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Abstract There have been several proposals on how to apply the ant colony
optimization (ACO) metaheuristic to multi-objective combinatorial optimization
problems (MOCOPs). This paper proposes a new formulation of these multi-
objective ant colony optimization (MOACO) algorithms. This formulation is based
on adding algorithm components specific for tackling multiple objectives to the
basic ACO metaheuristic. Examples of these components are how to represent
multiple objectives with pheromone and heuristic information, how to select the
best solutions for updating the pheromone information, and how to define and use
weights to aggregate the different objectives. This formulation reveals more sim-
ilarities than previously thought in the design choices made in existing MOACO
algorithms. The main contribution of this paper is an experimental analysis of
how particular design choices affect the quality and the shape of the Pareto front
approximations generated by each MOACO algorithm. This study provides gen-
eral guidelines to understand how MOACO algorithms work, and how to improve
their design.

Keywords Ant colony optimization - multi-objective optimization - multi-
objective traveling salesman problem - experimental analysis

1 Introduction

Ant colony optimization (ACO) (Dorigo et al, 1991b, 1996; Dorigo and Stiitzle,
2004) is a swarm intelligence technique that was initially conceived for tackling
single-objective combinatorial optimization problems. Given its success on these
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problems, ACO algorithms were soon extended to tackle multi-objective combina-
torial optimization problems (MOCOPs), resulting in the introduction of multi-
objective ant colony optimization (MOACO) algorithms. We focus on MOACO
algorithms that do not make any assumption about the preferences of the decision
maker. In other words, these MOACO algorithms tackle multi-objective problems
in terms of Pareto optimality.

Several tens of papers have been written on MOACO algorithms and their
applications. Few of them examine alternative design choices for the algorithm
components of the proposed MOACO algorithms (Iredi et al, 2001; Lépez-Ibanez
et al, 2004; Alaya et al, 2007). In addition, two articles that review MOACO al-
gorithms from different angles have been published. Garcia-Martinez et al (2007)
reviewed the existing MOACO algorithms available until 2007 and experimentally
compared their performance using the bi-objective traveling salesman problem
(bTSP) as a benchmark problem. The goal of this comparison was to identify the
best algorithm and it did not attempt to give deeper insights into how the compo-
nents of MOACO algorithms influence performance. A later review by Angus and
Woodward (2009) provides a more fine-grained taxonomy of MOACO algorithms,
but lacks an empirical analysis of their behavior.

In this article, we first define the algorithm components that constitute a
MOACO algorithm, making a strong distinction between those components spe-
cific to multi-objective optimization (MO-specific), and those components related
to the underlying ACO algorithm. Then, we identify the design choices proposed
in each MOACO algorithm for implementing these MO-specific algorithm compo-
nents, and we provide a taxonomy that classifies MOACO algorithms with respect
to these algorithm components. This taxonomy allows us to identify common-
alities between MOACO algorithms that have previously remained undetected.
Moreover, we empirically analyze the behavior of these design choices, and we
directly relate the performance of different MOACO algorithms and the shape of
the Pareto front approximations generated by them to their design choices.

We choose the bTSP as an example application due to its prominent role
as a standard benchmark for multi-objective algorithms (Garcfa-Martinez et al,
2007; Lust and Teghem, 2010; Paquete and Stiitzle, 2009). In fact, most MOACO
algorithms are designed to solve bi-objective optimization problems, and, hence,
we consider the bi-objective variant of the traveling salesman problem (TSP). The
bTSP is also a problem where heuristic information is useful and, thus, it allows
to study the impact of different strategies for exploiting heuristic information in
MOACO algorithms.

The experimental analysis in this paper significantly extends our earlier anal-
ysis (Lépez-Ibaiiez and Stiitzle, 2010a,b). Firstly, in this analysis, we take into
account the parameter settings of the underlying ACO algorithm, in our case
MAX-MIN Ant System (MMAS) (Stiitzle and Hoos, 2000). In fact, the best
parameter settings of the underlying ACO algorithm depend on the particular
MOACO algorithm. Secondly, we consider the improvement of the ants’ solutions
by means of local search, which is known to be an essential component of many
high-performing ACO algorithms. Thirdly, we also include in the analysis new de-
sign alternatives that have not been proposed in any previous MOACO algorithm.
As a result we improve the understanding of MOACO algorithms and their design.

This article is structured as follows. In Section 2, we first introduce the TSP,
the ant colony optimization (ACO) metaheuristic, and MAX-MZN Ant Sys-
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tem (MMAS). Section 3 introduces some basic notions of multi-objective opti-
mization, discusses the MOACO algorithms we study, and gives our taxonomy
of MOACO algorithms. Section 4 provides a systematic experimental analysis of
MOACO algorithms and their design choices. We conclude in Section 5.

2 Ant Colony Optimization and MAX-MZN Ant System

MOACO algorithms add a number of algorithm components to the ACO meta-
heuristic to make it amenable to tackle multi-objective problems. To make the
paper self-contained, we first give a concise presentation of the ACO metaheuris-
tic and MMAS, the (single-objective) ACO algorithm that we use as the one
underlying the MOACO algorithms we study. The TSP was the first problem to
which ACO algorithms were applied, and the following presentation will adopt it
as an example application.

2.1 The Traveling Salesman Problem

In the TSP, one is given an edge-weighted complete graph G = (V, E, ¢), where V
is the set of n = |V/| vertices, E is the set of edges that fully connects the graph,
and ¢ is a cost function ¢: F — R that assigns to each edge (4, j) a cost ¢(i, j). Here
we assume that the cost function is symmetric, that is, c¢(i,7) = ¢(j,¢). The goal
in the TSP is to find in G a minimum cost Hamiltonian circuit p = (p1,...,pn),
where the cost of the Hamiltonian circuit is

n—1

F(0) = ¢(pn,p1) + Y, cpi; pis1). (1)

i=1

2.2 The Ant Colony Optimization Metaheuristic

In ACO algorithms, artificial ants are probabilistic solution construction proce-
dures. The probabilistic decisions taken at each construction step are a function of
(artificial) pheromone trails 7;; and heuristic information 7;;, which are numeri-
cal values associated to each solution component (i, 5) of a problem instance to be
tackled—for example, an edge in the case of the TSP. In the solution construction,
ants probabilistically favor solution components with high pheromone trail values
and high heuristic desirability values. The pheromone trail values 7;; represent the
desirability of selecting solution component (i,7) learned during the execution of
the algorithm; the heuristic information 7;; represents the desirability of a solu-
tion component as derived from the instance data. Once the solution construction
is completed and the solutions are possibly improved by the application of a lo-
cal search procedure, the pheromone trail values are modified by evaporation and
pheromone deposit on some solution components. An algorithmic outline of the
ACO metaheuristic is given in Fig 1. The main features of the three procedures
ConstructSolutions, LocalSearch, and UpdatePheromones are the following.
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procedure ACOMetaheuristic
ScheduleActivities
ConstructSolutions
LocalSearch  //optional
UpdatePheromones
end-ScheduleActivities
end-procedure

Fig. 1 A high-level view of the ACO metaheuristic for NP-hard problems.

— ConstructSolutions. This procedure implements the solution construction by the
ants. Each of the N, ants generates in this process a candidate solution ex-
ploiting the pheromone and heuristic information. Two parameters, a > 0 and
B > 0, determine the relative influence of pheromone vs. heuristic information
in the solution construction.

— LocalSearch. The performance of ACO algorithms is often strongly enhanced
by improving the ants’ solutions using a local search procedure. In fact, local
search is probably the most common example of additional techniques that
can improve the performance of ACO algorithms. For an overview of other
examples, we refer to Dorigo and Stiitzle (2004).

— UpdatePheromones. The update of the pheromones consists of two processes.
The first implements pheromone evaporation, which is a mechanism to lower
pheromone values. The amount of pheromone evaporation depends on a pa-
rameter p € [0, 1], which is called evaporation rate. The second process deposits
pheromone on solution components that are contained in good solutions among
those previously generated. Which solutions are chosen for the pheromone de-
posit and how much pheromone they deposit depends on the specific ACO
algorithm.

2.3 MAX-MZIN Ant System

The first ACO algorithm proposed in the literature was Ant System (Dorigo et al,
1991a, 1996). Soon after it, a number of improved variants were proposed, one of
which is MMAS (Stiitzle and Hoos, 2000). MMAS borrows several algorithm
components from Ant System such as the solution construction mechanism. As in
Ant System, in MMAS solutions are constructed using the random proportional
rule. For an ant k positioned in city ¢, the probability to choose city j as the next
one is given by

[7i3]* - [mig)”

> et [Tin]® - [min)

pij = 5 ifje N*, otherwise pij = 0; (2)

where A" is the feasible neighborhood of ant k. In the simplest case, A’ comprises
all those cities that the ant has not yet visited. However, most ACO implemen-
tations for the TSP make use of candidate lists. The candidate list of a city
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typically comprises a fixed length list of its nearest neighbors. An ant chooses
among these candidates as long as feasible neighbors are available from this list.
Only if all nearest neighbors have already been visited, a different city may be
selected.

The main difference between MMAS and Ant System is in the update of the
pheromone trails. In MMAS only one solution deposits pheromone after each
iteration. This is typically the iteration-best solution, which is the best solution
generated by an ant in the current algorithm iteration, or the best-so-far solution,
which is the best solution found since the start of the algorithm. MMAS may
also use a restart-best solution, which is the best solution after a re-initialization
of the pheromone trails. Another difference between MMAS and Ant System is
that the range of pheromone levels in MMAS is limited to an interval [Tmin, Tmax],
which ensures a minimum degree of search diversification. The pheromone update
is implemented by the equation

Tij < max{rmim IIlin{Tmax7 (1 _ p) “Tij + ATEeSt}} (3)

where ATz-bjeSt is set to

best F(s"*%) if edge (4,7) is part of the best solution ¢,
Ar, ijes = . (4)
0 otherwise.

F(s”*") is usually taken to be the reciprocal of the tour cost of the solution
that is chosen for the pheromone deposit. The initial pheromone trail level 19 in
MMAS is set to Tmax. For a more detailed description of MMAS we refer to
the original paper (Stiitzle and Hoos, 2000); for more details on ACO we refer to
Dorigo and Stiitzle (2004).

3 Multi-Objective Ant Colony Optimization
3.1 Bi-objective Traveling Salesman Problem

We analyze the performance and the behavior of MOACO algorithms using their
example application to the bTSP, which directly extends the single-objective TSP.
In the bTSP, the cost function is now a vector-valued function c: E — R? that
assigns to each edge (i,7) a cost vector with components ¢1 (4, 7) and ¢2(4, 7). The
first and the second component correspond to the costs for the first and second
objective, respectively. We assume here that the bTSP is symmetric, that is, we
have ¢q(%,7) = ¢q(j, %), # j,¢ = 1,2. The objective in the bTSP is to find a set of
Hamiltonian circuits that “minimizes” the tour cost f = (f1, f2); for each objective
vector component fq, the cost of the Hamiltonian circuit is computed according
to Equation 1.

If nothing is known about the preferences of the decision maker, the goal be-
comes to determine a set of Hamiltonian circuits that “minimizes” the objective
vector f in terms of Pareto optimality. We say that a vector u dominates v (u < v)
iff u#vandwu <w;, i=1,...,q, with ¢ being the number of objectives. u and v
are nondominated iff u £ v and v £ u. We use the same terminology for solutions,
that is, we say that a solution s dominates another solution s’ iff f(s) < f(s'). A
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solution is Pareto optimal iff there is no feasible solution s’ for which we have
f(s") < f(s). Since finding the set of all Pareto-optimal solutions is typically in-
tractable, the goal becomes to determine a set of mutually nondominated solutions
that approximates the Pareto-optimal set.

3.2 Multi-Objective Ant Colony Optimization

Soon after the first successful applications of ACO algorithms, these have been
extended to tackle multi-objective combinatorial optimization problems. Most of
these approaches tackle the problems in the Pareto sense. Since the number of
MOACO proposals goes into the tens, efforts have been made to review these
and to identify their commonalities and differences (Angus and Woodward, 2009;
Garcifa-Martinez et al, 2007).

The first of these efforts was an article by Garcia-Martinez et al (2007), which
classifies the existing algorithms according to the usage of one or several pher-
omone matrices and the usage of one or several heuristic information matrices.
It also provides an experimental study of these algorithms using their example
application to the bTSP. The comparison tries to replicate precisely the original
algorithms, for example, respecting the original choice of the underlying ACO al-
gorithm. Moreover, the analysis only assesses which algorithm is performing best,
without giving insights into the reasons for the performance differences. In par-
ticular, no insight is obtained as to whether the observed differences are due to
multi-objective (MO-specific) algorithm components of the MOACO algorithms,
e.g., using a single versus multiple heuristic matrices, or whether the differences
are due to different choices of the underlying ACO algorithm, e.g., whether Ant
System or MMAS was used in each MOACO algorithm.

The review by Angus and Woodward (2009) provides a more detailed classi-
fication of MOACO algorithms according to algorithm components, such as the
pheromone deposit and decay, the type of solution construction, or how candidate
solutions are evaluated. Unfortunately, this review does not consider any experi-
mental analysis for identifying the impact that specific MOACO design decisions
have on performance. Therefore, the practical relevance of particular design deci-
sions in MOACO algorithms remains unclear.

In this article, we take a different view from these two review articles. In a
nutshell, our point of view can be summarized by the equation

MOACO = ACO + MO-specific components. (5)

In other words, we see MOACO algorithms as being composed of an under-
lying ACO algorithm whose rules are used to construct solutions or update the
pheromones. These algorithms are extended by specific algorithm components that
make them amenable to tackling multi-objective optimization problems. In fact,
the existing MOACO algorithms can be cast in such terms.

3.3 MOACO Algorithms

In the following, we examine several MOACO algorithms with the goal of identi-
fying their MO-specific components. We focus on MOACO algorithms that have



An experimental analysis of design choices of MOACO algorithms 7

been designed with Pareto optimization in mind. Hence, we exclude from our
analysis a number of algorithms that were designed for lexicographic optimization
(Mariano and Morales, 1999; Gambardella et al, 1999; Gravel et al, 2002), or al-
gorithms that diverge from the basic structure of the ACO metaheuristic, such as
population-based ACO (Guntsch and Middendorf, 2003; Angus, 2007). We also
exclude from our review the adaptation of MOAQ to the bTSP (Garcia-Martinez
et al, 2007), since we have already shown that its results are extremely poor in
comparison with the other algorithms (Lépez-Ibafiez and Stiitzle, 2010b), and it
does not contribute to our discussion.

3.3.1 BicriterionAnt

BicriterionAnt (Iredi et al, 2001) is a MOACO algorithm that uses different phero-
mone and heuristic matrices for each objective, which are combined by a weighted
product aggregation. In other words, the computation of the values of 7;; and 7;;
that are used in Equation 2 is done as

7ij = (ri) UM @) and iy = ()T (i), (6)

where Tilj and Tin are the pheromone trails associated to solution component (3, j)
for each of the two pheromone matrices, and nilj and nfj are the heuristic informa-
tion specific for each objective. A weight A\, € A, with 0 < A\, < 1, is associated
to each ant k, and, hence, there are as many weights as ants (|A] = N,).

In the original proposal, Iredi et al (2001) suggest to update the pheromone
matrices by using the set of nondominated solutions found in the current iteration
P™ by an amount equal to At = 1/|P'®|. However, this approach only works
for heterogeneous pheromone matrices, that is, when each matrix is mapped to
different solution components. In the bTSP (and other problems), this is not the
case, and such an update will result in multiple identical pheromone matrices.
Hence, we follow Garcia-Martinez et al (2007), and we use A7 = 1/f4(sq) to
update each matrix, where fg is the objective function value of objective ¢ = 1, 2.

In the same paper, Iredi et al (2001) discuss the use of multiple colonies. We
will examine this possibility in Section 3.5.

3.8.2 Multiple Ant Colony System

Multiple Ant Colony System (MACS) (Bardan and Schaerer, 2003) differs from
BicriterionAnt in the use of a single pheromone matrix instead of several. As
BicriterionAnt, MACS uses multiple heuristic matrices, which are aggregated by
weighted product using a different weight Ay for each ant k, as shown above.

In MACS, as in BicriterionAnt, pheromone information is updated with non-
dominated solutions. However, we use At = 1 for the pheromone deposit, since
all solutions update the same pheromone matrix.

3.3.8 COMPETants

The original proposal of COMPETants (Doerner et al, 2003) formulates it as a
multi-colony approach with one colony for each objective. Each “colony” has one
pheromone and heuristic matrix and constructs solutions independently, except for
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a number of ants (called “spies”), which aggregate the two pheromone matrices
by weighted sum (with equal weight given to each matrix) using either the first
or the second heuristic matrix (thus creating two solutions). Finally, a number of
ants from each “colony” are used to update the pheromone matrix of their own
“colony”.

It is possible to formulate COMPETants as a single-colony algorithm that uses
multiple pheromone and heuristic matrices, which are aggregated by weighted
sum. First, we define weights as A € {0,0.5,1}. Ants using A = 0 only consider
the pheromone and heuristic matrices corresponding to the first objective, whereas
ants using A = 1 only consider the ones corresponding to the second objective.
These two weights correspond to the “colonies” in the original formulation of
COMPETants, whereas A = 0.5 corresponds to the “spies”. The aggregation of
the pheromone matrices in COMPETants is equivalent to

Ti; = (1 — )\)Tilj + )\Tin . (7)

To match exactly the original formulation of COMPETants, we consider only
A € {0,1} when aggregating the heuristic matrices, that is, half the ants use only
one heuristic matrix ! and the other half use the other heuristic matrix n2. This
effectively means that heuristic matrices are not aggregated.

The pheromone update method of COMPETants differs from the one of Bicri-
terionAnt and MACS. In our single-colony formulation, we update each pheromone
matrix with the best solutions with respect to the corresponding objective. We call
this method best-of-objective update.

For the sake of simplicity, we disregard the fact that in the original COM-
PETants algorithm the number of ants for each weight was chosen adaptively
based on the algorithm progress; here each weight is used by one third of the total
number of ants. We also follow MMAS so that each pheromone matrix is updated
with only one solution, the best one with respect to the corresponding objective.
We use A7 = 1 as pheromone deposit, because the solutions used to update each
matrix are different, and they may have quite different objective values.

3.8.4 Pareto Ant Colony Optimization

Pareto Ant Colony Optimization (P-ACO) (Doerner et al, 2004) is characterized
by the use of multiple pheromone matrices, one for each objective, which are ag-
gregated by means of a weighted sum, instead of a weighted product as in Bricri-
terionAnt. Each ant k uses a different weight Ay for aggregating the pheromone
matrices. Each pheromone matrix is updated with the best and the second-best
solution for the corresponding objective. This is equivalent to the pheromone up-
date in COMPETants, which we call best-of-objective, but using two solutions per
pheromone matrix. We use a constant pheromone deposit of A7 =1 as in COM-
PETants.

In the original proposal, Doerner et al (2004) consider just a single heuristic
matrix, since it was difficult to define appropriate heuristic information for each
objective in their benchmark problem. In later publications, however, Schilde et al
(2009) use multiple heuristic matrices, one for each objective. The heuristic matri-
ces are aggregated in the same way as the pheromone matrices, that is, by means
of a weighted sum. The design choice between using only one or multiple heuristic
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matrices is crucial for the performance of the algorithm. Here, we will assume that
the default configuration of P-ACO uses multiple heuristic matrices, since, as we
will show later, this is the most advantageous configuration.

3.8.5 m-ACO Variant 1 (m-ACO1)

Alaya et al (2007) proposed four alternatives for the design of a MOACO algo-
rithm. The formulation presented for the first variant, m-ACQO1, has one “colony”
per objective, and an “extra colony” that builds solutions by aggregating the pher-
omone matrices of the other two colonies in a stochastic manner. In particular, at
each construction step, ants from the extra colony select randomly one objective
and use the pheromone information associated to that objective. Each colony uses
the heuristic information of the corresponding objective, whereas the extra colony
aggregates these multiple heuristic values into a single one.

As in the case of COMPETants, m-ACO; can be formulated as a single-colony
approach that resembles more closely the other algorithms reviewed above. This
formulation of m-ACO; uses multiple pheromone matrices and multiple heuris-
tic matrices, one for each objective, which are aggregated using three weights
A € {0,0.5,1}. The pheromone matrices are “aggregated” by choosing at each
construction step, with a probability (1 — A), the first matrix and with probabil-
ity A the second matrix. We call this approach weighted random aggregation. The
multiple heuristic matrices are aggregated by means of weighted sum. With A =0
or A = 1, only one of the pheromone and heuristic matrices is used, which mimics
the original formulation of m-ACO;.

In the original formulation of m-ACQO;, the pheromone information of each
colony is updated by solutions of the same colony. Only one solution is used to
update each colony’s pheromone matrix. The update of the extra colony is slightly
different: each pheromone matrix is updated with the best solution for each ob-
jective generated by the extra colony. That is, two solutions are selected for the
update, but only one solution updates each pheromone matrix. Different colonies
in the original formulation correspond to a different A in our formulation. Let us
consider first the case of the extra colony, which corresponds to A = 0.5. We keep
two lists of best solutions generated using this weight, each list ordered with re-
spect to a different objective. Then, each pheromone matrix is updated with the
best solution of the list corresponding to the same objective. In the case of A = 0,
we keep only the list for the first objective, and, hence, only the first pheromone
matrix is updated. For A\ = 1, we keep only the list for the second objective, and
the best of this list is used to update the second pheromone matrix. This update
method, which we call best-of-objective-per-weight, replicates the pheromone up-
date of m-ACO;. As in COMPETants and P-ACO, we use a pheromone deposit
of AT =1.

3.3.6 m-ACO Variant 2 (m-ACOz3)

The second variant by Alaya et al (2007) only differs from m-ACO; in the phero-
mone aggregation, which in m-ACO2 is done by summing the pheromone matrices
of each objective. In fact, this corresponds to a weighted sum aggregation using a
weight vector (1,1). When using MMAS as the underlying ACO algorithm, or
any other scale invariant ACO algorithm (Birattari et al, 2007), this is equivalent
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to using A = 0.5. Hence, m-ACOx is very similar to P-ACO (Section 3.3.4) but
using only three weights (A € {0,0.5,1}), and several ants per weight.

3.8.7m-ACO Variant 3 (m-ACOs3)

The third variant proposed by Alaya et al (2007) uses a single pheromone matrix.
This pheromone matrix is updated by using nondominated solutions. In particular,

{1 if edge (7, ) appears in a solution in P,
ATy =

0 otherwise;

where P is a set of nondominated solutions. In general, it could be the set of non-
dominated solutions found in the current iteration (iteration-best set), or since
the start of the run (best-so-far set). Alaya et al (2007) emphasize that every
pheromone value is updated only once, independent of the number of solutions
that contain it. This is different from other algorithms that use a “nondominated
update” such as MACS and BicriterionAnt. However, the general principle is the
same, and only the quantity of pheromone deposit differs. The heuristic informa-
tion is also a single matrix, which is built by aggregating the heuristic information
corresponding to each objective into a single matrix: n;; = mlj + 771'21'- Finally, since
there is a single pheromone matrix and a single heuristic matrix, the random pro-
portional rule of m-ACOs3 is the same as for the single-objective ACO algorithms

(Eq. 2).
3.8.8 m-ACO Variant 4 (m-ACOy4)

In the fourth variant proposed by Alaya et al (2007), there is one pheromone
matrix per objective. These matrices are aggregated by means of weighted random
aggregation as in m-ACQO1. There is only one single heuristic matrix, which is built
as in the m-ACOQOs3 variant. Finally, each pheromone matrix is updated with the
best solution for each objective, which exactly matches the best-of-objective update
method used by COMPETants and P-ACO.

3.4 Taxonomy of Single-Colony MOACO Algorithms

Table 1 categorizes the algorithms reviewed above according to several algorithm
components: the use of a single or multiple pheromone matrices, a single or mul-
tiple heuristic matrices, the aggregation method, the number of weights, and the
pheromone update method. When there is only a single pheromone matrix and a
single heuristic matrix, as in m-ACOQOs3, aggregation is not necessary.

We consider that all algorithms in Table 1 are single-colony MOACO algo-
rithms. In the next section, we discuss the use of multiple colonies in MOACO.

3.5 Multi-Colony BicriterionAnt

The idea of using multiple “colonies” of ants can be found in many MOACO al-
gorithms. However, the definition of “colony” is far from consistent across these
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Table 1 Taxonomy of single-colony MOACO algorithms. [7] refers to the use of a single or
multiple pheromone matrices, [n] refers to the use of a single or multiple heuristic matrices,
Num. weights denotes the number of values used for A, and the pheromone update method
(Ph. update) can be either nondominated solutions (ND), best-of-objective (BO) or best-of-
objective-per-weight (BOW). Also, ¢ is the number of objectives, and N, is the number of
ants.

Algorithm [r]  [n] Aggregation Num. weights Ph. update
BicriterionAnt q q weighted product Na ND
MACS 1 q weighted product N, ND
COMPETants q q weighted sum g+1 (A={0,0.51}) BO
P-ACO q q weighted sum Ny BO
random (7) _

m-ACO; q q {Weighted sum () ¢ +1 (A=1{0,0.51}) BOW
m-ACO2 q q weighted sum qg+1(A={0,0.5,1}) BOW
m-ACOs3 1 1 - — ND
m-ACOy4 q 1 random (7) 1 (A ={0.5}) BO

proposals. For example, in the original description of COMPETants (Doerner et al,
2003), a group of ants that uses the same pheromone and heuristic information
to construct solutions is said to be a multi-colony approach because the ants may
use different weights in aggregating diverse information corresponding to different
objectives. The same can be said of the m-ACO; and m-ACO2 algorithms. By
contrast, Iredi et al (2001) describe a “multi-colony” algorithm as a multi-start
version of a single-colony algorithm, where each of the colonies may have different
settings. According to this definition, each colony uses its own pheromone infor-
mation and has an associated number of ants that use exclusively that information
to construct solutions. Cooperation among the colonies is then enabled through
the exchange of solutions. This definition of multi-colony MOACO is more con-
sistent with the idea of independent colonies and we adopt it here. It has the
advantage of being easily applicable to all the algorithms reviewed above, as we
have shown elsewhere (Lépez-Ibédfiez and Stiitzle, 2012a). For the sake of sim-
plicity, we only consider in this paper the multi-colony variant of BicriterionAnt
(MC-BicriterionAnt).

In MC-BicriterionAnt, different colonies may be forced to specialize in different
regions of the Pareto front by various means (Iredi et al, 2001). First, colonies may
be assigned different weights for aggregation, either completely disjoint sets or sets
that share common weights. We call this component multi-colony weights. More
formally, a set of equally distributed weights in the interval [0,1] is generated.
Then, in the case of disjoint multi-colony weights, this set is partitioned into
equal disjoint sub-intervals per colony, that is, Ac; = ((¢ — 1) - Nyeights + (¢ —
1))/ (Nweights - Noo1), & = 1, ..., Nyeights; ¢ = 1, ..., Neo1. In the case of overlapping
multi-colony weights, the sub-intervals overlap by a given percentage, which is
fixed to 50% here.

Iredi et al (2001) propose that colonies cooperate to identify the best solutions
by storing the solutions constructed by all colonies in a single archive. Nondom-
inated solutions from this archive are assigned back to the various colonies to
update their pheromone matrices. We call multi-colony update the procedure that
assigns solutions to each colony for updating its pheromone information. In the
simplest case, update by origin, each solution is assigned to the same colony that
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constructed it. An alternative, called update by region, is to assign a region of the
Pareto front to each colony, and solutions located in a particular region update
the pheromone information of the corresponding colony. In the bi-objective case,
a trivial approximation of update by region is to sort the nondominated front ac-
cording to one objective, divide it into as many equal-sized parts as colonies, and
use each part to update each colony.

In the experimental part, we will analyze the actual impact of these alternative
choices on the behavior of MC-BicriterionAnt.

4 Empirical Analysis of MOACO Algorithms
4.1 Experimental Setup and Methodology

The goal of our experimental analysis is not to identify the best MOACO al-
gorithm, but rather to understand the relationship between algorithmic design
choices and the results produced by each algorithm. As said before, we use
the bTSP as a benchmark problem in our study. In particular, we consider
six benchmark instances. The first four, kroAB100, kroAB150, kroAB200, and
euclidAB500 have been taken from Luis Paquete’s webpage at http://eden.dei.
uc.pt/~paquete/tsp. In these instances, the two cost matrices are generated in-
dependently of each other; each cost matrix gives the Euclidean distance between
points that are distributed uniformly at random in a square of a specific side
length. The number in the instance identifier corresponds to the number of nodes.
In addition, we generated in the same way two larger instances, euclidAB700,
and euclidAB1000. The three smaller instances are used for MOACO algorithms
without local search, while the three larger ones for MOACO algorithms that
incorporate local search.

For experiments on the three largest instances, we hybridize the MOACO algo-
rithms with local search. Each solution constructed by an ant is the starting point
of a first-improvement local search based on the 2-exchange neighborhood (2-opt).
This is a single-objective local search that works on a weighted sum aggregation of
the two distance matrices. This weighted sum aggregation in the local search uses
the same weight as the ant used to construct the solution. In the few MOACO
algorithms where ants do not use weights, we assign a different weight to each ant
that is used only by the local search. The local search uses the standard speed-up
techniques for the TSP, such as “don’t-look” bits and fixed-radius nearest-neighbor
search. The latter is supported by a list per node of the 20 nearest neighbors. This
list is sorted in non-increasing order of the edge costs in the weighted sum aggre-
gation of the two distance matrices, and, hence, we keep different lists for different
weights.

As usually done in the single-objective case, when tackling the three largest
instances, the ants’ solution construction is made more efficient by using a can-
didate list of size 20, which is obtained by sorting edges according to dominance
ranking (Lust and Jaszkiewicz, 2010).

We perform 10 repetitions of each experiment. Each repetition uses a different
seed for the random number generator. Each run is stopped after 300 - (n/100)?
CPU-seconds in the case without local search, and 4-(n/100)? CPU-seconds in the
case with local search. The MOACO algorithms are implemented in C based on
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an existing MOACO framework (Lépez-Ibédfiez and Stiitzle, 2012a), and compiled
with gcc, version 4.4. Each experiment is run on a single core of an AMD Opteron
6128 CPU (2 GHz, 512 KB L2 cache size) running under Rocks Cluster GNU /Linux
version 4.2.1/CentOS 4.

As said above, all MOACO algorithms use MMAS as the underlying ACO
algorithm. By choosing one fixed ACO algorithm, we remove one factor that influ-
ences the performance of the MOACO algorithms and, in this way, we are able to
attribute possible performance differences to specific design choices made in the
multi-objective components. We follow the design of MMAS for single-objective
optimization (Section 2) as much as possible, except for a few details. In partic-
ular, the number of solutions that update the pheromone matrices is specified by
the original MOACO algorithms. Moreover, we use a constant amount of phero-
mone deposit (Eq. 4), except when multiple pheromone matrices are updated with
nondominated solutions, in which case we use the reciprocal of the tour cost with
respect to the objective associated to each pheromone matrix, thus, the pheromone
deposit is different on each matrix.

Since in many cases the outcomes of different algorithms are incomparable in
the Pareto sense, we consider the hypervolume (Zitzler and Thiele, 1998; Fon-
seca et al, 2006) as a unary quality measure that allows us to completely rank
Pareto fronts. Neither the hypervolume, nor any other quality measure, give pre-
cise information about the differences between the Pareto fronts produced by two
algorithms (Zitzler et al, 2003). We therefore visualize these differences by means
of a graphical technique (Lépez-Ibéfiez et al, 2006, 2010) based on the empirical
attainment function (EAF) (Grunert da Fonseca et al, 2001).

The attainment function gives for each point in the objective space the prob-
ability that a single run of an algorithm attains it, that is, an objective vector
generated by the algorithm dominates the point or is equal to it. The attainment
function is generally unknown, but it can be estimated by collecting data from
several independent runs and by computing the corresponding EAF. Figure 2 is
a side-by-side plot of the EAFs of two different algorithms applied to the same
bTSP instance. The level of gray at each point gives the (estimated) probability
of attaining that point (objective vector) in a single run of the algorithm. A black
point indicates that the algorithm attained that point vector in more than 80% of
the runs.

In order to examine differences in the results obtained by two algorithms, we
compute the differences between their EAFs at each point in the objective space,
as shown in Fig. 3. The sign of the differences indicates which algorithm has a
higher probability of attaining each point in a single run. We plot separately the
differences of the same sign, such that at each side the differences are in favor of the
algorithm labeled at the bottom. The shade of gray now encodes the magnitude of
the differences. For example, a black point indicates that one algorithm attained
that objective vector in at least 80% more runs than the other algorithm. If the
same point is white on both sides, it indicates that either both algorithms have
roughly the same probability of attaining that point, or neither algorithm has a
probability larger than 20%. In the example shown in Fig. 3, algorithm A attains
solutions with extreme objective values that are never attained by algorithm B (as
shown on the left plot), whereas algorithm B is always better in a large region of
the center of the Pareto front approximation (as shown on the right plot).
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Table 2 Parameters and parameter values that were considered for the analysis of MMAS’s
impact on the performance of MOACO algorithms. N/ is a surrogate parameter that is used
to determine the number of ants, N,.

Parameter Values

p 0.02, 0.10, 0.50, 0.90, 0.98

B 1,35
N. 6-N/-|n/100] without LS
6- N/ with LS
N! 4,8, 16

a

An attainment surface is the minimum set of objective vectors that are at-
tained with a given probability. For example, the 50% (median) attainment sur-
face is the nondominated set of objective vectors that are attained by at least
50% of the runs. In Fig. 3, the median attainment surface of each algorithm is
represented with a dashed line. We also plot with continuous lines the grand-best
attainment surface and the grand-worst attainment surface, that is, respectively,
the nondominated points attained by at least one run of any of the two algo-
rithms, and the nondominated points always attained by both algorithms in all
runs. All plots in this paper are generated using the eaf R package available at
http://cran.r-project.org/package=eaf.

4.2 Analysis of the Underlying ACO Parameters

The default MMAS settings for the single-objective TSP are not necessarily well
suited when applying MOACO algorithms to the bT'SP (Lépez-Ibafiez and Stiitzle,
2012a). Therefore, as a first step, we study the impact of the parameter settings
of MMAS on each MOACO algorithm by a full factorial analysis. We choose the
best settings identified in this analysis to carry out later a fairer comparison of the
MOACO algorithms, so that differences in performance can be attributed to the
multi-objective algorithmic components rather than to poor parameter settings of
the underlying ACO algorithm. The parameters and their values considered in this
analysis are shown in Table 2. Instead of specifying directly the number of ants
(Na), we specify a surrogate parameter (N}), which is multiplied by six in order
to ensure that NV, is divisible by three, as required by COMPETants, m-ACO;
and m-ACQOs2. When no local search is used, N, depends on the instance size as
usual in MMAS for single-objective problems. Our experimental design results
in 5 -3 -3 = 45 candidate parameter settings.

We ran the default setting of all eight MOACO algorithms with respect to their
MO-specific components with the above settings for the underlying MMAS. Each
of the 45 candidate parameter settings was run 10 times with different random
seeds on each of the six instances. As a way to analyze the interactions among the
parameters, we considered a multi-way ANOVA. We found that there are impor-
tant interactions, especially between p, N2 and the particular MOACO algorithm.
However, the results do not satisfy the normality and homoscedasticity require-
ments for carrying out ANOVA. Thus, this approach does not allow us to generalize
or summarize the experimental results, apart from some general observations as,
for example, a setting of 5 =5 is significantly better than other choices when not
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Table 3 Best settings of MMAS underlying each of the MOACO algorithms.

Without LS With LS
Algorithm N, 3 p | N. B p
BicriterionAnt 16 5 0.98 16 5 0.02
MACS 4 5 09 16 5 0.02
COMPETants 4 1 05 16 3 0.02
P-ACO 16 5 0.02 16 5 0.9
m-ACO; 4 3 0.02 16 5 0.1
m-ACO2 16 3 0.9 8 5 0.98
m-ACO3 16 3 0.5 16 5 0.02
m-ACOy 16 5 0.5 16 1 0.98

using local search. As an alternative, we use the non-parametric Friedman-test
by blocks (Conover, 1999), where each block is one repetition on one instance.
Within each block, the different configurations of each MOACO algorithm are
ranked according to their hypervolume. For conciseness, we report the full results
as supplementary material (Lépez-Ibdniez and Stiitzle, 2012b). Here, we simply
choose for further analysis the configuration of each algorithm that obtains the
lowest sum of ranks over all blocks. The configurations chosen are summarised in
Table 3. Although most algorithms perform better when using a high value of N,
and (3, there are major differences between several algorithms, which confirms our
previous assumption that there are no ACO settings that are good for all MOACO
algorithms. In the next section, we use the best configuration of each algorithm to
carry out a more in-depth analysis of their MO-specific components.

4.3 Analysis of the MO-specific Components

We now analyze the effect of various design choices in MOACO algorithms. As a
first step, we examine the outcomes of the MOACO algorithms when using the
ACO settings described in Table 3. We plot the 50%-attainment surfaces of these
algorithms for the kroAB200 instance in Figure 4. We use two plots for clarity, and
plot the 50%-attainment surface of BricriterionAnt in both plots as a reference
for comparison. The first observation is that BicriterionAnt and MACS obtain the
best Pareto front approximations in terms of shape and quality. COMPETants,
m-ACO; and m-ACO2 show obvious gaps in their Pareto front approximation.
Finally, m-ACO3 and m-ACQO4 produce very narrow approximations, which are
closer to the Pareto front in the center, but that fail to approximate the extremes
of the Pareto front.

In order to explain these remarkably different behaviors, we examine in this
section one algorithmic component at a time. We focus our analysis on only four al-
gorithms: BicriterionAnt, P-ACO, m-ACO2 and MACS. However, as we will show,
the analysis generalizes to all MOACO algorithms, since our analysis explains the
behavior of all algorithms in terms of their particular algorithmic design. We il-
lustrate our discussion with plots of the EAF differences, limited to the 200 nodes
(without local search) and 1000 nodes (with local search) instances. The full set
of plots for all instances is available as supplementary material (Lépez-Ibéfiez and
Stiitzle, 2012b).



An experimental analysis of design choices of MOACO algorithms 17

. |
| - - - BiAnt ARY - - - BiAnt
o) COMPETants o b mACO1
1
I — PACO < ) —— mACO2
0 MACS B —— mACO3
N o Y mMACO4
o 1o} ‘\
2 gl
e} S '
i - “.
2 3
b 8 - ‘¥
T T T T T T I T T T T T T T
5e+04 1.5e+05 2.5e+05 3.5e+05 5e+04 1.5e+05 2.5e+05 3.5e+05

Fig. 4 50% attainment surfaces of the various MOACO algorithms studied in the experiments.
Objectives 1 and 2 are given in the x- and y-axis, respectively, in these plots and in the plots
shown in Figs. 5 to 9 and 11.

Weighted sum vs. weighted product. In our earlier experiments (Lépez-Ibéfiez and
Stiitzle, 2010b), we observed that the aggregation of multiple pheromone and/or
heuristic matrices by means of weighted product gives better results than using
weighted sum aggregation. Such a result is surprising at first. Given a computation
time limit, MOACO algorithms using weighted product perform substantially less
iterations than the same algorithms using weighted sum and, thus, they evalu-
ate fewer candidate solutions. For example, BicriterionAnt is able to perform four
times more iterations when using weighted sum instead of weighted product ag-
gregation. The new experiments carried out here confirm these results when not
using local search and on a wider range of MOACO algorithms and instances. Fig-
ure 5 shows the EAF differences between these two alternatives for four MOACO
algorithms in the kroAB200 instance. In all cases, a weighted product aggregation
improves the quality of the approximation in the center of the Pareto front.

The explanation of this behavior is that, in the random Euclidean bi-objective
TSP, the heuristic matrices are not correlated, and hence, a weighted sum tends
to average out the value of all components of the matrices. A weighted product
aggregation better differentiates between components that have a high heuristic
value in both matrices and the rest.

However, when the same MOACO algorithms incorporate local search, the
benefit of using a weighted product aggregation mostly disappears, because the
influence of heuristic information is smaller, and its positive bias is not compen-
sated by the computation cost of the weighted product aggregation.

Single vs. multiple heuristic matrices. A few MOACO algorithms, such as m-ACO3
and m-ACO4 and some variants of P-ACO, aggregate the heuristic information
corresponding to each objective in a manner that is independent of any dynamic
weight setting. This is equivalent to aggregating multiple heuristic matrices into a
single one at the start of the algorithm. The main benefit is speed, since a single
heuristic matrix is computed once at the start of the algorithm. This approach also
avoids defining a set of weights and a weight setting strategy. However, a single
heuristic matrix strongly biases the solution construction towards the center of the
Pareto front, where both objectives are balanced. If the heuristic information plays



18 Manuel Lépez-Ibanez, Thomas Stiitzle

5e+04 2e+05 3e+05 5e+04 2e+05 3e+05
I R N B | I T N N B
3 | m [08, 1.0] L 8% m 0.8 1.0] -5
8 m [06,08) |k a8 || W [0.6,0.8) 8
1 5 (0200 . 5 (0200 § > i
o [0.2,0. o [0.2,0.
i O [0.0,0.2) L m O [0.0,0.2) L
9 88 8
T ¥
o E & o -
0 n 0
- i L — - _ L —
< <
g L35 - g
[ o 9 8
0 T T T T 1 0 T T T T T 1
5e+04 2e+05 3e+05 5e+04 2e+05 3e+05
BiAnt (w. product) BiAnt (w. sum) PACO (w. product) PACO (w. sum)
5e+04 2e+05 3e+05 5e+04 2e+05 3e+05
© 1 | | | | | | © o 1 | | | | | | o
% | W [0.8,1.0] L 2% _ W [0.8,1.0] L %
g m [0.6,0.8) g8 X m [06,08) [\ k4
- =] {0,4, 0,6; k 48 =] EOA, 0.6; —
o [0.2,0.4) o [0.2,04 k
i O [0.0,0.2) L i O [0.0,0.2) L
8 88 8
-;) _ L 3—} + | L+
8 8 8 8
| [ = —
< < <« <
2 LS9 L 2
8 8% — }
T T T T T 1 T T T T T 1
5e+04 2e+05 3e+05 5e+04 2e+05 3e+05
mMACO2 (w. product) mMACO2 (w. sum) MACS (w. product) MACS (w. sum)

Fig. 5 Comparison of MOACO algorithms using either weighted product (w. product) or
weighted sum (w. sum) aggregation by plots of EAF differences. The results are given for
various MOACO algorithms without local search on instance kroAB200.
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Fig. 7 Comparison of MOACO algorithms using a single (single heu) or multiple (multiple
heu) heuristic matrices by plots of EAF differences. The results are given for various MOACO
algorithms with local search on instance eucl1idAB1000.

a strong role in generating high-quality solutions, then this bias may be stronger
than other components that favor diversity, such as the use of multiple pheromone
matrices.

This is the effect shown in Fig. 6. The plots corresponding to BicriterionAnt,
which uses multiple pheromone matrices, and MACS, which uses a single phero-
mone matrix, are extremely similar. This indicates that obtaining a wider Pareto
front is mostly independent of the number of pheromone matrices, but it requires
using multiple heuristic matrices. This conclusion is further confirmed by the plot
corresponding to P-ACO (top-right plot in Fig. 6). P-ACO also uses multiple
pheromone matrices but, in contrast to BicriterionAnt, it uses best-of-objective
pheromone update, which means that each pheromone matrix is updated using
the best solution for each objective. Hence, the pheromone update of P-ACO is
strongly biased towards the extremes of the Pareto front. However, the plot shows
that this bias is not enough to produce a wide Pareto front approximation when
using a single heuristic matrix. On the contrary, since the single heuristic matrix
gives equal importance to both objectives, the search is biased towards high-quality
solutions with approximately the same value of the two objectives (i.e., the center
of the Pareto front approximation), and it fails to approximate the extremes of
the Pareto front.

When using local search, EAF differences are not easily visible, as shown in
Fig. 7 because of the wide range of the Pareto front compared to the small distance
between the grand-best and grand-worst attainment surfaces. Therefore, we do not
examine the EAF differences for the algorithms using local search in the rest of
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the paper, but later we compare these algorithms in terms of the hypervolume
measure. Nonetheless, the attainment surfaces shown in Fig. 7 illustrate that the
shape of the Pareto front is determined by the number of weights used by the local
search. In particular, m-ACOz uses only three weights, whereas the other three
algorithms use N, weights. On the other hand, the shape is not affected by the
number of heuristic matrices used by each algorithm. This indicates that the bias
of the local search is much stronger than the bias of the heuristic information.
When comparing the algorithms according to the hypervolume, algorithms using
a single heuristic matrix produce better results since they are able to perform
more iterations. For example, MACS performs around two times more iterations
when using a single heuristic matrix rather than two, and, hence, it obtains better
solutions.

Pheromone Update: Nondominated vs. best-of-objective. Figure 8 compares the
different choices available for pheromone update in the MOACO literature, that is,
nondominated update and best-of-objective update (best-of-objective-per-weight
in the case of m-ACQ2). Interestingly, the nondominated update approach obtains
better results in all cases, independently of the number of pheromone matrices
(MACS uses only one, the others use two), the type of aggregation (P-ACO and
m-ACO2 use weighted sum, the others use weighted product) and the number of
weights (m-ACO2 uses only three, the others use as many as N,). The best-of-
objective update method is only better on the very extremes of the Pareto front.

When local search is used, the clear advantage of nondominated update disap-
pears.

One weight per iteration (1wpi) vs. all weights per iteration (awpi). All algorithms
proposed in the MOACO literature use the whole set of weights at every itera-
tion (awpi approach). In a previous work (Lépez-Ibdnez and Stiitzle, 2010a), we
proposed to use only one weight at each iteration and change the weight at ev-
ery iteration (Iwpi approach). The benefits of the Iwpi approach are evident in
Fig. 9. The Iwpi approach does not significantly change the shape of the Pareto
front approximation, however, it leads to an overall improvement with respect to
the Pareto front approximation obtained with awpi. The main reason is that by
using the same weight at each iteration, the aggregation of multiple matrices can
be computed once per iteration, instead of recomputing it for each ant. This leads
to a large increase of the number of iterations (roughly by a factor of ten) that
can be performed within the same computation time limit allowing the algorithm
to reach better solutions. These results are consistent for all the instances tested,
with and without local search.

4.4 Multi-colony BicriterionAnt

In this section, we analyze the multi-colony (MC) BicriterionAnt. In our previous
work (Lépez-Ibanez and Stiitzle, 2010b), we already noticed that using more than
one colony was always beneficial. However, there are several additional design
choices that only make sense when using multiple colonies (Table 4). We examine
here the effect of these parameters.
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(BO) pheromone update by plots of EAF differences. The results are given for various MOACO
algorithms without local search on instance kroAB200.

5e+04 1.5e+05 3e+05 5e+04 2e+05 3e+05
| | | | | |

3e+05
I

[0.8,1.0]
[0.6, 0.8)
[0.4,0.6)
[0.2,0.4)
[0.0,0.2)

[0.8,1.0]
[0.6, 0.8)
[0.4,0.6)
[0.2,0.4)
[0.0,0.2)

Il
gOEmEm

T T T T T T
5e+04 1.5e+05 3e+05
5e+04 1.5e+05 3e+05

TN N NN S B

gOEmEm

T T T T T T
5e+04 1.5e+05 3e+05

5e+04 1.5e+05

5e+04 1.5e+05 3e+05 5e+04 2e+05 3e+05
BiAnt (1wpi) BiAnt (awpi) PACO (1wpi) PACO (awpi)

5e+04 2e+05 3e+05 5e+04 1.5e+05 3e+05

[0.8,1.0]
[0.6, 0.8)
[0.4,0.6)
[0.2,0.4)
[0.0,0.2)

m (08, 10]
m [06,0.8)
= [0.4,0.6)
O [0.2,0.4)
O [0.0,0.2)

3e+05
I

gOoEEm

T T T T T
5e+04 1.5e+05 3e+05
5e+04 1.5e+05 3e+05
T S Y N R |
K
5e+04 1.5e+05 3e+05

5e+04 1.5e+05

5e+04 2e+05 3e+05 5e+04 1.5e+05 3e+05
mACO?2 (1wpi) mACO2 (awpi) MACS (1wpi) MACS (awpi)

Fig. 9 Comparison of MOACO algorithms using one weight per iteration (1wpi) vs. all weights
per iteration (awpi) by plots of EAF differences. The results are given for various MOACO
algorithms without local search on instance kroAB200.



22 Manuel Lépez-Ibanez, Thomas Stiitzle

Table 4 Experimental setup of Multi-Colony BicriterionAnt.

Parameter Values

Neol 2, 5,10
Multi-colony weights  disjoint, overlapping
Multi-colony update  origin, region

Table 5 Best underlying ACO settings per algorithm.

Without LS With LS
Algorithm N. B »p | N, B »p
MC BicriterionAnt 16 5 098 | 8 3 0.98

As a first step, we run all possible combinations of the parameters shown in Ta-
ble 4 with all possible combinations of the underlying ACO parameters described
in Table 2. As above in the single-colony algorithms, the goal of this first step is to
understand the impact of the ACO settings, and determine a good set of settings
to perform further analysis.

For analyzing the influence of all ACO settings, we tried to perform ANOVA
on each instance, yet, the ANOVA requirements are not fully satisfied. The only
overall observations we are able to reach is that without local search a strong
heuristic information is needed. Results obtained with 8 = 5 are significantly
better than with other settings. By contrast, when using local search this is not
the case.

Instead of ANOVA, we again use ranking by blocks to identify the best overall
ACO settings, which are shown in Table 5. The overall conclusion is that a strong
evaporation seems to be necessary. The explanation for this setting is that high
evaporation leads to a faster convergence of the algorithm. A faster convergence
is required, since the use of multiple colonies reduces the number of iterations the
algorithm is able to perform by a factor close to the number of colonies.

In a second step, we examine the algorithmic components specific to multi-
colony BicriterionAnt (Table 4). Once the ACO settings are fixed as above, the
requirements of ANOVA are mostly satisfied. For the sake of conciseness, we only
give an overview of the most interesting observations. First, the use of ten colonies
was always the best setting in our experiments, with a strong difference over a
single-colony approach (see Fig. 11). This is somewhat surprising, since a large
number of colonies in BicriterionAnt incurs a considerable overhead caused by the
extra pheromone matrices. Given a computation time limit, the number of itera-
tions that the algorithm is able to perform decreases by a factor of the number
of colonies. These results are, nonetheless, consistent with all our previous exper-
iments (Lopez-Ibanez and Stiitzle, 2010b, 2012a). These results suggest that the
specialization introduced by the multiple colonies is key to obtain a diverse Pareto
front approximation.

We also observed a strong interaction between the parameter multi-colony
weights (disjoint or overlapping) and the parameter multi-colony update (origin
or region). Figure 10 shows the interaction plots for one instance tackled without
local search (left) and one instance tackled with local search (right). We also
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Fig. 10 Interaction between MC weights and MC update parameters (left: kroAB200 without
LS; right: euc1idAB1000, with LS)
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Fig. 11 Comparison of various settings for multi-colony BicriterionAnt by plots of EAF dif-
ferences. The results are given for BicriterionAnt without local search on instance kroAB200.

compare the EAFs of various settings in Fig. 11. From these plots, we extract the
following observations.

In the case without local search, we observed that it is better to combine
update by region with overlapping rather than disjoint weight intervals. It is less
clear which choice of weight intervals works better when combined with update by
origin. A possible explanation is that when colonies share weights, they are more
likely to find similar solutions, and, hence, exchanging them (update by region)
helps the colonies to specialize. Despite what the interaction plot may suggest, the
EAF plots (Fig. 11, top right) show that, when using 10 colonies, the difference
between disjoint and overlapping intervals is not very strong. In fact, when using
10 colonies, the main difference is that exchanging solutions (update by region)
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leads to a better performance in the center of the Pareto front, as shown in Fig. 11
(top left).

In the case with local search, disjoint weight intervals are strongly better,
presumably because the local search uses a more varied set of weights, generating
a more diverse set of solutions. Also, the weights of the local search itself impose a
stronger division between the colonies, which makes exchanging solutions between
colonies (update by region) not beneficial anymore. However, it is still beneficial if
weights overlap, since one colony may generate very good solutions in the region of
other colonies. This would explain why update by origin becomes worse than update
by region when combined with overlapping weight intervals, while the opposite is
true when update by origin and update by region are combined with disjoint weight
intervals (Fig. 10, right).

The main conclusions are as follows. First, the use of multiple colonies in
the sense of Iredi et al (2001) (i.e., with independent pheromone matrices) is very
beneficial despite its high cost in computation time. We predict it will be even more
beneficial in other problems where the overhead of the MOACO algorithm is lower
with respect to the evaluation cost of solutions. Second, if the solution construction
is strong enough to force a specialization of each colony to a different region, for
example, when using a strong weighted local search, then it is better that colonies
use disjoint intervals, i.e., do not share weights, and do not exchange solutions
(i.e., update by origin). Otherwise, it is better that the colonies share weights (i.e.,
overlapping intervals) and exchange solutions among them (i.e., update by region).

4.5 Comparison of the Best MOACO Algorithms

As a final step in our analysis, we examine the quality obtained by the best
MOACO algorithms. We choose MACS, P-ACO and BicriterionAnt (with Ngoi=1
and N.,1=10), since they give the best results overall with and without local search.
For each algorithm, we use the best ACO settings that were identified above. For
BicriterionAnt (Nco1=10), we use overlapping multi-colony weights and update by
region when not using local search, and disjoint multi-colony weights and update
by origin when using local search, following the analysis done in the previous sec-
tion. All algorithms use the one-weight-per-iteration strategy, since it was always
better than the alternative.

Figure 12 gives the hypervolume of the selected MOACO algorithms without
local search on three bTSP instances. The results confirm our previous analysis,
that is, MACS and BicriterionAnt (N.o1=1) produce better results than P-ACO,
and the results of BicriterionAnt are further enhanced by using multiple colonies.

Figure 13 is the corresponding plot when the algorithms use local search. In
this case, P-ACO is much better than MACS and BicriterionAnt (N¢o=1), be-
cause when using local search, weighted sum aggregation and best-of-objective
update are better than the alternatives. However, the use of multiple colonies in
BicriterionAnt is still the best approach.
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Fig. 12 Boxplot of the hypervolume obtained in 10 runs by four MOACO algorithms without
local search.
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Fig. 13 Boxplot of the hypervolume obtained in 10 runs by four MOACO algorithms with
local search.

5 Conclusions

This paper has presented a thorough empirical analysis of the various design
choices made in MOACO algorithms. Our analysis shows that some design choices
have a profound impact on the quality and shape of the Pareto front approximation
obtained.

— The use of very few weights for aggregating multiple pheromone or heuristic
matrices (as done, for example, in COMPETants, m-ACO; and m-ACO3) gen-
erates Pareto front approximations that are very good in the direction of those
weights, but extremely poor in the areas not covered by them. This effect is
strongest when applying a weighted local search to the solutions constructed
by the ants. The conclusion is that the more effective is the generation of solu-
tions, the more disconnected is the resulting Pareto front approximation. Using
a higher number of weights alleviates this problem.
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— A weighted sum aggregation of pheromone or heuristic matrices has difficulty
approximating the convex part of the Pareto front. By contrast, a weighted
product aggregation produces a much better approximation of the center of
the Pareto front. However, if an effective local search is able to generate high-
quality solutions in the center of the Pareto front, then the high computation
cost of a weighted product aggregation cancels its benefits.

— In problems where heuristic information is essential to reach high-quality so-
lutions, a single heuristic matrix, as used by m-ACO3 and m-ACOQOy4, biases
the algorithm towards the center of the Pareto front, leading to a very narrow
Pareto front and a poor approximation of the extremes of the Pareto front.

— The strategy that uses one weight per iteration (1wpi) is computationally more
efficient than using all weights at each iteration (awpi), without any noticeable
downsides in terms of quality. Hence, 1wpi is clearly the best choice for the
bTSP, and we believe that this strategy may be useful for other problems where
the aggregation of the pheromone and heuristic matrices can be precomputed
once per iteration.

— The multi-colony approach used by BicriterionAnt is always better than the
single-colony BicriterionAnt. This is even true on large instances, where the
overhead of additional colonies is larger. Therefore, we recommend to consider
the use of multiple colonies when applying MOACO to a new problem. More-
over, most MOACO algorithms can be extended to use multiple colonies, as
we have shown in a previous work (Lépez-Ibanez and Stiitzle, 2012a).

The above conclusions answer many questions on what causes the striking
performance difference between various MOACO algorithms. These conclusions
also explain why such performance differences are more evident on the bTSP. The
reasons include the particular shape of the Pareto front in the bTSP, the need for a
very strong heuristic information, and the fact that previous analyses did not take
local search into account. As we show here, choosing the best algorithm, or more
concretely, making the best design choices when designing a MOACO algorithm
for a specific problem requires that these factors are taken into consideration.

An interesting extension of this work would be to repeat this analysis on prob-
lems with different characteristics than the bTSP. For example, ACO algorithms
for the bQAP do not use heuristic information. An analysis of MOACO algorithms
on problems for which an effective local search is not available would also be of
interest.

Most of the MOACO algorithms examined here were proposed specifically for
bi-objective optimization problems, and how to best extend them to tackle more
than two objectives is unclear. Undoubtedly, the conclusions reached here may
differ in the case of more than two objectives. However, we hope that such research
will follow the component-wise experimental analysis presented in this paper.

The taxonomy and analysis of MOACO algorithms described here was a crucial
step in the development of a configurable MOACO framework, which we automat-
ically configured in order to find the best design of a MOACO algorithm for the
bTSP (Lépez-Ibanez and Stiitzle, 2012a). The analysis presented here comple-
ments those results by providing insights into the working principles of MOACO
algorithms, which will be instrumental towards defining new design choices for
inclusion into the MOACO framework. An open challenge is how to best combine
these two complementary approaches: a systematic analysis of the alternative de-
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sign choices for algorithmic components, and an automatic configuration of these
components to find the best overall design. The ultimate goal would be to auto-
matically find the best design of a metaheuristic such as MOACO for a specific
problem, and, at the same time, provide insights on why such design is the best.
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