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Abstract. The travelling salesman problem with time windows is a
difficult optimization problem that appears, for example, in logistics.
Among the possible objective functions we chose the optimization of the
makespan. For solving this problem we propose a so-called Beam-ACO
algorithm, which is a hybrid method that combines ant colony optimiza-
tion with beam search. In general, Beam-ACO algorithms heavily rely
on accurate and computationally inexpensive bounding information for
differentiating between partial solutions. In this work we use stochastic
sampling as an alternative to bounding information. Our results clearly
demonstrate that the proposed algorithm is currently a state-of-the-art
method for the tackled problem.

1 Introduction

The travelling salesman problem with time windows (TSPTW) [1] seeks to find
an efficient route to visit a number of customers, starting and ending at a depot,
with the added difficulty that each customer may only be visited within a certain
time window. In practice, the TSPTW is an important problem in logistics. The
TSPTW is proven to be NP -hard, and even finding a feasible solution is an NP -
complete problem [2]. The problem is closely related to a number of important
problems. For example, the well-known travelling salesman problem (TSP) is a
special case of the TSPTW. The TSPTW itself can be seen as a special case with
a single vehicle of the vehicle routing problem with time windows (VRPTW).
The literature mentions two different objective functions for this problem. In
this work we chose the optimization of the makespan as the objective. The ant
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colony optimization approaches from [3,4] are among the current state-of-the-art
algorithms for the TSPTW when optimizing the makespan.

Ant colony optimization (ACO) is a metaheuristic that is based on the prob-
abilistic construction of solutions [5]. At each algorithm iteration, a number
of solutions are constructed independently of each other. A recently proposed
ACO hybrid, known as Beam-ACO [6,7], employs at each iteration a probabilistic
beam search procedure that constructs a number of solutions interdependently
and in parallel. At each step, beam search keeps a certain number of the best
partial solutions available for further extension [8]. These partial solutions are
selected with respect to bounding information. Hence, accurate and inexpensive
bounding information is a crucial component of beam search. A problem arises
when the bounding information is either misleading or when this information
is computationally expensive, which is the case for the TSPTW. López-Ibáñez
and Blum [9] presented a first study with the aim to show that stochastic sam-
pling [10,11] is a useful alternative to bounding information. Hereby, each given
partial solution is completed a certain number of times in a stochastic way. The
information that is obtained in this way is used to differentiate between different
partial solutions.

In this work, apart from comparing our results to the best known ones from
the literature, we also study the effect that different components of Beam-ACO
with stochastic sampling have on the performance of the algorithm. In particular,
we will evaluate the influence of the pheromone information and the effects of
different degrees of stochastic sampling. The remainder of this work is organized
as follows. In Section 2 we give a technical description of the TSPTW. Section 3
introduces the Beam-ACO algorithm for the TSPTW. In Section 4 we describe
the experimental evaluation, and in Section 5 we offer conclusions and an outlook
to future work.

2 The TSP with Time Windows

The TSPTW is formally defined as follows. Given an undirected complete graph
G = (N, A)—where N = {0, 1, . . . , n} is a set of nodes representing the de-
pot (node 0) and n customers, and A = N × N is the set of edges connect-
ing the nodes—a solution to the problem is a tour visiting each node once,
starting and ending at the depot. Hence, a tour is represented as P = (p0 =
0, p1, . . . , pn, pn+1 = 0), where the sub-sequence (p1, . . . , pk, . . . , pn) is a permu-
tation of the nodes in N \{0} and pk denotes the index of the customer at the kth

position of the tour. Two additional elements, p0 = 0 and pn+1 = 0, represent
the starting depot and the final depot.

For every edge aij ∈ A between two nodes i and j, there is an associated cost
c(aij). This cost typically represents the travel time between customers i and j,
plus a service time at customer i.

Furthermore, there is a time window [ei, li] associated to each node i ∈ N ,
which specifies that customer i cannot be serviced before ei or visited later than
li. In most formulations of the problem, waiting times are permitted, that is, a
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node i can be reached before the start of its time window ei, but cannot be left
before ei. Therefore, given a particular tour P , the departure time from customer
pk is calculated as Dpk

= max(Apk
, epk

), where Apk
= Dpk−1 + c(apk−1,pk

) is the
arrival time at the customer pk in the tour.

Two different but related objectives for this problem are found in the litera-
ture. One is the minimization of the cost of the edges traversed along the tour.
The other alternative is to minimize Apn+1 , that is, the arrival time at the depot.
The first objective is analogous to the objective of the TSP, while the second is
similar to the concept of a makespan in scheduling problems. In this paper, we
focus on the latter. Hence, we formally define the TSPTW as:

min F (P ) = Apn+1 , (1)

subject to Ω(P ) =
∑n+1

k=0 ω(pk) = 0, where ω(pk) = 1 if Apk
> lpk

, and 0
otherwise. Note that Apn+1 is recursively computed as Apk+1 = max(Apk

, epk
)+

c(apk,pk+1). In the above definition, Ω(P ) denotes the number of time window
constraints that are violated by tour P , which must be zero for feasible solutions.

3 The Beam-ACO Algorithm

In the following we first explain the solution construction, which is the crucial
part of our Beam-ACO algorithm. The application of the (Beam-)ACO frame-
work to any problem implies the definition of a pheromone model T and a
solution construction mechanism. In fact, we need a solution construction mech-
anism for the probabilistic beam search as well as for stochastic sampling.

Stochastic Sampling. Given a partial solution, an ant a chooses at each con-
struction step one customer j among the set N (Pa) of customers not included
yet in the current partial tour Pa. Once all customers have been added to the
tour, it is completed by adding node 0. The decision of which customer to choose
at each step is done with the help of pheromone information and heuristic in-
formation. As for the pheromone information, ∀aij ∈ A, ∃τij ∈ T , 0 ≤ τij ≤ 1,
where τij represents the desirability of visiting customer j after customer i in
the tour. The greater the pheromone value τij , the greater is the desirability of
choosing j as the next customer to visit in the current tour.

The decision of which customer to choose is made by firstly generating a
random number q uniformly distributed within [0, 1] and comparing this value
with a parameter q0 called the determinism rate. If q ≤ q0, j is chosen deter-
ministically as the value with the highest product of pheromone and heuristic
information, that is, j = arg maxk∈N (Pa){τik · ηik}, where i is the last customer
added to the tour Pa, and ηij is the heuristic information that represents an
estimation of the benefit of visiting customer j after customer i. Otherwise, j is
stochastically chosen from the following distribution of probabilities:

pi(j) =
τij · ηij∑

k∈N (Pa) τik · ηik
if j ∈ N (Pa) (2)
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There are several heuristics that could be used for the TSPTW. When deciding
which customer should be visited next, not only a small travel cost between
customers (cij) is desirable, but also those customers whose time window fin-
ishes sooner should be given priority to avoid constraint violations. In addition,
visiting those customers whose time window starts earlier may prevent waiting
times. Hence, we use a heuristic information that combines the travel cost be-
tween customers, the latest service time (lj) and the earliest service time (ej).
The values are first normalized to [0, 1], with the maximum value corresponding
to 0 and the minimum to 1, and then combined:

ηij = λc cmax − cij

cmax − cmin
+ λl lmax − lj

lmax − lmin
+ λe emax − ej

emax − emin
(3)

where λc + λl + λe = 1 are weights that allow to balance the importance of
each heuristic. In earlier experiments, we found out that no single combination
of weights would perform optimally across all instances in our benchmark set.
Therefore, we decided to define the weights randomly for each application of
probabilistic beam search.

The solution construction mechanism described above may result in the con-
struction of infeasible solutions. Therefore, it is necessary to define a way of
comparing between different—possibly infeasible—solutions. This will be done
lexicographically (<lex) by first minimising the number of constraint violations
(Ω) and, in the case of an equal number of constraint violations, by comparing
the tour cost (F ). More formally, we compare two different solutions P and P ′

as follows:

P <lex P ′ ⇐⇒ Ω(P ) < Ω(P ′) ∨ (Ω(P ) = Ω(P ′) ∧ F (P ) < F (P ′)) (4)

Probabilistic Beam Search. The probabilistic beam search that we developed
for the TSPTW is described in Algorithm 1. The algorithm requires three input
parameters: kbw ∈ Z

+ is the so-called beam width, μ ∈ R
+ ≥ 1 is a parameter that

determines the number of children that can be chosen at each step, and N s is the
number of stochastic samples taken for evaluating a partial solution. Moreover,
Bt denotes a set of partial tours called the beam. Hereby, index t denotes the
current iteration of the beam search. At any time it holds that |Bt| ≤ kbw, that
is, the beam is smaller than or equal to the beam width. A problem-dependent
greedy function ν() is utilized to assign a weight to partial solutions.

At the start of the algorithm the beam only contains one partial tour starting
at the depot, that is, B0 := {(0)}. Let C := C(Bt) denote the set of all possible
extensions of the partial tours in Bt. A partial tour P may be extended by
adding a customer j not yet visited by that tour. Such a candidate extension
of a partial tour is henceforth denoted by 〈P, j〉. At each iteration, at most
μ · kbw� candidate extensions are selected from C by means of the procedure
ChooseFrom(C) to form the new beam Bt+1. At the end of each step, the new
beam Bt+1 is reduced by means of the procedure Reduce in case it contains more
than kbw partial solutions. When the current iteration is equal to the number of
customers (t = n), all elements in Bn are completed by adding the depot, and
finally the best solution is returned.
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Algorithm 1. Probabilistic Beam search (PBS) for the TSPTW
1: B0 := {(0)}
2: randomly define the weights λc, λl, and λe

3: for t := 0 to n do
4: C := C(Bt)
5: for k = 1, . . . , min{�μ · kbw�, |C|} do
6: 〈P, j〉 := ChooseFrom(C)
7: C := C \ 〈P, j〉
8: Bt+1 := Bt+1 ∪ 〈P, j〉
9: end for

10: Bt+1 := Reduce(Bt+1, kbw)
11: end for
12: output: arg minlex {T | T ∈ Bn}

The procedure ChooseFrom(C) chooses a candidate extension 〈P, j〉 from C,
either deterministically or probabilistically according to the determinism rate
q0. More precisely, for each call to ChooseFrom(C), a random number q is gen-
erated and if q ≤ q0 then the decision is taken deterministically by choosing the
candidate extension that maximises the product of the pheromone information
T and the greedy function ν(): 〈P, j〉 = arg max〈P ′,k〉∈C τ(〈P ′, k〉) · ν(〈P ′, k〉)−1,
where τ(〈P ′, k〉) corresponds to the pheromone value τik ∈ T , supposing that i
is the last customer visited in tour P ′.

Otherwise, if q > q0, the decision is taken stochastically according to the
following probabilities:

p(〈P, j〉) =
τ(〈P, j〉) · ν(〈P, j〉)−1

∑

〈P ′,k〉∈C

τ(〈P ′, k〉) · ν(〈P ′, k〉)−1
(5)

The greedy function ν(〈P, j〉) assigns a heuristic value to each candidate ex-
tension 〈P, j〉. In principle, for this purpose we could use the heuristic η given
by Eq. (3), that is, ν(〈P, j〉) = η(〈P, j〉). As in the case of the pheromone in-
formation, the notation η(〈P, j〉) refers to the value of ηik as defined in Eq. (3),
supposing that i was the last customer visited in tour P . However, when compar-
ing two extensions 〈P, j〉 ∈ C and 〈P ′, k〉 ∈ C, the value of η might be misleading
in case P �= P ′. We solved this problem by defining the greedy function ν() as
the sum of the ranks of the heuristic information values that correspond to the
construction of the extension. For an example see Fig. 1. The edge labels of the
search tree are tuples that contain the (fictious) values of the heuristic infor-
mation (η) in the first place, and the corresponding rank in the second place.
For example, the extension 2 of the partial solution (1), denoted by 〈(1), 2〉 has
greedy value ν(〈(1), 2〉) = 1 + 2 = 3.

Finally, the application of procedure Reduce(Bt) removes the worst max{|Bt|−
kbw, 0} partial solutions from Bt. As mentioned before, we use stochastic sampling
for evaluating partial solutions. More specifically, for each partial solution, a
number N s of complete solutions is sampled as explained in the paragraph above
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(0)

1 2 3

(0.5, 1) (0.2, 3) (0.3, 2)

2 3 1 3 1 2

(0.3, 2) (0.7, 1) (0.5, 1) (0.5, 1) (0.4, 2) (0.6, 1)

3 2 3 1 2 1

(1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

Fig. 1. Search tree corresponding to a problem instance with three customers. Edge
labels are tuples that contain the heuristic information (η) in the first place, and the
corresponding rank in the second place.

on stochastic sampling. The value of the best of these samples (with respect to
Eq. 4) is used for evaluating the corresponding partial solution. Only the kbw best
partial solutions (with respect to their corresponding best samples) are kept in
Bt and the others are discarded.

3.1 Beam-ACO Framework

The probabilistic beam search outlined in the previous section is used to con-
struct solutions within an ACO algorithm that is implemented in the hyper-cube
framework [12]. A high level description of the algorithm is given in Algorithm 2.
The data structures used, in addition to counters and to the pheromone values,
are: (1 ) the best-so-far solution P bf, that is, the best solution generated since
the start of the algorithm; (2 ) the restart-best solution P rb, that is, the best
solution generated since the last restart of the algorithm; (3 ) the convergence
factor (cf), 0 ≤ cf ≤ 1, which is a measure of how far the algorithm is from
convergence; and (4 ) the Boolean variable bs update, which becomes true when
the algorithm reaches convergence.

Roughly, the algorithm works as follows. Initially, all variables are initialized.
In particular, the pheromone values are set to their initial value 0.5. Then, a
main loop is repeated until a termination criteria, such as a CPU time limit,
is met. Each algorithm iteration consists of the following steps. First, a prob-
abilistic beam search algorithm is executed, which returns solution P ib. Then,
after updating the best-so-far solution, a new value for the convergence factor
cf is computed. Depending on this value, as well as on the value of the Boolean
variable bs update, a decision on whether to restart the algorithm or not is made.
If the algorithm is restarted, all the pheromone values are reset to their initial
value (0.5). The algorithm is iterated until the CPU time limit is reached. Once
terminated, the algorithm returns the best solution found which corresponds to
P bf. In the following we describe the two remaining procedures of Algorithm 2
in more detail.
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Algorithm 2. ACO algorithm for the TSPTW
1: input: N s, kbw ∈ Z

+, μ ∈ R
+, q0 ∈ [0, 1] ⊂ R

2: P bf := null, P rb := null, cf := 0, bs update := false
3: τij := 0.5 ∀τij ∈ T
4: while CPU time limit not reached do
5: P ib := PBS(kbw,μ,N s) /* see Algorithm 1 */
6: if P ib <lex P rb then P rb := P ib

7: if P ib <lex P bf then P bf := P ib

8: cf := ComputeConvergenceFactor(T )
9: if bs update = true and cf > 0.99 then

10: τij := 0.5 ∀τij ∈ T
11: P rb := null, bs update := false
12: else
13: if cf > 0.99 then bs update := true end if
14: ApplyPheromoneUpdate(cf, bs update , T , P ib, P rb, P bf)
15: end if
16: end while
17: output: P bf

Procedure ComputeConvergenceFactor(T ) computes the convergence factor cf,
which is a function of the current pheromone values, as follows:

cf = 2

(∑
τij∈T max{τmax − τij , τij − τmin}

|T | · (τmax − τmin)
− 0.5

)

(6)

where τmax and τmin are, respectively, the maximum and minimum pheromone
values allowed. Hence, cf = 0 when the algorithm is initialized (or reset), that is,
when all pheromone values are set to 0.5. In contrast, when the algorithm has
converged, then cf = 1. In all other cases, cf has a value within (0, 1).

The next step of the algorithm updates the pheromone information by means
of the procedure ApplyPheromoneUpdate(cf, bs update, T , P ib, P rb, P bf). In ge-
neral, three solutions are used for updating the pheromone values. These are
the iteration-best solution P ib, the restart-best solution P rb, and the best-so-far
solution P bf. The influence of each solution on the pheromone update depends
on the state of convergence of the algorithm as measured by the convergence
factor cf. Hence, each pheromone value τij ∈ T is updated as follows:

τij = τij + ρ · (ξij − τij) , (7)

with ξij = κib ·P ib
ij +κrb ·P rb

ij +κbf ·P bf
ij , where ρ is a parameter that determines

the learning rate, P ∗
ij is 1 if customer j is visited after customer i in solution P ∗

and 0 otherwise, κib is the weight (i.e., the influence) of solution P ib, κrb is the
weight of solution P rb, κbf is the weight of solution P bf, and κib +κrb +κbf = 1.
For our application we used a standard update schedule as shown in Table 1 and
a value of ρ = 0.1.
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Table 1. Setting of κib, κrb and κbf de-
pending on the convergence factor cf and
the Boolean control variable bs update

bs update false true
cf [0, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1] —

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbf 0 0 0 0 1

After the pheromone update rule in
Eq. (7) is applied, pheromone values
that exceed τmax = 0.999 are set back
to τmax (similarly for τmin = 0.001).
This is done in order to avoid a com-
plete convergence of the algorithm,
which is a situation that should be
avoided. This completes the descrip-
tion of our Beam-ACO approach for
the TSPTW.

4 Experimental Evaluation

We implemented Beam-ACO in C++ and used 30 instances originally provided
by Potvin and Bengio [13] for testing. These instances are known to contain a mix
of randomly-located and clustered customers. First, we performed a set of initial
experiments in order to find appropriate values for various parameters of Beam-
ACO. On the basis of these experiments we chose kbw = 10, μ = 1.5, N s = 5,
q0 = 0.9, and a time limit of 60 CPU seconds per run and per instance. Each
experiment was repeated 25 times with different random seeds. All experiments
were run on a AMD Opteron 8218 processor, with 2.6 GHz CPU and 1 MB of
cache size running GNU/Linux 2.6.24.

Comparison to the State-of-the-art. In Table 2 we compare the results of Beam-
ACO with the results of two ACO algorithms proposed in the literature: ACS-
TSPTW [3] and ACS-Time [4], where ACS-TSPTW is a variation of ACS-Time.
These algorithms can be regarded as the current state-of-the-art for the TSPTW
with makespan optimization. The structure of Table 2 is as follows. F̃ is the
mean makespan obtained by each algorithm, and TCPU is the mean computa-
tion time in seconds. The results of ACS-TSPTW and ACS-Time were obtained
using an AMD Athlon CPU with 1.46 GHz, which should be about two times
slower than our machine. For the results of Beam-ACO, we provide the corre-
sponding standard deviations (“sd”). Finally, the column “Old Best-known”
gives the previously best known result for each instance, while “New Best-
known” gives the best-known makespan taking into account the results obtained
by Beam-ACO.

Beam-ACO obtained a feasible solution in all 25 runs, while it is not clear
how many feasible solutions were obtained by ACS-TSPTW and ACS-Time. In
case no feasible solution was obtained in any of the 5 runs of ACS-TSPTW or
ACS-Time, the corresponding entry is blank. In fact, ACS-TSPTW fails to find
any feasible solution in three cases, whereas ACS-Time fails to find any feasible
solution in five cases. Beam-ACO achieves a better performance than the other
two algorithms in 22 out of 30 cases. In further seven cases our algorithm equals
the best of the results obtained by the other two algorithms. Only for one instance
(rc.202.3) Beam-ACO was not able to obtain the best result known. In many
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Table 2. Comparison of results obtained by ACS-TSPTW, ACS-Time and Beam-ACO

ACS-TSPTW ACS-Time Beam-ACO Best-known

Problem n F̃ TCPU F̃ TCPU F̃ sd TCPU sd Old New

rc201.1 20 592.06 100.94 592.06 96.77 592.06 0.00 0.01 0.00 592.06 592.06
rc201.2 26 877.49 246.26 866.56 262.66 860.17 0.00 0.39 0.44 861.91 860.17
rc201.3 32 867.61 464.30 854.11 466.13 853.71 0.00 0.09 0.15 853.71 853.71
rc201.4 26 900.52 151.05 — — 889.18 0.00 0.16 0.32 900.38 889.18

rc202.1 33 880.74 241.77 880.74 241.72 850.48 0.00 0.95 1.15 871.11 850.48
rc202.2 14 338.52 46.77 382.47 47.17 338.52 0.00 0.00 0.00 338.52 338.52
rc202.3 29 892.18 190.24 — — 894.10 0.00 0.26 0.50 847.31 847.31
rc202.4 28 — — 874.55 170.75 853.71 0.00 1.18 1.19 856.37 853.71

rc203.1 19 673.07 78.83 600.66 80.44 488.42 0.00 0.01 0.01 572.63 488.42
rc203.2 33 926.75 255.77 911.34 278.96 853.71 0.00 4.05 3.37 897.88 853.71
rc203.3 37 — — — — 921.54 0.51 20.47 13.58 — 921.44
rc203.4 15 493.85 53.08 429.96 52.11 338.52 0.00 0.01 0.01 415.26 338.52

rc204.1 46 949.68 438.25 — — 925.12 1.14 24.79 15.62 949.22 920.11
rc204.2 33 863.65 240.55 770.08 238.42 691.58 3.21 22.46 15.74 753.52 690.06
rc204.3 24 642.06 127.27 533.25 128.80 456.19 1.58 19.15 18.71 488.36 455.03

rc205.1 14 422.24 46.90 421.57 46.67 417.81 0.00 0.03 0.05 417.81 417.81
rc205.2 27 820.19 181.06 820.19 195.11 820.19 0.00 3.44 2.68 820.19 820.19
rc205.3 35 950.05 274.55 951.22 273.09 950.05 0.00 0.13 0.20 950.05 950.05
rc205.4 28 870.43 186.56 849.32 180.18 837.71 0.00 1.70 1.09 838.75 837.71

rc206.1 4 117.85 13.27 117.85 13.41 117.85 0.00 0.00 0.00 117.85 117.85
rc206.2 37 914.99 306.13 906.98 304.27 879.17 6.07 14.22 16.85 905.47 870.49
rc206.3 25 650.59 140.72 650.59 140.51 650.59 0.00 0.01 0.01 650.59 650.59
rc206.4 38 943.31 320.19 — — 920.18 5.17 29.44 18.14 943.31 911.98

rc207.1 34 860.98 258.44 889.33 258.28 820.23 4.19 26.88 17.07 851.06 809.86
rc207.2 31 — — 792.38 — 720.78 1.07 24.21 16.76 761.78 717.22
rc207.3 33 955.70 241.70 844.98 233.68 757.80 8.49 34.73 13.39 836.05 747.47
rc207.4 6 133.14 22.45 133.14 22.80 133.14 0.00 0.00 0.00 133.14 133.14

rc208.1 38 934.80 334.72 901.61 331.58 820.88 8.84 41.96 10.42 877.20 810.70
rc208.2 29 722.24 185.73 608.84 185.33 581.32 0.00 8.50 5.89 591.43 581.32
rc208.3 36 795.03 291.98 739.54 295.94 691.66 1.30 26.67 15.14 715.27 686.80

instances, Beam-ACO found the (presumably) optimal solution in all 25 runs,
as illustrated by a zero standard deviation.

With respect to computation time, Beam-ACO is between 5 and 100 times
faster than the other two algorithms. This difference of computation time be-
tween Beam-ACO and the other algorithms cannot be explained solely by dif-
ferences in processor speed.

Summarizing, the results let us conclude that Beam-ACO is a new state-of-
the-art algorithm for the TSPTW with makespan optimization.

Analysis of Beam-ACO. With the aim of obtaining a better understanding of the
behaviour of Beam-ACO we conducted a series of additional experiments. First,
we wanted to study the influence and the importance of the pheromone informa-
tion, which is used during the construction process of probabilistic beam search
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as well as for stochastic sampling. For that purpose we repeated the experiments
with a version of Beam-ACO in which the pheromone update was switched off.
This has the effect of removing the learning mechanism from Beam-ACO. In the
presentation of the results this version is denoted by noph. In a second set of ex-
periments we wanted to study the importance of stochastic sampling. Remember
that, at each step of the probabilistic beam search, first a number of maximally
μ · kbw� extensions are chosen. Then, based on the results of stochastic sam-
pling, procedure Reduce removes extensions until only the best kbw extensions
with respect to stochastic sampling are left. In order to learn if this reduction
step is important, we repeated all the experiments with a version of Beam-ACO
where μ = 1 and kbw = 15 (in order to compensate for the smaller μ value). Note
that when μ = 1, procedure Reduce is never invoked and stochastic sampling is
never performed. In the presentation of the results this version of Beam-ACO
is denoted by no ss. Finally, we wanted to study how good stochastic sampling
is in terms of an estimate, by applying it only after a certain number of itera-
tions of each probabilistic beam search, that is, once the partial solutions in the
beam of a probabilistic beam search contain a certain percentage of customers.
More specifically, for the first (n − (rs · n)/100) iterations of probabilistic beam
search, stochastic sampling is not used. Instead, Reduce simply selects kbw par-
tial solutions at random. In contrast, for the remaining (rs · n)/100 iterations
of probabilistic beam search, procedure Reduce uses the estimate provided by
stochastic sampling for the elimination of partial solutions. Henceforth, we refer
to parameter rs as the rate of stochastic sampling. The value of this parame-
ter is given as a percentage, where 0% means that no stochastic sampling is
ever performed, while 100% refers to the Beam-ACO approach that always uses
stochastic sampling. In our experiments we tested the following rates of stochas-
tic sampling: rs = {0%, 25%, 50%, 75%, 85%, 100%}. In the presentation of the
results the corresponding algorithm versions are simply denoted by the value of
parameter rs.

Figure 2 shows the results of the different experiments described above for
five problem instances that are rather difficult to solve. The barplots (in grey)
compare the results with respect to the mean ranks obtained by each algorithm
version over 25 runs. Note that standard deviations are shown as error bars. The
ranks are calculated by sorting all solutions lexicographically. On the other hand,
the boxplots (in white) show the distribution of computation time (in seconds)
required by each algorithm version.

The following conclusions can be drawn. First, when no pheromone informa-
tion is used (see algorithm noph), the performance of the algorithm drops signif-
icantly. Interestingly, the performance of Beam-ACO without pheromone update
is always worse than the performance of Beam-ACO using at least rs = 50% of
stochastic sampling. Second, the use of stochastic sampling seems essential to
achieve satisfactory results. When no stochastic sampling is used (see algorithm
no ss), the results achieved are worse than the ones obtained by Beam-ACO
with stochastic sampling, and the algorithm requires significantly more compu-
tation time.
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(Makespan, Constrain Violations) Time (s)

100%

85%

75%

50%

25%

 0%

noph

no_ss

(921.44, 0) (933.53, 0) (953.32, 0) (943.08, 1) (926.96, 2) (949.03, 2) (1028.64, 3) (1131.81, 4) (1059.12, 5) 0 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(455.03, 0) (462.34, 0) (463.43, 0) (466.96, 0) (469.58, 0) (471.75, 0) (474.82, 0) (476.82, 0) (480.48, 0) 0 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(820.19, 0) (823.72, 0) (820.19, 1) (830.25, 1) (851.08, 1) (821.54, 2) (823.18, 2) (833.36, 2) 0 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(747.47, 0) (761.03, 0) (774.86, 0) (781.85, 0) (788.33, 0) (800.91, 0) (811.64, 0) (833.78, 0) (898.82, 0) 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(581.32, 0) (584.75, 0) (588.96, 0) (593.08, 0) (594.67, 0) (598.94, 0) (603.07, 0) (612.69, 0) (620.31, 0) 0 10 20 30 40 50 60

Fig. 2. Results concerning the analysis of Beam-ACO. From top to bottom the graphics
concern instances rc.203.3, rc.204.3, rc.205.2, rc.207.3, and rc.208.2.

Finally, the results of the algorithm variants using different rates of stochastic
sampling show a clear pattern. The performance of the algorithm increases with
increasing rate of stochastic sampling. Disabling stochastic sampling completely
(rs = 0%), strongly affects the performance of Beam-ACO in a negative way.
Starting from rates of stochastic sampling of at least 75%, the performance of
the algorithm is already very close to—and sometimes the same as—the per-
formance of Beam-ACO when always using stochastic sampling. However, even
in those cases where a rate of stochastic sampling of 85% performs as well as
the variant using rs = 100%, the latter requires less computation time; see, for
example, instances rc.204.3 and rc.208.2. This is particularly interesting because
the variant using rs = 100% is the most expensive one in terms of computa-
tional effort. Therefore, this result suggests that stochastic sampling helps the
algorithm to converge faster to the best solutions.
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5 Conclusions

In this paper, we have proposed a Beam-ACO approach for the TSPTW with
makespan optimization. Beam-ACO is a hybrid between ant colony optimization
and beam search that, in general, relies heavily on bounding information that
is accurate and computationally inexpensive. We studied a version of Beam-
ACO in which the bounding information is replaced by stochastic sampling.
Experiments were performed on a set of standard benchmark instances for the
TSPTW, comparing the Beam-ACO approach to the best known methods from
the literature. The results showed that Beam-ACO is a state-of-the-art algorithm
for the TSPTW with makespan optimization. In a second set of experiments
we analysed the influence of pheromone information and stochastic sampling
on the performance of Beam-ACO. The results showed that both algorithmic
components are essential for achieving high quality results. In the future we plan
to improve the performance of our Beam-ACO approach further, for example,
by the inclusion of local search.
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