in order to analyse
the behaviour of an algorithm.

There are two classical views on how to summarise perfor-
mance profiles over multiple runs [30]. The solution-quality-
over-time (SQT) view examines solution quality distributions
(SQDs) over fixed run-times. However, instead of plotting
the SQDs, it is far more common to aggregate the perfor-
mance profiles over fixed run-times and examine SQT curves.
This SQT view is the most popular in combinatorial optimisa-
tion, where it is common to compare the anytime behaviour
of optimisation algorithm by visually inspecting mean SQT
curves [30, 45, 54, 55].

A second classical view is to aggregate performance profiles
over fixed quality targets. Although plots of mean time over
quality are possible [30], the most common approach is to ex-
amine the qualified run time distribution (QRTD), which is the
probability of attaining fixed quality-targets over time. In an
analysis based on QRTDs one can state that an algorithm is
faster by some factor than another at reaching a particular qual-
ity target.

3.2. A multi-objective view of runtime distributions

A third alternative is to not favour either of the classical
views, but instead use techniques from multi-objective optimi-
sation [15, 19]. Thus, we do not aggregate the performance
profiles over fixed run-times or fixed quality-targets. Instead,
we describe the performance profiles generated by an optimi-
sation algorithm as random nondominated sets. First, let us in-
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troduce some basic definitions borrowed from multi-objective
optimisation, but adapted to the analysis of RTDs.

Definition 2 (Weak dominance). Given two vectors (t, q),
(t′, q′) ∈ R0 × R0, we say that (t, q) weakly dominates (t′, q′),
and denote it by (t, q) ≤ (t′, q′) iff t ≤ t′ ∧ q ≤ q′.

Definition 3 (Nondominated set). A set X = {(t1, q1), (t2, q2),
. . . } is called nondominated iff @(ti, qi), (t j, q j) ∈ X, i , j such
that (ti, qi) ≤ (t j, q j).

According to the definition of performance profile above
(Def. 1), the elements of a performance profile, must also be
mutually nondominated. Therefore, we can analyse perfor-
mance profiles as nondominated sets, using the same techniques
as in multi-objective optimisation.

The multi-objective view considers the bivariate RTD with-
out aggregation, which is a well-known approach to the analy-
sis of optimisation algorithms [30], but much less studied due
to the inherent difficulty of analysing a bivariate distribution.
Chiarandini [15] considered such a view for analysing the any-
time behaviour of several metaheuristics for graph colouring,
concretely using the attainment function [28].1 For the purposes
of automatic configuration, the available Kolmogorov-Smirnov
test based on the attainment function [36] is not enough, and
graphical exploration methods [35, 36, 42] require substantial
human interaction.

4. Our proposal: Automatic configuration of anytime algo-
rithms by means of the hypervolume measure

As mentioned above, directly using the attainment function
as the basis of an automatic configuration tool for anytime al-
gorithms seems difficult. Instead, we identify the hypervolume
measure as the best available choice for this task. The main rea-
sons are its high discriminatory power, being Pareto-compliant,
and the possibility of incorporating user preferences into the
automatic configuration process. There is also substantial and
ongoing research on the theoretical properties of the hypervol-
ume [7].

4.1. Hypervolume measure of performance profiles

As a first step, let us define the classical Pareto-dominance
relation on performance profiles:

Definition 4 (Better in terms of Pareto-optimality, C). Given
two performance profiles Pi and P j, which are the result of run-
ning two algorithms Ai and A j on the same problem instance π,
we say that Pi is better, in terms of Pareto-optimality, than P j

(Pi C P j) iff Pi , P j, and ∀(t j, q j) ∈ P j, ∃(ti, qi) ∈ Pi, such that
(ti, qi) ≤ (t j, q j).

1For brevity, we do not explain the attainment function approach here and
its application to the analysis of anytime algorithms. A complete description is
provided in the extended version of the paper [39].

It is often the case, however, that neither performance pro-
file is better than the other, i.e., they are incomparable. These
relations are independent of the classical views of fixed-quality
(first view) or fixed-runtimes (second view) as described above,
and only make sense in the third view that considers both qual-
ity and runtime in terms of Pareto-optimality.

In the following, we assume that, without any a priori infor-
mation about the actual termination criterion of the algorithm
or the preferred trade-off between solution-quality and compu-
tation time, a performance profile that is better than another in
terms of Pareto-optimality is also better in terms of anytime be-
haviour, in the sense that the former is always preferred to the
latter.

In order to apply an automatic configuration tool from the
literature for improving the performance profiles produced by
an algorithm, we would desire a unary quality measure that un-
equivocally indicates whether a performance profile is better
than another. Unfortunately, a well-known result from multi-
objective optimisation states that no unary quality measure (or
finite combination thereof) can indicate whether a performance
profile is better, as defined above, than another [60]. The most
powerful of the unary quality indicators can at most indicate
that a performance profile is not worse than (better than or in-
comparable to) another. The hypervolume measure [59] is the
only unary quality measure known to have such discriminatory
power [60].

The hypervolume can be defined as the measure of the region
that is simultaneously weakly dominated by any point in a non-
dominated set and bounded above by a reference point that is
strictly dominated by all points in the set. In the context of per-
formance profiles of single-objective optimisation algorithms,
this region is the area contained within the orthogonal polygon
defined by the elements of a performance profile P and an arbi-
trary reference point (tr, qr), such that (ti, qi) < (tr, qr),∀(ti, qi) ∈
P.

In this paper, we only consider single-objective optimisation
algorithms. Nonetheless, it is trivial to extend the above discus-
sion to multi-objective algorithms, where there is more than one
measure of solution quality. In fact, we have applied the method
proposed here to automatically improve the anytime behaviour
of multi-objective evolutionary algorithms [50].

4.1.1. The choice or reference point
In the context of anytime algorithms, the choice of reference

point is application specific. The bivariate runtime distribution
is defined without any limits on how bad the solution quality
might be or how long it may take to generate any solution.
In practice, however, large deviations from the optimal quality
may be of little interest (no matter how fast they can be gener-
ated) and algorithms need to be stopped at some point (cut-off

time). These limitations are not specific to any of the three
views discussed above. A default approach is to consider a cut-
off quality that corresponds to the worst solution quality found
by any run of the algorithms under analysis, and a cut-off time
that is slightly larger than the maximum time that would be rea-
sonable for a single run of the algorithm. The reference point
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would then be defined as a factor larger than the cut-off quality
and cut-off time.

How much larger this factor should be is an open question in
multi-objective optimisation. There are some theoretical results
on how the choice of reference point affects the distribution of
elements within a nondominated set that maximises the hyper-
volume [7]. However, it is not clear how these results extend to
the relations between nondominated sets. In any case, the only
effect of the reference point is to bias the preference between
incomparable performance profiles. In that sense, our sugges-
tion (and the usual practice in multi-objective optimisation) is
to define the reference point in a consistent manner and bias this
preference by other means, such as the weighted hypervolume
(Sec. 6).

4.2. Automatic configuration of anytime algorithms
The use of the hypervolume to compare performance profiles

in terms of Pareto-optimality has the additional benefit of pro-
viding a unary scalar measure to evaluate anytime behaviour.
Integrating such a measure in most automatic configuration
methods should be straightforward. Here, we discuss the prac-
tical aspects of the integration of the hypervolume in irace
for improving the anytime behaviour of single-objective opti-
misation algorithms.

Our procedure requires to specify a maximum cut-off time
for the algorithm being tuned by irace. As discussed above,
this cut-off time is necessary because anytime algorithms may
in principle run forever. The cut-off time could be dynamic or
different for each run, however, for the sake of simplicity, we do
not explore these possibilities here. Each run of the algorithm
must produce a performance profile as defined in Def. 1.

Within a single race in irace, a set of algorithm configura-
tions are evaluated on a sequence of training instances. Af-
ter evaluating an instance, some configurations may be dis-
carded. Let Θπ denote the configurations that have not been
discarded before evaluating instance π. Let Pθ,π denote the per-
formance profile generated by running configuration θ on in-
stance π. First, we normalise the performance profiles Pθ,π, for
each θ ∈ Θπ to the range [0.0, 0.9]. Thus, after normalisation
we obtain for each θ a new performance profile:

P′θ,π = {(t′i , q
′
i) | ∀(ti, qi) ∈ Pθ,π}

where t′i = 0.9 · (ti − tmin)/(tmax − tmin)
q′i = 0.9 · (qi − qmin)/(qmax − qmin)

where tmin is usually zero, tmax is the cut-off time, qmin =

min{qi | ∀(ti, qi) ∈ Pθ,π,∀θ ∈ Θπ} and qmax is defined simi-
larly for the maximum solution quality found after running all
configurations in Θπ on instance π.

Finally, we compute the hypervolume hv(θ, π) of each P′θ,π
using (1.0, 1.0) as the reference point. In our proposal, this
hv(θ, π) value becomes the cost measure used by irace.

Neither quality values, nor hypervolume values from differ-
ent instances are directly compared because normalisation is
done within each instance π, as defined above, and the appli-
cation of the F-test within irace transforms the hypervolume

values into ranks per instance. Hence, quality values or hyper-
volume values may have different ranges on each instance with-
out introducing a bias. This approach also allows for instance-
dependent cut-off times, although we do not explore this possi-
bility in this paper.

4.3. Related Work on Automatic Configuration of Anytime Al-
gorithms

There is substantial work on automatic configuration for de-
cision problems and single-objective optimisation problems.
We refer to recent overviews [24, 29] and books [9, 11] for
a complete bibliography. By comparison, there are relatively
few works on tuning multi-objective optimisation algorithms.
Wessing et al. [56] automatically tuned the variation opera-
tor of a multi-objective evolutionary algorithm applied to a
single problem instance. Simultaneously, López-Ibáñez and
Stützle [38, 41] automatically instantiated new designs of multi-
objective ant colony optimisation (MOACO) algorithms for
the bi-objective travelling salesman problem from a framework
of MOACO algorithmic components. More recently, Dubois-
Lacoste et al. [23] applied this latter approach to outperform
the state of the art in several bi-objective permutation flow-shop
problems. These works share with our proposal the use of unary
quality measures, such as the hypervolume, as the cost function
used by the automatic configuration method.

On the other hand, our proposal should not be confused with
parameter tuning as a multi-objective problem [22], where the
aim is to produce a set of parameter configurations that are mu-
tually nondominated with respect to multiple criteria. In this
paper, our aim is to produce a single parameter configuration
that generates an anytime behaviour that is as good as possible.

There have been some recent attempts at tackling the prob-
lem of tuning anytime algorithms. As mentioned above,
Chiarandini [15] used the attainment function to analyse the
anytime behaviour of several metaheuristics for graph colour-
ing. However, it is far from obvious how to effectively use
the attainment function in an automatic configuration method.
The proposal closest to ours is by den Besten [19], who com-
bined racing and a performance measure based on the binary
ε-indicator. The use of a binary measure involves computing
a matrix of ε-measure values, comparing each alternative with
the rest, and transforming it into ranks. More recently, Branke
and Elomari [14] combined a meta-level evolutionary algorithm
and an ad-hoc ranking procedure for tuning the mutation rate
of a lower-level algorithm for multiple termination criteria in
a single tuner run. Their ranking method is not based on any
multi-objective quality measure. Instead, it ranks each con-
figuration with respect to the number of discrete time steps in
which the configuration was better than other configurations. In
that sense, it is an example of the classical fixed-runtimes view
(what we call first view above).

5. Case Study: Design of parameter variation strategies for
MAX-MIN Ant System on the TSP

Many anytime algorithms use parameter adaptation strate-
gies [3, 25], that is, the variation of parameter settings while
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solving a problem instance, to adapt the parameters to different
phases of the search, and to balance exploration of the search
space and exploitation of the best solutions found.

Designing and comparing parameter adaptation strategies is,
however, an arduous and complex task. Traditionally, the anal-
ysis is performed in terms of one (or both) classical views, that
is, either measuring solution quality over fixed-runtimes [3], or
runtime (CPU-time or function evaluations) over fixed quality-
targets [5].

In previous work [47, 54], we studied parameter adaptation
strategies for ant colony optimisation (ACO) algorithms using
the classical solution quality over fixed-runtimes view. In par-
ticular, we studied the anytime behaviour of MAX-MIN Ant
System (MMAS) on the travelling salesman problem (TSP) by
experimenting with various static parameter settings and pa-
rameter variation strategies. As a result, we identified parameter
configurations that are significantly better in terms of anytime
behaviour than the default settings of MMAS [47, 54]. Our
analysis relied on visually comparing the mean SQT curves of
various strategies that were deemed interesting. Needless to
say, this was a human intensive task that required many itera-
tions of experimentation and analysis. We roughly estimate that
the overall effort for obtaining the best configurations was close
to one person-year.

This effort could have been significantly reduced by using an
automatic algorithm configuration tool for improving the any-
time behaviour. This case study was our main motivation for
developing the method proposed in this paper. In this section,
we describe the case study in detail, we examine the setup re-
quired for applying automatic algorithm configuration, and we
compare the parameter adaptation strategies identified as the
best by the automatic configuration procedure versus the ones
identified in our previous work.

5.1. MAX-MIN Ant System

MMAS is an ACO algorithm that incorporates an aggressive
pheromone update procedure and mechanisms to avoid search
stagnation. When applying MMAS to the TSP, each ant starts
at a randomly chosen initial city, and constructs a tour by ran-
domly choosing at each step the city to visit next according to a
probability defined by pheromone trails and heuristic informa-
tion. In particular, the probability that ant k chooses a successor
city j when being at city i is given by

pi j =
[τi j]α·[ηi j]β∑

h∈Nk [τih]α·[ηih]β
if j ∈ Nk, (otherwise, pi j = 0) (1)

where τi j is the pheromone trail strength associated to edge
(i, j), ηi j is the corresponding heuristic information; α and β
are two parameters that influence the weight given to phero-
mone and heuristic information, respectively; Nk is the feasible
neighbourhood, that is, a candidate list of cities not yet visited
in the partial tour of ant k.

Following previous work [51], we also incorporate the
pseudo-random action choice rule of ACS [20], which al-
lows for a greedier solution construction. With a probabil-
ity q0, an ant chooses next a city j ∈ Nk such that j =

arg maxh∈Nk {[τih]α ·
[
ηih

]β
} ; otherwise, the ant performs the

probabilistic selection based on Eq. (1). A value of q0 = 0
reverts back to the original MMAS.

The pheromone update of MMAS updates all pheromone
trails as

τi j ← max
{
τmin, min{τmax, (1 − ρ) · τi j + ∆τbest

i j }
}
, (2)

where ρ, 0 < ρ ≤ 1, is a parameter called evaporation rate and
∆τbest

i j = 1/ f (sbest) if edge (i, j) ∈ sbest, (∆τbest
i j = 0, otherwise),

where f (s) is the tour length of solution s, and sbest is either
the iteration-best solution, the best-so-far solution or the best
solution since a re-initialisation of the pheromone trails (restart-
best). In MMAS, these solutions are chosen alternately [53].

Finally, solutions constructed by the ants may be further im-
proved by the application of a local search algorithm. In this
paper, we will use MMAS with 2-opt local search, as was done
in previous work [47, 54].

5.2. Parameter variation strategies in MMAS

Following our previous work [54], we focus on two ba-
sic schemes for parameter variation in MMAS, which we call
henceforth delta and switch strategies. During a single run of
MMAS, the variation strategy called delta applied, for example,
to parameter β increases the value of β at each iteration of the
algorithm by a certain amount ∆β, starting from the value βstart
and stopping at the value βend. If βstart > βend, then the value
of β is decreased at each iteration by ∆β instead of increased.
Conversely, the variation strategy called switch changes, at it-
eration βswitch, the value of parameter β from the value βstart to
the value βend. An additional parameter βvar controls the varia-
tion strategy, which is either delta, switch or none, where none
means that the parameter value of β stays constant throughout
the run of the algorithm. As a result, we add to MMAS five
additional parameters for varying β: βstart, βend, ∆β, βswitch and
βvar.

We apply the same parameter variation strategies to param-
eters β, ρ, the number of ants (m), and q0. Hence, we add five
additional static parameters for each parameter that is dynam-
ically varied. Table 2 describes the domains of all parameters,
and Table 1 describes the default values [53].

5.3. Automatic configuration of parameter adaptation strate-
gies

We consider random uniformly generated instances of the
symmetric TSP with 3 000 cities [33]. Our instances are avail-
able in the supplementary material page [40]. We generate 50
training (tuning) instances and 50 test instances.

We apply our proposed method for the automatic config-
uration of the anytime behaviour (Sec. 4.2). The automatic
configuration tool is the implementation of I/F-Race provided
by the irace software package [43]. As explained above,
we incorporate the hypervolume measure to irace in order
to evaluate the anytime behaviour of a single run of MMAS.
We use a publicly available implementation of the hypervol-
ume measure [26], and the MMAS implementation is based on
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Table 1: Default settings of the parameters under study for
MMAS.

Algorithm TimeCPU α β ρ m q0

MMAS 500 s 1.0 2.0 0.2 25 0.0

Table 3: Parameter configurations found by a human expert
when varying one parameter at a time in MMAS [54].

Configuration Parameter settings

manual var ants mvar = delta, mstart = 1, mend = 25, ∆m = 0.1
manual var beta βvar = switch, βstart = 20, βend = 3, βswitch = 50
manual var rho ρvar = none, ρ = 0.9
manual var q0 q0var = delta, q0start = 0.99, q0end = 0, ∆q0 = 0.0005

the ACOTSP software [52]. All experiments are run on In-
tel Xeon E5410 CPUs (2.33 GHz, 2×6MB L2 cache) running
Cluster Rocks Linux version 6/CentOS 6.3, 64bits. Each indi-
vidual run of the algorithms being tuned uses just one core.

In a first step, we tune separately the variation strategy of
one dynamic parameter at a time, while other parameters are
fixed to their default values as given in Table 1. That is, we
perform one run of irace for each parameter {m, β, q0, ρ}. For
example, in the run of irace that tunes the variation strategy
of β, the parameters tuned are βvar, β, ∆β, βswitch, βstart, βend,
whereas the other parameters (m, q0, ρ) are fixed to their default
values (Table 1) and their variation strategies (paramvar) are set
to none, and, hence, their corresponding variation parameters
(∆param, paramswitch, paramstart, paramend) are not considered
(see Table 2). We give each run of irace a budget of 1 000
runs of MMAS. Each run of MMAS is stopped after TimeCPU
seconds (Table 1).

In a second step, we automatically configure all parameter
variation strategies at the same time, that is, we configure 24
parameters instead of six. Since the parameter space is much
larger now, we assign a larger tuning budget to this run of
irace, specifically 10 000 runs of MMAS.

After each run of irace finishes, we apply the resulting
parameter configurations (Table 4) to the test instances. In ad-
dition, we also run, on the test instances, the default parameter
configuration of MMAS (Table 1) without any variation strat-
egy and several variation strategies previously found by manual
ad-hoc experimentation (Table 3) [54]. We present these results
in the following sections.

5.4. Analysis of the results

5.4.1. Automatic configuration vs. manual configuration
Our goal is to improve the anytime behaviour of MMAS over

the whole set of test instances. Hence, we analyse the overall
results by plotting the average solution quality over time (SQT)
for all test instances at once. However, as explained above, our
proposed approach does not rely on these SQT curves for im-
proving the anytime behaviour, and it does not favour solution-
quality over time or vice versa. We could also visualise our re-
sults in terms of qualified runtime distributions [30], or in terms

of attainment surfaces [15, 28]. We chose SQT curves as one
of the traditional means of visualising the anytime behaviour
of an algorithm, and the most popular view in the literature on
combinatorial optimisation algorithm [30].

For each algorithm configuration, we have the best solution
quality found frit on run r on instance i at time t. We com-
pute the relative percentage deviation (RPD) from the optimal
solution for each instance as RPDrit = 100 · frit/ f opt

i , where
f opt
i is the optimal tour length of instance i. Then, we compute

the mean RPD over all 50 instances and over all 15 independent
runs of each algorithm as RPDt = 1

50·15 ·
∑50

i=1
∑15

r=1 RPDrit. Each
line in the plots in Fig. 2 corresponds to the RPDt of one algo-
rithm configuration, that is, aggregating solution-quality over
time.

In the case of the hypervolume computation, we do not ag-
gregate over time, but compute the hypervolume of the (non-
dominated) performance profile of each run on each instance
by normalising both time and solution quality to the interval
[0.0, 0.9] and using (1.0, 1.0) as the reference point. Then, for
each algorithm configuration we compute its mean hypervol-
ume over all its runs on all test instances, and we give this value
in the legend of each plot.

The first important observation is how a larger hypervolume
value matches a better anytime behaviour. The four plots in
Fig. 2 show a large improvement in the anytime behaviour of
the manually tuned configurations with respect to the default
configuration of MMAS. Nonetheless, the automatically found
configurations are able to match, and in most cases surpass, the
manually tuned configurations in terms of hypervolume, despite
the fact that the manually tuned configurations were found by
extensive experimentation under the guidance of human exper-
tise.

Fig. 3(a) compares the configuration obtained after automat-
ically configuring all parameter variation strategies at once ver-
sus the best configurations obtained after automatically config-
uring the variation strategy of one parameter at a time. In our
previous study, the manual tuning and analysis of all param-
eter strategies at once was ruled out as infeasible, given the
extremely large number of potential configurations and inter-
actions among different parameters. Here, we see that automat-
ically configuring all parameters at once leads to an additional
improvement in anytime behaviour.

Figures 2(a, b, c, d) and 3(a) show the mean hypervolume
over all runs and all test instances. To assess whether the ob-
served differences are statistically significant, we perform a
statistical analysis of the results over the whole set of test in-
stances. The analysis is based on the Friedman test for analys-
ing non-parametric unreplicated complete block designs, and
its associated post-test for multiple comparisons [16]. First, we
calculate the mean hypervolume of the 15 runs of each algo-
rithm for each instance. Then, we perform a Friedman test us-
ing the instances as the blocking factor, and the different config-
urations of MMAS as the treatment factor. The null hypothesis
is that the configurations have identical effect on the ranking ac-
cording to the hypervolume within each instance. If the Fried-
man test rejects the null hypothesis given a significance level of
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Table 2: Parameter space for variation strategies of MMAS.

Parameter Domain Constraint

mvar, βvar,
{ delta, switch, none }

ρvar, q0var

m [1, 100]

if var = none
β [0, 20]
ρ [0.01, 1.0]

q0 [0.0, 1.0]

∆m {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5}

if var = delta
∆β {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}
∆ρ {0.001, 0.002, 0.005, 0.01}

∆q0 {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005}

mswitch, βswitch, [1, 500] if var = switch
ρswitch, q0switch

mstart 1

if var ∈ {delta, switch}

mend [1, 500]
βstart [0, 20]
βend [0, 5]

ρstart, ρend [0.001, 1.0]
q0start, q0end [0.0, 1.0]

Table 4: Parameter configurations found by irace for MMAS: (auto var param) was obtained by tuning, with respect to anytime
behaviour, the variation strategy of parameter param, while the other parameters are set to their default settings; (auto var ALL)
was obtained by tuning, with respect to anytime behaviour, all variation parameters at the same time; (auto fix final) was obtained
by tuning the classical MMAS parameters, without any variation, with respect to final quality, that is, the solution quality obtained
at 500 seconds; and (auto var final) was obtained by tuning all variation parameters with respect to final quality.

Configuration Parameter settings

auto var ants mvar = delta, mdelta = 0.05, mstart = 1, mend = 417
auto var beta βvar = delta, βdelta = 0.05, βstart = 9, βend = 4
auto var q0 q0var = switch, q0switch = 200, q0start = 0.96, q0end = 0.30
auto var rho ρvar = delta, ρdelta = 0.001, ρstart = 0.82, ρend = 0.84
auto var ALL mvar = delta, mdelta = 1, mstart = 1, mend = 384, βvar = switch, βswitch = 79, βstart = 5, βend = 0,

q0var = delta, q0delta = 0.002, q0start = 0.87, q0end = 0.57,
ρvar = none, ρ = 0.68

auto fix final β = 5.9, ρ = 0.62, m = 84, q0 = 0.099
auto var final mvar = switch, mswitch = 50, mstart = 1, mend = 317, βvar = delta, βdelta = 0.5, βstart = 8, βend = 2,

q0var = switch, q0switch = 139, q0start = 0.6241, q0end = 0.2725,
ρvar = switch, ρswitch = 493, ρstart = 0.338, ρend = 0.7495

α = 0.05, we proceed to calculate the minimum difference be-
tween the sum of ranks of two configurations that is statistically
significant (∆Rα). In this manner, we identify which configura-
tions are significantly different from the best ranked one, i.e.,
the one with the lowest sum of ranks.

Table 5 summarises the results of the statistical analysis. It
shows the value of ∆Rα for α = 0.05, the different configu-
rations of MMAS sorted by increasing sum of ranks, and the
difference between the sum of ranks of each configuration and
the best configuration (∆R). For each parameter considered,
the ranking shown in Table 5 always ranks higher the config-
urations found automatically than their counterparts found by
ad-hoc experimentation (auto vs. manual, respectively). More
importantly, it shows that the best ranked configuration is the

one that automatically configured all parameters at once, and
that the difference in ranks between this configuration and the
rest is statistically significant.

5.4.2. Hypervolume vs. final quality
Here, we show that the use of the hypervolume as the tuning

criterion is the key factor for improving the anytime behaviour.
Fig. 3(b) shows four configurations of MMAS: the default con-
figuration (default); the one resulting from automatically tun-
ing all variation parameters (auto var ALL); a configuration
obtained by tuning all variation parameters with respect to fi-
nal quality, that is, the solution quality obtained at 500 seconds
(auto var final); and a configuration obtained by tuning the clas-
sical MMAS parameters, without any variation, with respect to
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Table 5: Various configurations of MMAS ordered according to the sum of ranks with respect to the hypervolume obtained over
all test instances. The numbers in parenthesis are the differences of ranks relative to the best ranked configuration. ∆Rα is the
statistically significant difference in ranks according to the post-hoc test for the Friedman-test with α = 0.05. All configurations are
statistically significantly worse than the best one (auto var ALL). For the meaning of the labels, see the caption of Table 4.

∆Rα Configurations (∆R)

9.87 auto var ALL (0), auto var q0 (34), manual q0 (94), auto var rho (125),
manual rho (189), auto var ants (236), auto var beta (294),
manual ants (345), manual beta (380), default (433)

final quality (auto fix final). The plot shows that, independently
of whether MMAS uses parameter variation or not, the results
not tuned with respect to the hypervolume have worse anytime
behaviour.

A possible concern of tuning for anytime behaviour is a sig-
nificant loss of final quality. Hence, we examine the final qual-
ity achieved by these four variants of MMAS in Fig. 4. Ac-
cording to the boxplots, there is an important improvement in
the final quality achieved in comparison with the default config-
uration of MMAS, even for the configuration tuned for anytime
behaviour. The boxplot does not show a large difference be-
tween the three automatically configured variants. Nonetheless,
the Friedman test indicates that the final quality obtained by the
variant tuned for anytime behaviour is statistically worse than
the variants tuned for final quality (Table 6). In order to assess
the loss of final quality, we compute the 95% confidence inter-
val on the mean difference in final quality between the configu-
ration tuned for anytime behaviour and the best ranked configu-
ration, which is [0.0244, 0.0480], measured in RPD.2 Although
the loss in final quality when tuning for anytime behaviour is
small in this case, an anytime algorithm should aim to match
the best possible final quality in the ideal case.

6. Articulation of preferences in automatic configuration of
anytime algorithms

The use of the hypervolume for automatic tuning of anytime
algorithms has an additional advantage compared to other unary
measures, that is, the possibility of specifying the decision-
maker’s preferences. A recent proposal extends the hypervol-
ume indicator by a weight function over the objective space [6,
61]. A weight function that assigns a larger value to a certain
region of the objective space will bias the hypervolume indica-
tor to favour nondominated sets that dominate that region. We
show here that this formulation can straightforwardly be used
to introduce a bias in the anytime behaviour produced by auto-
matic configuration.

As an example, let us assume that the decision maker’s pref-
erence is to obtain as good final solution quality as possible,
while still giving some minor importance to achieving a good
anytime behaviour. In other words, the decision maker prefers

2The confidence interval is computed using the Welch’s t statistic for two
paired samples, which assumes that the samples follow a normal distribution.
Nonetheless, for large sample sizes, as used here, the method is robust against
deviations from normality.

configurations that generate solution-quality curves that are bet-
ter towards minimising the solution quality (in our case, the
second objective). Zitzler et al. [61] suggest to model this pref-
erence by considering the following weight function (adapted
here to minimisation):

wqual(z) = e20·(1−z2)/e20 (3)

where z = (z1, z2) ∈ Z is an objective vector, with z1 rep-
resenting time and z2 representing solution quality, and Z =

[0, 1] × [0, 1] represents the normalised bi-objective space of
time×quality.

The weighted hypervolume is computed as the integral of the
weight function over the region dominated by a set of nondom-
inated points and bounded above by a reference point. To give
a rough idea of this integral when using the weighted function
wqual, Fig. 5(b) shows the value of the weighted hypervolume
for each individual vector in the normalised objective space Z
and with reference point (1, 1). The plot shows that vectors with
very small values of z2 are assigned a high hypervolume, but
vectors with values of z2 larger than 0.2 are assigned a hyper-
volume close to zero. By comparison, Fig. 5(a) shows the value
of the non-weighted hypervolume, which is symmetric around
the diagonal, that is, without a preference for either objective.

As shown in Fig. 5(b), when using the weighted function
wqual, the gradient of the hypervolume values is very steep and
most of the objective space has a hypervolume close to zero. We
can make the gradient gentler by weighting also the z1 compo-
nent (corresponding to time), but then we have to increase the
exponent associated to z2 in order to keep a strong preference
for low solution quality. This is done with the following weight
function:

wxqual = e10·z1/e10 + e100·(1−z2)/e100 (4)

The weighted hypervolume using this weight function for
each individual vector in the objective space Z is shown in
Fig. 5(c). In this case, there is a gentler gradient of the hyper-
volume value than in Fig. 5(b). Moreover, the value of the hy-
pervolume increases exponentially in the direction of decreas-
ing z2 (solution quality), while it stays roughly constant along
z1 (except for very high values of z1).

We illustrate the differences between the original hypervol-
ume and the two weighted variants above with an example.
Fig. 6 shows five performance profiles (not aggregated over
fixed run-time or over fixed quality-targets) in the normalised
objective space Z. The plot shows the region z2 ∈ [0.0, 0.15],
where we can see that the performance profiles are ordered

9

http://dx.doi.org/10.1016/j.ejor.2013.10.043
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Table 6: Configurations of MMAS ordered according to the sum of ranks with respect to the final solution quality obtained after 500
seconds. The numbers in parenthesis are the difference of ranks relative to the best configuration. ∆Rα is the statistically significant
difference in ranks according to the post-hoc test for the Friedman-test with α = 0.05. Configurations that are not significantly
different from the best one are indicated in bold face. For the meaning of the labels, see the caption of Table 4.

∆Rα Configurations (∆R)

13.68 auto var final (0), auto var ALL (48), auto fix final (52), default (132)
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(b) weighted hypervolume with wqual
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(c) weighted hypervolume with wxqual

Figure 5: Value of the classical hypervolume (a) and the weighted hypervolume when using weight
functions wqual (b) and wxqual (c) on the normalised objective space. The grey level at each point gives
the (weighted) hypervolume of that individual point, which is computed as the integral of the weight
function over the region dominated by the point and bounded above by the reference point (1, 1).

according to the final quality achieved, with profile a being
the best and profile e being the worst. The legend provides
three numbers for each profile, which correspond to evaluat-
ing the profile with the classical hypervolume, the hypervolume
weighted by wqual and the hypervolume weighted by wxqual, re-
spectively. Table 7 gives the profiles in increasing order of pref-
erence according to each measure.

In this example, the classical hypervolume ranks profile a,
which is the profile with the best final quality, worse than other
three profiles. The weighted hypervolume functions increase
the preference for profile a, and our proposed variant wxqual

gives it the highest rank.

Next, we test the effect of these two weighted hypervolume
functions on the automatic configuration procedure. In particu-
lar, we carry out additional runs of irace using the weighted

hypervolume variants described above, i.e., wqual (Eq. 3) and
wxqual (Eq. 4). We run irace with the same setup as for tun-
ing all parameter variations at once in Section 5.2, in particular,
with a budget of 10 000 runs of ACOTSP. These additional tun-
ing runs produce two new configurations of MMAS, which we
ran 25 times with different random seed on each test instance.

Fig. 7(a) plots the mean RPD over all runs of the result-
ing four configurations of MMAS: the default configuration
(default); the one resulting from automatically tuning all varia-
tion parameters at once using the classical hypervolume (auto
var ALL); the configuration obtained with the same tuning setup
but using the weighted hypervolume with wqual (whv qual);
and the configuration obtained using the weighted hypervol-
ume with wxqual (whv xqual). In addition, the legend provides
three numbers for each profile, which correspond to evaluat-
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Table 7: Ranking of the performance pro-
files in Fig. 6 according to various prefer-
ences

Preference Ranking best to worst)

final quality a b c d e
hypervolume c b d a e

wqual c b a d e
wxqual a c b d e
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b (0.960397; 0.572763; 1.105872)
c (0.965690; 0.610949; 1.113041)
d (0.952474; 0.488793; 1.039587)
e (0.912283; 0.399583; 0.992997)

Figure 6: For each performance profile, the legend shows the classical hypervol-
ume, and the weighted hypervolume variants wqual and wxqual.

ing the results with the classical hypervolume, the hypervol-
ume weighted by wqual and the hypervolume weighted by wxqual,
each of them averaged over all runs.

Interestingly, the values reported in the legend of Fig. 7(a)
indicate that the configuration tuned using wxqual as the any-
time criterion obtains a better hypervolume weighted by wqual

than the configuration tuned using wqual as the anytime crite-
rion. Taking into account Fig. 5(b) and (c), we can observe that
both weight functions are strongly correlated and also that wqual

is “flatter” than wxqual, that is, there are more plateau regions
with almost the same value for different points. Our conjec-
ture is that the strong correlation makes possible to tune for one
weight function and maximise the other. At the same time, the
relative flatness of wqual makes it a harder optimisation criterion
for tuning than wxqual. Additional experiments [39] appear to
confirm this conjecture.

In terms of final quality, the two configurations tuned with
the weight functions (wqual and wxqual) are slightly better than
the one tuned with the classical hypervolume, as indicated by
the boxplots given in Fig. 7(b). Moreover, the configurations
tuned with the weight functions obtain the lowest final qual-
ity in most instances. In fact, according to the Friedman test,
these configurations are significantly better than configurations
obtained by tuning for the classical hypervolume and for final
quality (Table 8). The main conclusion of these experiments
is that the weighted hypervolume allows us to set preferences
on the trade-off between quality and time. For example, the
weighted function wxqual imposes a strong preference for good
final quality.

Table 8: Configurations of MMAS ordered according to the
sum of ranks with respect to the final solution quality obtained.
The numbers in parenthesis are the difference of ranks relative
to the best configuration. ∆Rα is the statistically significant dif-
ference in ranks according to the post-hoc test for the Friedman-
test with α = 0.05. Configurations that are not significantly
different from the best one are indicated in bold face. For the
meaning of the labels, see the caption of Table 4.

∆Rα Configurations (∆R)

23.16 whv (xqual) (0), auto var final (11), whv (qual) (47),
auto var ALL (94), auto fix final (99), default (199)

7. Case Study: Automatic configuration of an anytime MIP
solver

7.1. Experimental setup

In this second scenario, we apply our proposed approach to
a very different problem with a large number of parameters. In
particular, we tune 207 parameters of SCIP [1], a mixed integer
programming (MIP) solver. The number of parameters is too
large to be detailed here, but details can be found in the supple-
mentary page [40].

The benchmark set is composed of 2 000 MIP-encoded in-
stances (200 goods, 1000 bids) of the NP-hard winner determi-
nation problem for combinatorial auctions [31, 37]. The bench-
mark set is split in two disjoint sets of 1 000 instances each, one
is used for training and the other for testing. In a combinatorial
auction, bids are placed for subsets of goods. The goal in the
winner determination problem is to find an assignment of goods
to bids that maximises the total value of the winning bids.

For our experiments here, we use SCIP version 2.0.2 linked
with the linear programming solver SoPlex 1.5.0. We set the
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Figure 7: Automatically tuned configurations of MMAS vs. the default configuration. (a) SQT curves, the legend shows the clas-
sical hypervolume, and the weighted hypervolume variants wqual and wxqual; (b) Final quality achieved. For the meaning of the
labels, see the caption of Table 4.

maximum memory limit of SCIP to 350 MB. During our ex-
periments, we discovered that some parameter configurations
produced an incorrect behaviour of SCIP, and we assign those
configurations the worst possible hypervolume. We give SCIP a
time limit of 300 seconds, and we allow 5 000 runs of SCIP for
each run of irace. We carry out the tuning as before, that is,
we combine irace with the hypervolume measure in order to
improve the anytime behaviour of SCIP. We seed the automatic
configuration procedure with the default configuration of SCIP.

For the purposes of comparison, we perform two additional
tuning runs with two different objectives: (1) minimising the
runtime to find the optimal solution, and (2) maximising the fi-
nal objective value obtained after 300 seconds. Thus, we obtain
two additional configurations of SCIP, which we label as auto
time and auto quality, respectively. We use these configura-
tions to asses the potential loss of either run time or final solu-
tion quality, when tuning for improving the anytime behaviour.
Finally, we run all configurations of SCIP obtained from the
various tuning setups plus the default configuration one time
on each test instance.

7.2. Analysis of SCIP configurations

As a first step, we graphically examine the solution quality
over time. For each configuration, we compute the mean RPD
over the 1 000 test instances at each time step. Next, we plot the
mean RPD over time (Fig. 8). The legend gives the mean hy-
pervolume value corresponding to each configuration of SCIP.
The plot uses a logarithmic scale for the x-axis (time), since the
largest differences appear on the first half of the computation
time limit.

The plot shows that the configuration tuned with the hyper-
volume (auto anytime) obtains a better anytime behaviour (and
a higher hypervolume) than the rest. Moreover, both the config-

uration tuned for final quality and the one tuned for solving time
show worse anytime behaviour (and lower hypervolume) than
the default configuration of SCIP. The differences observed in
the hypervolume values (and, hence, in the anytime behaviour)
of each SCIP configuration are more evident in Fig 9(a), which
shows that the hypervolume values corresponding to auto any-
time are much larger than those corresponding to the other con-
figurations of SCIP.

Improving the anytime behaviour does not necessarily mean
that instances are solved faster to optimality. Fig. 9(b) shows
the time required by each configuration to solve each of the
1 000 test instances. The best configurations of SCIP according
to this criterion are the default configuration and the configura-
tion tuned specifically for this criterion (auto time). This result
is not surprising, since this is the most popular evaluation cri-
terion in mixed-integer programming, and, hence, we presume
that SCIP is by default tuned for it.

We also examine the potential loss of final quality. Fig. 9(c)
shows the RPD from the optimal at the cut-off time of 300 sec-
onds. All configurations solve most of the instances to opti-
mality (or very close to it). However, the configuration tuned
for anytime (auto anytime) is the one that diverges most often
from near-optimality. Hence, there is some loss of final quality
when tuning using the hypervolume.

If we look at the solution quality up to a different cut-off

time, the situation is certainly different. For example, if we
consider solution quality up to 10 seconds (Fig. 9(d)), there is
a large difference between the configurations. While the auto
anytime configuration obtains an RPD value much lower than
10% in most cases, the RPD values of the default configuration
are frequently larger than 10%.

The observations above are further confirmed by statistical
analysis. We carry out four independent Friedman tests (as de-
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scribed in Sec. 5.4.1), one for each evaluation criterion shown
in Fig. 9. The results of the four tests are reported in Table 9.
As expected, the best configuration in terms of hypervolume is
the one tuned for that criterion (auto anytime), which is signif-
icantly better than the rest by a large margin. The auto any-
time configuration is also the clear winner in terms of the solu-
tion quality obtained if stopped after 10 seconds. Moreover, in
terms of final quality, the differences between the strategies are
not statistically significant. The difference in the sum of ranks
between auto anytime and default is only 44.5.

Finally, by using the weighted hypervolume as explained in
Section 6, we are able to find a configuration of SCIP with good
anytime behaviour and that ranks better than default according
to final quality. However, the differences in ranks are still not
statistically significant. Hence, for conciseness, we do not dis-
cuss the results of using the weighted hypervolume for tuning
SCIP here, but we provide the results as supplementary mate-
rial [40]. The results provided here are sufficient to conclude
that the proposed method was able to find a configuration of
SCIP that has better anytime behaviour than the default, with-
out a significant loss of final quality.

8. Conclusions

In this paper, we have shown that the combination of irace
and the hypervolume quality measure is effective at improv-
ing the anytime behaviour of optimisation algorithms. We
have presented two representative and challenging case stud-
ies. The first case study compared the results obtained auto-
matically against those obtained by a human expert for the task
of designing parameter variation strategies that show good any-
time behaviour. Our results show that the automatic configu-
ration method is able to match the anytime behaviour obtained
by the parameter variation strategies designed by a human ex-
pert. Moreover, the automatic method allows exploring a much
larger design space, potentially leading to configurations with
better anytime behaviour. These are expected results when us-
ing automatic configuration tools for tuning with a fixed termi-
nation criterion. However, this is the first time that such results
have been obtained when automatically designing anytime al-
gorithms. In a follow-up work, we have applied the approach
proposed here to improve the anytime behaviour of a state of the
art optimiser for black-box continuous optimisation [44]. Our
results there show that even for such state-of-the-art optimis-
ers, the default parameter settings are not well-suited for sce-
narios where the termination criterion is unknown in advance.
Although the results presented here focus on single-objective
optimisers, our approach is applicable to multi-objective opti-
misers as well. In another follow-up work, we have applied
it to automatically configure the parameters of multi-objective
evolutionary algorithms in order to improve their anytime be-
haviour [50].

In the second case study presented here, we apply our ap-
proach to an off-the-shelf optimisation solver, with a very large
number of parameters. In this case, the optimisation solver is
already tuned to solve problems to optimality as fast as possi-
ble. However, we show that if stopped before reaching opti-

mality, the results may be very poor. Our proposed approach
helps to tune such solvers in order to be more robust in case
of earlier termination, without specifying in advance when the
algorithm could be terminated. Our results show that important
improvements can be obtained, specially for very early termi-
nation, without sacrificing much of the final quality. Moreover,
comparing the configurations that produce better anytime be-
haviour versus those that produce better final quality (or shorter
time to optimality) may lead to improvements in the solvers
themselves.

The choice of the hypervolume measure also allows incorpo-
rating preference information into the automatic configuration
process by means of the weighted hypervolume. We propose a
weighted formulation that emphasises a good final quality but
still takes into account the overall anytime behaviour of the al-
gorithms. We show that, by adding such preferences, it is pos-
sible to effectively bias the configurations selected by the au-
tomatic configuration tool. This allows customising algorithms
to very specific anytime scenarios, where an exact termination
criterion is not known, but there is some a priori knowledge of
what is expected.

An open question is how to extend the results to longer ter-
mination criteria than the ones that are feasible to test during
automatic configuration. A problem that may arise is that con-
figurations produce good results up until the tested termina-
tion criterion, but the performance becomes unsatisfactory for
longer runs. Woodruff et al. [57] have studied how to dynam-
ically set a termination criterion. Survival analysis techniques
may help to estimate the behaviour of the algorithms for longer
runtime [27]. These techniques could be incorporated into our
approach in order to dynamically adjust the maximum cut-off

time while tuning the anytime behaviour.
Finally, we are convinced that our approach contributes to-

wards the final goal of designing algorithms that are more ro-
bust to different termination criteria and, hence, applicable to a
wider range of scenarios, without sacrificing solution quality.
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Figure 9: Boxplots of the results obtained by four different parameter configurations of SCIP
according to various evaluation criteria.
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Table 9: Configurations of SCIP ordered according to the sum of ranks with respect to four different evaluation criteria. The
numbers in parenthesis are the difference of ranks relative to the best ranked configuration. ∆Rα is the statistically significant
difference in ranks according to the post-hoc test for the Friedman-test (α = 0.05). Configurations that are not significantly different
from the best one according to the Friedman test are in bold face.

∆Rα Configurations (∆R) Evaluation criterion

Hypervolume
75.1 auto anytime (0), default (1183), auto quality (1490), auto time (2335)

Time to best found
53.52 auto time (0), default (192), auto quality (1603), auto anytime (2353)

Quality after 10 seconds
83.01 auto anytime (0), default (460), auto quality (1019.5), auto time (2024.5)

Final quality (300 seconds)
∞ default (0), auto time (8.5), auto quality (19), auto anytime (44.5)
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[21] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, 2004.
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