
MISTA 2013

Automatic Design of a Hybrid Iterated Local Search for
the Multi-Mode Resource-Constrained Multi-Project
Scheduling Problem

Manuel López-Ibáñez · Franco Mascia ·
Marie-Eléonore Marmion · Thomas Stützle

1 Introduction

This paper details our submission to the MISTA 2013 challenge, which deals with

the multi-mode resource-constrained multi-project scheduling problem (MRCMPSP).

Kolisch and Hartmann [4] recommend metaheuristics as the best-performing methods

when tackling the resource-constrained project scheduling problem with a single project

and without multiple-modes. Most of these metaheuristics share many similar compo-

nents, such as neighborhoods used in local search, schedule generation procedures, etc.

Given the number of possible combinations of algorithmic components and the various

ways in which simple metaheuristics can be combined into a single algorithm, finding

the right combination for the MRCMPSP would be, in principle, an arduous task of

experimentation by trial-and-error.

Instead, we used a recent automatic method [10], which combines (i) a description

(given as a grammar) of the space of potentially valid algorithms for a problem and (ii)

a method for searching the best algorithm by instantiating algorithms from this gram-

mar. The approach shares some similarities with genetic programming (GP) [11] and

grammatical evolution (GE) [3], yet there are crucial differences. First, GP/GE typi-

cally attempt to generate programs from very basic components, whereas our approach

relies on humans to provide problem-specific components for the particular problem.

Second, GP/GE use a tree-based and a codon-based representation, respectively, to

instantiate programs from the grammar. Instead, we use a parametric representation,

that is, the grammar description is transformed into a number of categorical and numer-

ical parameters, and some of them might be only enabled depending on other param-

eters (conditional parameters). This transformation requires to specify the maximum

number of times that each rule in the grammar can be applied (similar restrictions

exist with other representations, given the existence of recursive derivation rules). Fi-

nally, GP/GE use evolutionary algorithms to search for the best instantiation of the

grammar. Our approach, by contrast, relies on irace [6], an automatic configuration

tool typically used for offline parameter tuning. The characteristics of irace makes it

ideal to handle complex parameter spaces, with categorical, numerical and conditional

parameters. Moreover, irace is designed for handling heterogeneous problem instances.

Manuel López-Ibáñez, Franco Mascia, Marie-Eléonore Marmion, and Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
E-mail: {mmarmion;fmascia;manuel.lopez-ibanez;stuetzle}@ulb.ac.be



2 Automatic Bottom-up Design of Hybrid ILS Algorithms

The grammar (in Backus-Naur Form) used in this work is divided into a problem-

independent part and a problem-specific part. Following previous work [9], the problem-

independent grammar (Fig. 1) generates hybrid iterated local search (ILS) algorithms.

The main algorithm starts with a problem-specific initialization followed by an ILS.

Each ILS is described by four components, a perturbation, a subsidiary local search

(LS), an acceptance criterion and a time ratio for the subsidiary LS. The subsidiary LS

may be either an ILS, a simulated annealing (SA) or an iterative descent LS using a

problem-specific neighborhood. The iterative descent may be either a best-improvement

one (BestImpr), a first-improvement (FirstImpr) one, or a first-improvement descent

that continues the search at the same position in the neighborhood after moving to an

improving neighbor (FirstImprCont). The acceptance criterion determines the solution

that replaces the current solution in the ILS. All acceptance criteria accept a better

solution but they may also accept a solution with equal or worse objective value in some

circumstances. The ones used here are well-known acceptance criteria, their precise

definition can be found in our previous work [9]. Some of them have extra parameters.

For example, Cooling accepts solutions according to the Metropolis criterion, that is, by

biasing a probabilistic decision according to a temperature parameter that is adjusted

according to a cooling schedule. Finally, each call to the subsidiary LS is given a time

limit tsubls = tratio ·tls, where tls is the time limit of the caller and tratio is a parameter.

Each LS is also limited by the maximum time assigned to the whole algorithm.

In order to generate an algorithm for the MRCMPSP from this grammar, we need

to implement the required problem-specific components. In our implementation, the

representation of schedules is: (i) a standard permutation of the activities, where each

activity always appears later than any of its predecessors and earlier than any of

its successors, and (ii) a vector of modes, where each entry is the execution mode

assigned to each activity. We also apply a well-known pre-processing step in order to

reduce the search space [12]. Other MRCMPSP-specific components of our algorithm

are configurable, and, thus, they are shown in the grammar of Fig. 2.

Evaluating a solution requires applying a schedule generation (SG) procedure. Un-

less specified otherwise in the grammar, we use the forward serial SG for a precedence

feasible activity list [2]. This procedure is faster than the classical serial SG but pro-

duces semi-active schedules instead of active ones [13]. In some specific cases, the SG

used is configurable <ps:sg>: ForwardSerial applies the forward serial SG, Forward-

BacwardsSerial applies the same procedure forward and backwards and keeps the best

solution found, and multi-mode backward-forward (MM-BF) generates a schedule using

the forward serial SG and then applies MM-BF [8] until no improvement is found.

Initialization constructs one or more solutions heuristically and keeps the best so-

lution constructed. Each solution is constructed by a parallel SG (c.f. Brooks’s parallel

method [1]) using a heuristic for selecting activities and another for selecting modes.

The constructed solutions are re-scheduled using one of the three SGs in the hope that

they can be further improved.

The heuristics for selecting activities include the well-known random-activity,

the static late finish time (min-lft), static feasible slack (min-fslk), dynamic feasible

slack (min-dfslk), and shortest activity from shortest project (sasp) [5]. In addition,

maxtwk-est, maxtwk-lst, twk-lst, twk-est and twk-gdr all use the concept of

total work content (TWK) [5]. Both maxtwk-est and maxtwk-lst are applied to

all schedulable activities at once and they differ on how they break ties; twk-lst,

twk-est, and twk-gdr first select a project according to TWK, and then select an



<algorithm> ::= <ps:initialization> <ils>
<ils> ::= ILS(<ls>, <accept>, <ps:perturb>, <time_ratio>)
<ls> ::= <ils> | <sa> | <descent>(<ps:neighborhood>)

<descent> ::= BestImpr | FirstImpr | FirstImprCont
<sa> ::= SA(<ps:perturb>, <cooling_schedule>)

<accept> ::= Always | Improves | ImprovesEqual | Prob(<prob>) | ProbRandom
| Threshold(<threshold>) | Metropolis(<cooling_sched>)

<prob> ::= [0, 1]
<threshold> ::= [0, 1]

<cooling_sched> ::= Cooling(<init_temp>, <final_temp>, <decr_temp_ratio>, <span>)
<init_temp> ::= {1, 2,..., 10000}

<final_temp> ::= {1, 2,..., 100}
<decr_temp_ratio> ::= [0, 1]

<span> ::= {1, 2,..., 10000}
<time_ratio> ::= {0.1, 0.2, ..., 1}

Fig. 1 Problem-independent grammar for generating hybrid ILS algorithms.

<ps:sg> ::= ForwardSerial | ForwardBackwardSerial | multimodeFBSerial
<ps:initialization> ::= SGforInit(<ps:sg>) <ps:initsols>

<ps:initsols> ::= <ps:init_heur>
| <ps:init_heur> <ps:initsols>

<ps:init_heur> ::= init(<ps:activity_heu>, <ps:mode_heu>)
<ps:activity_heu> ::= RANDOM_ACTIVITY | MIN_LFT | MIN_FSLK | TWK_LST | TWK_EST

| TWK_GDR | MAXTWK_EST | MAXTWK_LST | SASP
<ps:mode_heu> ::= RANDOM_MODE | MIN_MNR | MIN_DUR | BEST_MODE

<ps:neighborhood> ::= ModeNeighborhood | ActivityNeighborhood
<ps:perturb> ::= PerturbFeasibleMode(<ps:perturb_pct>)

| PerturbActivity(<ps:perturb_pct>)
| PerturbReleaseManyModes(<ps:perturb_pct>)
| PerturbHeuRandMode(<ps:activity_heu>, <ps:sg>)
| PerturbHeuRandActivity(<ps:mode_heu>, <ps:sg>)

<ps:perturb_pct> ::= {0, 1, ..., 100}

Fig. 2 Problem-specific part of the grammar.

activity according to a secondary rule [7]. For computing these heuristic values in the

multi-mode case, we consider all feasible modes. In addition, we save the mode used

by the activity heuristic so it can be selected later (by best-mode).

The heuristics for selecting modes are random (random-mode), minimum normal-

ized resources (min-mnr) [8], a dynamic version of min-mnr that takes into account

the resources available in the current solution being constructed (min-dmnr), minimum

duration (min-dur, also called shortest feasible mode, which selects the feasible mode

with the shortest duration), and best-mode, which is a heuristic that either selects

whatever mode was chosen by the activity heuristic, if any, otherwise, it selects the

shortest feasible mode (min-dur).

We consider two neighborhoods in our iterative improvement algorithms. The mode

neighborhood simply replaces the mode of each activity with a different mode that

respects the non-renewable constraints, considering the resources released by the dis-

carded mode and required by the other activities [2]. The shift (insertion) neighborhood

of activities removes one activity from the activity list and reinserts it in a position

between its latest predecessor and its earliest successor [2].

We implemented four perturbation methods: PerturbFeasibleMode uses the mode

neighborhood to randomly change the mode of a number of activities, PerturbActivity

performs a shift move on a number of random activities, perturbReleaseManyModes

releases the non-renewable resources assigned to a number of random activities all at

once, then tries to assign new random modes to those activities without violating the

non-renewable resource constraints. These methods only modify a percentage of the

activities. By contrast, PerturbHeuRandMode and PerturbHeuRandActivity generate a



SGforInit(MM-BF)
Init(MIN-FSLK, MIN-DUR)
Init(TWK-EST, MIN-DMNR)
// Additional heuristics manually added (Fig. 4)
ILS(FirstImprCont(ModeNeighborhood),

ImprovingEqual, perturbActivity(0%),
tsubls = 1)

Fig. 3 Algorithm instantiated from the grammar
and submitted to the 2013 MISTA Challenge.

Init(RANDOM-ACTIVITY, MIN-MNR)
Init(MIN-LFT, MIN-MNR)
Init(TWK-EST, RANDOM-MODE)
Init(TWK-EST, BEST-MODE)
Init(TWK-LST, MIN-DMNR)
Init(TWK-LST, BEST-MODE)

Fig. 4 Additional initialization heuris-
tics manually added to the algorithm.

completely new solution by using the initialization method discussed above with either

the random-mode or the random-activity heuristic, respectively. These two latter

perturbations are similar to a restart mechanism.

3 Our algorithm for the MISTA 2013 Challenge

In order to find the best instantiation of the grammar described above, we run irace
using as training instances the two benchmark sets provided by the MISTA 2013 Chal-

lenge, and with a maximum budget of 50 000 runs (each run evaluates an instantiation

of the grammar on a single instance for 300 seconds). During this training phase, each

instantiation of the grammar is a sequential algorithm. The best instantiation found

by irace in shown in Fig. 3.

Although we set a limit of two derivations per rule, which would have allowed for two

levels of ILS, the algorithm generated by irace is simpler than what we expected (Fig. 3).

It is an ILS that uses a FirstImprCont descent applied to the mode neighborhood as the

subsidiary local search. This descent does not have a time limit: it continues until no

improvement is found (or the overall time limit is reached). If the solution generated

by the descent is better or equal than the initial one, it replaces the initial one as

the current solution. The perturbation is then applied to the current solution, and it

modifies one random activity (0%, but the minimum is one activity) by reinserting it

in a different position in the schedule. Our intuition is that for very large instances,

the best solution found is continually being improved, and that additional levels in the

ILS do not speed up this convergence.

In our experiments, we noticed that generating more than two initial solutions,

using different heuristic rules, leads to better results and requires little extra compu-

tation time. Hence, we manually added six additional initializations (Fig. 4). Thus,

the final algorithm generates eight initial solutions and passes the best one to the ILS

procedure. Finally, we embed this ILS algorithm within a multi-threaded solver, which

runs the algorithm four times in parallel with different random seeds and returns the

best solution found.

4 Conclusions

Given the limited space, we do not provide here experimental results. Nonetheless, it is

our intention to carry out a complete experimental analysis of the proposed algorithm

and compare it with other proposals.

The automatic design method helped us to develop an effective algorithm in a

very short time with no previous experience in project scheduling. Moreover, if new

algorithmic components that are expected to improve the results become available,



re-generating a new hybrid ILS algorithm only requires computing effort. The same

method could be used to design other hybrid metaheuristics for the MRCMPSP.

Acknowledgements The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no

246016. Marie-Éléonore Marmion acknowledges support from the ERCIM “Alain Bensoussan”
Fellowship Programme. This work was supported by the META-X project, an Action de
Recherche Concertée funded by the Scientific Research Directorate of the French Community of
Belgium and the FRFC project Méthodes de recherche hybrides pour la résolution de problèmes
complexes. This research has also received funding from the comex project within the Inter-
university Attraction Poles Programme of the Belgian Science Policy Office. Manuel López-
Ibáñez, Franco Mascia and Thomas Stützle acknowledge support from the Belgian F.R.S.-
FNRS, of which they are postdoctoral researchers and a research associate, respectively.

References

1. Bedworth, D.D., Bailey, J.E.: Integrated Production Control Systems: Manage-

ment, Analysis, Design, vol. 2. John Wiley & Sons, New York, NY (1982)

2. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode version.

European Journal of Operational Research 149(2), 268–281 (2003).

3. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search

heuristics. IEEE Trans. Evol. Comput. 16(7), 406–417 (2012).

4. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Re-

search 174(1), 23–37 (2006).

5. Kurtulus, I., Davis, E.W.: Multi-project scheduling: Categorization of heuristic

rules performance. Management Science 28(2), 161–172 (1982).

6. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,

iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-

004, IRIDIA, Université Libre de Bruxelles, Belgium (2011).

7. Lova, A., Tormos, P.: Analysis of scheduling schemes and heuristic rules perfor-

mance in resource-constrained multiproject scheduling. Annals of Operations Re-

search 102(1-4), 263–286 (2001).

8. Lova, A., Tormos, P., Cervantes, M., Barber, F.: An efficient hybrid genetic al-

gorithm for scheduling projects with resource constraints and multiple execution

modes. International Journal of Production Economics 117(2), 302–316 (2009).

9. Marmion, M.E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of

hybrid stochastic local search algorithms. In: Blesa, M.J., et al. (eds.) Hybrid

Metaheuristics, LNCS, vol. 7919, pp. 144–158. Springer, Heidelberg (2013).

10. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars

to parameters: Automatic iterated greedy design for the permutation flow-shop

problem with weighted tardiness. In: Learning and Intelligent Optimization, LION

7, LNCS, vol. to appear. Springer, Heidelberg, (2013).

11. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based

genetic programming: A survey. Genetic Programming and Evolvable Machines

11(3-4), 365–396 (2010).

12. Sprecher, A., Hartmann, S., Drexl, A.: An exact algorithm for project scheduling

with multiple modes. OR Spektrum 19(3), 195–203 (1997).

13. Sprecher, A., Kolisch, R., Drexl, A.: Semi-active, active, and non-delay schedules

for the resource-constrained project scheduling problem. European Journal of Op-

erational Research 80(1), 94–102 (1995).


	Introduction
	Automatic Bottom-up Design of Hybrid ILS Algorithms
	Our algorithm for the MISTA 2013 Challenge
	Conclusions

