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ABSTRACT

It is a common held assumption that problems with many objectives
are harder to optimize than problems with two or three objectives.
In this paper, we challenge this assumption and provide empirical
evidence that increasing the number of objectives tends to reduce
the difficulty of the landscape being optimized. Of course, increasing
the number of objectives brings about other challenges, such as
an increase in the computational effort of many operations, or
the memory requirements for storing non-dominated solutions.
More precisely, we consider a broad range of multi- and many-
objective combinatorial benchmark problems, and we measure how
the number of objectives impacts the dominance relation among
solutions, the connectedness of the Pareto set, and the landscape
multimodality in terms of local optimal solutions and sets. Our
analysis shows the limit behavior of various landscape features
when adding more objectives to a problem. Our conclusions do
not contradict previous observations about the inability of Pareto-
optimality to drive search, but we explain these observations from a
different perspective. Our findings have important implications for
the design and analysis of many-objective optimization algorithms.
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1 BACKGROUND AND MOTIVATIONS

In contrast to single-objective optimization, multi-objective opti-
mization deals with problems where multiple, typically conflicting
objectives must be optimized simultaneously. Under this scenario,
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optimality is often defined in terms of Pareto dominance, i.e., a
solution dominates another if the former is better than the latter
in all objectives and strictly better in at least one of them. A solu-
tion that is not dominated by any other feasible solution is called
Pareto-optimal. The set of Pareto-optimal solutions is the Pareto
set and their image in objective space is the Pareto front.

It is known than adding objectives to a single-objective optimiza-
tion problem may actually help solving it [17, 20], and it has been
proven that adding a new objective to an existing multi-objective
problem may reduce the runtime required by an evolutionary al-
gorithm to find the Pareto front [2]. Nevertheless, increasing the
number of objectives is generally thought to make optimization
problems harder to solve. In recent years, a large amount of research
effort has been devoted to many-objective optimization problems,
that is, problems with four or more conflicting objectives. A sur-
vey from 2015 [22] already listed 238 papers on this topic and this
number has surely grown exponentially since then.

One of the main challenges in multi-objective optimization is
that the size of the Pareto set may be exponential on the input size,
even with two objectives [6], and the fraction of solutions that are
Pareto-optimal generally increases sharply with the number of ob-
jectives [38]. Therefore, most multi-objective optimization methods
only aim at producing a high-quality bounded-size approximation
of the Pareto front [19]. Even within this aim, the runtime of many
steps within multi-objective optimization algorithms is at least
polynomial and often exponential on the number of objectives [15],
which obviously increases the computational requirements of the
algorithms. Nevertheless, this is not due to any intrinsic difficulty
of the optimization landscape, but simply to the computational
complexity of the algorithms available for performing such steps.
In other words, we would not say that a problem has become easier
if we improve the runtime of an optimizer by using more efficient
implementations or better algorithms for such steps [13, 16] as long
as the optimizer visits exactly the same sequence of solutions during
its execution. In fact, the comparison of multi- and many-objective
optimizers is often performed in terms of the number of evaluated
solutions, and the runtime required by other algorithmic steps is
given less attention.

Therefore, we wish to set aside the runtime of individual algo-
rithmic steps and focus instead on the landscape features of many-
objective combinatorial optimization problems [3] that influence
the number of solutions (or neighborhood evaluations) required
to reach an approximation of the Pareto front with certain quality.
High-level landscape features that makes an optimization problem
harder typically include its ruggedness, the connectedness of the
Pareto set, the number of local optima that are not global optima,
etc. From this particular point of view, we claim here that many-
objective problems are generally easier than problems with two or
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three objectives, from the point of view of finding a bounded size set
of Pareto-optimal solutions. As we will show empirically, for more
than five objectives almost all solutions are Pareto-optimal and the
Pareto set is connected, thus finding multiple Pareto-optimal solu-
tions becomes trivial even with an uniform random sampling. The
connectedness of the Pareto set persists even with highly non-linear
landscapes, which would typically induce highly disconnected land-
scapes. Our observations here are consistent and complement the
empirical observation that Pareto dominance is unable to drive the
search in many-objective optimization [14, 33]. We show that the
reason is that, from the point of view of Pareto dominance, the
landscape is basically neutral and connected, and the difficulty lies
elsewhere.

Of course, there are other characteristics that may make a many-
objective optimization problem difficult to solve. On top of the
increase in computational complexity, many-objective optimization
algorithms aim to find a “well-distributed” set of solutions by op-
timizing (directly or indirectly) unary quality metrics, such as the
hypervolume, and we make no claims (yet) about whether those
metrics are easier or harder to optimize with additional objectives.
We also make not claims about the difficulty in optimizing scalariza-
tion functions that convert a many-objective problem into multiple
single-objective ones [32].

The paper is organized as follows. After giving the experimental
setup of our analysis in Section 2, we investigate the correlation
among objectives and the dominance relations among solutions
in Section 3, the connectedness of the Pareto set in Section 4, and
the multimodality in terms of local optimal solutions and sets in
Section 5. We finally summarize our main findings and discuss
further research in Section 6.

2 EXPERIMENTAL SETUP

This section covers the experimental setup of our analysis, including
the considered benchmark problems and their setting.

2.1 pmnk-Landscapes

We consider pmnk-landscapes as a problem-independent model for
generating multi- and many-objective multimodal problems [1, 36].
Candidate solutions are binary strings of size n, and the objective
function vector f = (fi,..., fi,. .., fm) is defined as f: {0,1}" —
[0, 1]™ such that each objective f; is to be maximized, i € {1,..., m}.
As in well-established single-objective nk-landscapes [18], the ob-
jective value f;(x) of a solution x is an average value of the in-
dividual contributions associated with each variable x;. Given
objective f;, i € {1,...,m}, and variable x;, j € {1,...,n}, a
component function f;;: {0, 1}%+1 15 [0, 1] assigns a real-valued
contribution for every combination of x; and its k variable inter-
actions {le, e Xy } These f;j-values are uniformly distributed
in [0, 1]. Thus, the individual contribution of a variable x; depends
onits value and on the values of k < n other variables {xj,,...,xj, }.
The variable interactions, i.e., the k variables that influence the con-
tribution of x;, are set uniformly at random among the (n — 1)
variables other than x; [18]. By increasing the number of variable
interactions k from 0 to (n — 1), problems can be gradually tuned
from smooth to rugged. In pmnk-landscapes, f;j-values follow a
multivariate uniform distribution of dimension m, defined by an
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m X m positive-definite symmetric covariance matrix (cpq) such
that cpp = 1and cpq = p for all p,q € {1,...,m} with p # g, where
p > n;—_% defines the correlation among the objectives; see [36]
for details. The positive (resp. negative) objective correlation p
decreases (resp. increases) the degree of conflict between the ob-
jective function values. The correlation coefficient p is the same
for each pair of objectives, and the variable interactions are the
same for all the objectives. By construction, it is very unlikely that
different solutions map to the same point in the objective space.
Interestingly, pmnk-landscapes exhibit different characteristics and
different degrees of difficulty for multi-objective algorithms [3, 23].
The pmnk-landscapes generator is available at the following URL:
http://mocobench.sf.net.

2.2 Problems Setting

We generate 540 multi- and many-objective pmnk-landscapes under
the following settings:

o The problem size is n = 14, so that the solution space can be
enumerated exhaustively.
o The problem non-linearity is k € {1, 2,4}, i.e. from relatively
smooth to relatively rugged problems.
e The number of objectives is m € {2,3,4,5,7,10, 15,20}; we
also consider the single-objective case (m = 1) when relevant.
e The correlation among objectives is p € {0,0.95- m_—_ll}
i.e. from uncorrelated to highly conflicting objectives.
For each problem setting, 10 random instances are independently
generated.

3 OBJECTIVE CORRELATION AND
DOMINANCE

We start by analyzing how the number of objectives impacts their
degree of conflict and the dominance relation between solutions.

3.1 Correlation among Objectives

Strongly correlated objectives do not add any difficulty to a prob-
lem, since optimizing for one objective will optimize the other.
Intuitively, uncorrelated or negatively correlated objectives would
be more challenging that positively correlated ones from the point
of view of optimization. However, as we will show, the more we
increase the number of objectives, the less conflicting they can be.

For the degree of conflict among the objectives, we consider
the pairwise correlation between the objective values. More pre-
cisely, given a pair of objectives (f;, fj), we measure the Spearman
rank correlation coefficient between f;— and fj—values, i.e. a non-
parametric measure of rank correlation to account for potential
non-linearities. The pairwise correlation ranges from —1.0 (highly
conflicting objectives) to 1.0 (highly correlated objectives), passing
through 0.0 (uncorrelated or independent objectives), and varies ac-
cording to the degree of conflict between f; and f;. We then average
the correlation coefficients over all pairs of objectives.

This is reported first over the entire solution space in Figure 1.
The average pairwise correlation is given with respect to the num-
ber of objectives m (x-axis) and to the problem non-linearity k (in
colors), for both uncorrelated (left) and conflicting objectives (right).
As expected, the objective correlation is close to 0.0 for uncorrelated
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Figure 1: Average correlation among pairs of objectives
(full space).
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Figure 2: Average correlation among pairs of objectives
(Pareto-optimal solutions only).

objectives, independently of m and k. For conflicting objectives, the
curve follows the setting of 0.95 - m_—_ll described in the problems
setting of Section 2, and thus only depends on m. For more than
two objectives, we cannot have all pairs of objectives strongly in
conflict one another. Let us consider the example where two ob-
jectives have a correlation of —1.0. If we now add a third objective
that conflicts with the first one, it will necessarily be positively
correlated to the second one (and vice versa). More formally, for
any multi-objective problem, if all pairwise correlations are the
same, the correlation cannot be lower than m_—_ll, because the corre-
lation matrix is a covariance matrix and must therefore be positive
semi-definite [34]. Therefore, the correlation tends towards 0.0 as
m increases. This explains why the pairwise correlation tends to
increase on average with the number of objectives. By construction,
the objective correlation of pmnk-landscapes is the same for all
pairs of objectives, which explains why the confidence interval is
quite small.

Let us now comment on the average pairwise objective correla-
tion for solutions from the Pareto front only, as shown in Figure 2.
Because the solutions are mutually non-dominated, the objective
correlation is —1.0 when m = 2: given two Pareto-optimal solutions,
when one is better for fi, it is necessarily worse for f,. However, as
the number of objectives increases, the average pairwise correlation
also increases, and seems to follow a logarithmic growth tending
towards 0.0. Although it is consistently higher for uncorrelated
objectives, where it reaches a value of 0.0 for 15 objectives, it is just
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Figure 3: Proportion of solutions being Pareto-optimal.

slightly behind for conflicting objectives, and goes from —1.0 for
m = 2 to about —0.05 for m = 20. Overall, whether considering all
solutions or Pareto-optimal solutions only, the degree of conflict
between the objectives seems to decrease with the number of objec-
tives. For the solutions in the Pareto front, their correlation quickly
converges towards zero when adding more objectives, even if the
objectives are as mutually conflicting as possible.

Although we cannot claim at this stage that zero correlation
in the Pareto front makes a problem easier or harder to solve, it
is well-known that some algorithms behave better than others
depending on the objective correlation; see, e.g., [28, 30]. Since the
correlation seems to converge to zero regardless of the actual degree
of conflict between the objectives and the value of k, this would
suggest that some classes of algorithms may have an advantage
over many-objective optimization problems.

3.2 Dominance Relations among Solutions

We now investigate the probability for a (random) solution to be
Pareto-optimal depending on the number of objectives. We argue
that a problem is intuitively easier if finding a Pareto-optimal solu-
tion by chance is more likely.

Figure 3 gives the proportional number of non-dominated so-
lutions within the solution space. We observe that in both cases
(uncorrelated and conflicting objectives), a handful of solutions are
non-dominated when there are few objectives, while this increases
substantially as the number of objectives grows. More specifically,
for uncorrelated objectives, this proportion is below 5% for m < 5
objectives and reaches 100% for m = 20. For conflicting objectives, it
already goes above 5% for m > 3, and reaches 100% for m = 10. This
means that for m > 20 uncorrelated objectives or m > 10 conflict-
ing objectives, all solutions are Pareto-optimal for the considered
problems. Here as well, the problem non-linearity has little im-
pact, although we note that there are slightly fewer Pareto-optimal
solutions when k is larger.

In Figure 4, we complete our analysis by calculating, for each so-
lution, how many other solutions dominate it, and we average over
the whole solution space. In fact, this matches the strategy used by
Fonseca and Fleming’s MOGA [8] to rank solutions from a popula-
tion. The average proportion of dominating points per solution is
about half for 1 objective, by construction of nk-landscapes [18]. It
then follows a logarithmic decrease with respect to the number of
objectives, to the point where there are almost none left for m =7
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Figure 5: Number of non-dominated fronts.

uncorrelated objectives (or m = 3 conflicting objectives). This result
suggests that most of non-optimal solutions are dominated by a
single point in these cases, that is, almost every randomly sampled
solution is either Pareto-optimal or dominated by just one solution.

Next, we follow another ranking strategy based on non-dominated
sorting [11], as used, e.g., in NSGA-II [4]. All solutions are organized
into different layers of mutually non-dominated solutions, and the
rank of a solution corresponds to the layer it belongs to, such that
a lower rank is better and Pareto-optimal solutions have a rank
of 1. The number of non-dominated fronts (layers), or equivalently
the maximum rank, is given in Figure 5 (notice the log-scale on
the y-axis). As above, this significantly decreases with the num-
ber of objectives for uncorrelated objectives, and even more so for
conflicting objectives. For 1 objective, there is one layer (rank) per
solution. But for many objectives, all solutions have a rank very
close to that of Pareto-optimal solutions, and most solutions belong
to the first front (i.e., the Pareto front). Overall, as m increases, so
does the probability of being non-dominated, and the expected rank
of solutions is better.

This analysis not only confirms previous results on the inef-
fectiveness of Pareto dominance for solving many-objective prob-
lems [14], it also highlights that this ineffectiveness actually means
that finding Pareto-optimal solutions becomes easier (or even triv-
ial) with increasing number of objectives. It is particularly striking
how little influence the setting of k has on this conclusion. Verel
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et al. [36] showed that there are slightly fewer Pareto-optimal so-
lutions when k is large. Here we see this is true up to a certain
number of objectives, after which all solutions are Pareto-optimal.

Finally, we argue that, if almost all solutions from the search
space are Pareto-optimal, the challenge is no longer to optimize the
objectives but to find a good representation of the Pareto front of
tractable size, i.e., bounded archiving [19].

4 CONNECTEDNESS OF PARETO-OPTIMAL
SOLUTIONS

The previous results deal with the dominance relation among solu-
tions based on their position in the objective space, independently
of their proximity in the solution space. Let us now take a closer
look at the topology of the Pareto set based on the connectedness
among Pareto-optimal solutions [7, 12]. We define the Pareto graph
such that each node is a Pareto-optimal solution, and an edge con-
nects two nodes if the corresponding solutions are neighbors in the
solution space. For the considered pmnk-landscapes, we say that
two solutions are neighbors if they are separated by a Hamming
distance of 1, which directly relates to the 1-bit-flip operator. If the
Pareto graph is connected, i.e. there is a path between any pair of
nodes, the Pareto set is connected [7, 12], which makes it possible
for a local search to identify the whole Pareto set by starting with
one Pareto-optimal solution. As shown in [24, 31], the degree of
connectedness impacts the performance of multi-objective algo-
rithms such as Pareto local search [29]. Intuitively, a large number
of small connected components makes the optimization more diffi-
cult as an algorithm would have to jump from one component to
another in order to make progress.

Figure 6 gives the number of connected components (CC) in
the Pareto graph [31]. In the case where the value is 1, all Pareto-
optimal solutions belong to the same CC, and therefore the Pareto
set is connected. Conversely, when there are as many CC as Pareto-
optimal solutions, all the nodes are isolated in the Pareto graph.
For 1 objective, there is a single optimum so it naturally belongs to
a single CC. We observe that the number of CC starts by increas-
ing for a relatively small number of objectives, and then suddenly
drops down to 1 for 15+ uncorrelated objectives, or 7+ conflicting
objectives. In fact, there are already less than 2 CC on average
for 10 uncorrelated objectives and 5 conflicting objectives, which
makes it even more striking. Before this sudden drop, the problem
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non-linearity noticeably affects the number of CC. In particular,
larger k—values seem to break the connectedness, which is one of
the reasons why larger k-values make the problems harder, which
is a known result from 2 to 5 objectives [36]. However, after the
drop, k has no effect and cannot break the connectedness. The
above results are confirmed by Figure 7 where the proportional size
of the largest CC [24, 36] is shown. Here we further see that for
7+ uncorrelated objectives or 4+ conflicting objectives, the largest
CC contains almost all Pareto-optimal solutions. We can therefore
deduce that the other CC contain only a handful of solutions. We fi-
nally report the average node degree of the Pareto graph in Figure 8;
that is, for each Pareto-optimal solution, how many of its neighbors
are other Pareto-optimal solutions. We normalize the values by
the neighborhood size. The number of objectives seems to have a
positive effect on the number of neighbors that belong to the Pareto
graph. In fact, all neighbors of all nodes map to Pareto-optimal
solutions for 20 uncorrelated objectives or 7+ conflicting objectives,
that is, all neighbors of Pareto-optimal solutions are themselves
Pareto-optimal.

Altogether, these results suggest that for many objectives, there
are fewer connected components in the Pareto set, that Pareto-
optimal solutions tend to belong to the same connected component,
and that most neighbors from Pareto-optimal solutions are also
Pareto-optimal. From this section and the previous one, we can
conclude that Pareto-optimal solutions can be found more easily,
and that it becomes more likely to find more Pareto-optimal so-
lutions from other Pareto-optimal solutions when there are more
objectives.
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5 MULTIMODALITY

We now move on to the last part of our analysis, in which we study
the multimodality of many-objective problems. By multimodal-
ity, we mean the number of Pareto local optimal solutions and of
Pareto local optimal sets as found by multi-objective local search
algorithms.

5.1 Local Optimal Solutions

We have previously commented on the structure induced by the
neighborhood within the set of Pareto-optimal solutions. Let us
now consider the landscape induced by the neighborhood within
the whole solution space. Similar to single-objective optimization,
a solution is a Pareto local optimal solution if it is not dominated
by any of its neighbors [29]. As above, we consider the 1-bit-flip
neighborhood for pmnk-landscapes. Global optima (i.e. Pareto-
optimal solutions) are also local optima (i.e. Pareto local optimal
solutions), but not necessarily the other way around.

We report the number of local optima per global optimum, i.e.,
the number of Pareto local optimal solutions divided by the number
of Pareto-optimal solutions, in Figure 9 for the different considered
problems. If this ratio is 1, this means that all local optima are in fact
global optima, in which case the multimodality is low. By contrast,
the larger this ratio, the more (non-global) local optima and the
higher the multimodality, which we expect to make the problem
harder for local search algorithms. As expected, there are more local
optima when k is large. This is consistent with known results for
single-objective nk-landscapes [18, 37] and for pmnk-landscapes
with 2 to 5 objectives [36]. That said, here again the number of
objectives seems to play a more important role. Indeed, we observe
that the ratio increases from 1 to 2 objectives, and then significantly
decreases (notice the log-scale) as there are more objectives. For
uncorrelated objectives, most local optima are global optima for
m = 15, and all of them are for m = 20. For conflicting objectives,
this is the case already for m = 7 objectives.

A different view of the same observation is given in Figure 10,
which reports the proportion of Pareto-optimal solutions (global
optima), of Pareto local optima that are not Pareto-optimal (local
optima) and of other (neither global nor local optimal) solutions.
The green line in the plot shows how the proportion of local optima
that are not global optima increases with the number of objectives,
reaching a maximum at m = 6 (for uncorrelated objectives) or
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m = 3 (for conflicting objectives). However, for higher number of
objectives, this value decreases until reaching zero, which means
that all local optima are in fact global optima.

In summary, the more the objectives, the fewer the number of
Pareto local optimal solutions per Pareto-optimal solution, so that
the multimodality decreases. In fact, for many objectives, most (if
not all) local optima are global optima. This knowledge can simplify
the search. For example, an optimization algorithm could avoid
checking the Pareto-optimality of Pareto local optimal solutions,
since any local optima is unlikely to be dominated by any other
solution.

5.2 Local Search and Local Optimal Sets

We conclude our analysis with a study related to the basins of attrac-
tion of multi-objective local search algorithms. A typical example
of such algorithms is Pareto local search (PLS) [29]. PLS maintains
an unbounded archive of mutually non-dominated solutions, which
is initialized with a random solution. At each step, one solution
is randomly selected from the archive, and all its neighbors are
evaluated and compared against the archive. The current solution
is thus tagged as visited. Non-dominated neighbors are added to
the archive, and dominated solutions from the archive are filtered.
PLS stops once all solutions from the archive are tagged as visited.
A similar example of multi-objective local search is SEMO (simple
evolutionary multi-objective optimizer) [21]. The only difference
with PLS is that only one neighbor is evaluated at each step, ran-
domly generated with repetition, such that SEMO does not detect
when no more improvement is possible. Paquete et al. [29] define
the attraction set of local search algorithms such as PLS and SEMO
as follows: A Pareto local optimal set contains Pareto local optimal
solutions only, such that all solutions are mutually non-dominated,
and any neighbor of any solution is weakly dominated by a solution
in the set [29]. Upon completion, both PLS and SEMO return such
a Pareto local optimal set.

We investigate the performance of PLS and SEMO for m €
{2,3,4,5} objectives. For comparison, we also consider a simple
random search, and a simple enumerative search where solutions
are generated following a random order, but without repetition.
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We report the proportional number of identified Pareto-optimal
solutions and the hypervolume [39] relative deviation with respect
to the number of evaluated solutions (denoted as iterations). The
algorithms were implemented in C++ using Paradiseo [5], and the
hypervolume computation was performed using the implementa-
tion from [9] as provided within the mco R package [27]. We could
not run the algorithms for larger values of m because the archiving
and hypervolume tasks are too CPU-intensive. We stress that these
sub-procedures are not directly related to the search process and do
not impact the number of evaluations they perform. That said, the
results reported below are sufficient to support our observations
and findings for the considered problem size.

The results of all algorithms for uncorrelated objectives are re-
ported in Figure 11. Notice the log-scale on the x-axis (iterations)
for both the proportion of identified Pareto-optimal solutions (left)
and the hypervolume relative deviation (right), and on the y-axis
for hypervolume. As expected, the convergence profile of PLS and
SEMO is very similar. Although SEMO is slightly outperformed at
some intermediate stages of the search, it eventually catches up
to PLS and finishes with the same level of approximation quality
(except for k = 4 and m = 5). Correspondingly, random search and
enumerative search are almost indistinguishable until about 5000
iterations, and then the latter takes over by taking advantage of not
evaluating the same solution twice. Since the maximum number
of iterations is set as the solution space size (2" = 214 = 16384
evaluations), enumerative search always results in the Pareto set.
We observe that PLS and SEMO are able to reach the Pareto set for
k = 1and m > 4 objectives, and are very close to it for k = 2 and
m =5 objectives. This suggests that there is only one Pareto local
optimal set in this case: the Pareto set.

Looking in more detail at the results of PLS (left) and SEMO
(right) in Figs. 1213, this time for both uncorrelated and conflict-
ing objectives, we see more clearly the impact of the number of
objectives. In particular, for a given problem non-linearity, both
algorithms are more quickly stuck into a lower-quality Pareto local
optimal set when there are fewer objectives. This suggests that there
are fewer Pareto local optimal sets for many-objective problems.
Of course, the problem non-linearity also increases the landscape
multimodality, but for a given k—value this decreases with m.

At last, we report in Figure 14 the number of iterations performed
by PLS until it does not improve anymore (up to 2" iterations),
this time for 2 to 10 objectives. For uncorrelated objectives, PLS
evaluates less than 5% of the solution space before getting stuck
for 2 objectives, about 25% for 4 objectives, 50-75% for 5 objectives,
and 100% for 7+ objectives. For conflicting objectives, this goes
from 10% for 2 objectives, to 90% for 3 objectives, and 100% for 4+
objectives. These trends are almost independent of the problem
non-linearity (k). Once again, this observation corroborates that
the number of Pareto local optimal sets decreases with the number
of objectives, such that multi-objective landscapes appear to be
more multimodal than many-objective landscapes.

6 CONCLUSIONS

In this paper, we questioned the assumption that multi-objective
combinatorial optimization problems (with 2 or 3 objectives) are
easier to optimize than many-objective ones (with 4+ objectives).
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Experiments were conducted on a broad range of small-size pmnk-
landscapes with 2 to 20 objectives, and varying degrees of rugged-
ness and of conflict between the objectives. Our main findings can
be summarized as follows. When there are more objectives:

(1) The conflict between (anti-correlated) objectives decreases,
i.e., the more the objectives, the less conflicting they can be.

(2) The probability for a randomly-sampled solution to be Pareto-
optimal increases, which implies that finding at least one
Pareto-optimal solution becomes easier.

(3) The number of dominating points per solution decreases. As
such, the small fraction of non-optimal solutions are in fact
dominated by very few solutions.

(4) The number of non-dominated fronts decreases, which means
that if we find a dominated solution, any solution that domi-
nates it is likely to be Pareto-optimal.

(5) The connectedness of the Pareto set increases, in which
case finding more Pareto-optimal solutions with local search
becomes trivial, and finding the complete Pareto set is limited
only by the intractability of its size, and not by any difficultly
induced by its landscape.

(6) The number of local optima per Pareto-optimal solution
decreases, which means that any solution identified as a
local optima is likely to be Pareto-optimal.

(7) The proportion of Pareto-optimal solutions identified by lo-
cal search increases, i.e., with more objectives, a local search
identifies a larger fraction of the Pareto front.

(8) The relative hypervolume covered by local search increases.
If run until completion, local search will therefore be more
effective for many-objective problems than multi-objective
ones.

(9) The number of solutions explored by local search before
converging to a local optimal sets increases, which means
that the search does not easily get stuck into local optima
and no mechanism is needed for escaping them.

(10) The number of local optimal sets, which is a measure of
multimodality, decreases. High multimodality is known to
make a problem harder to solve [10, 26]. In other words, our
empirical results reveal that multi-objective problems are in
fact more multimodal than many-objective problems.

The above observations suggest that, after 4 or 5 objectives, adding
more objectives to an optimization problem typically makes the

Arnaud Liefooghe and Manuel Lopez-Ibariez

goal of finding a Pareto set approximation easier, almost indepen-
dently from the ruggedness of the landscape. Unlike the single- and
multi-objective case, many-objective local search is rarely trapped
into local optima and converges to better approximations. From
the optimization point of view, the challenge of many-objective
approaches is not to accelerate the convergence towards the Pareto
front, nor to identify which solutions are Pareto-optimal, and nei-
ther to escape from attraction points. It is rather to avoid revisiting
solutions or regions of the Pareto front already explored, and to
identify a subset of the Pareto front that maximizes some quality
metric or the decision-maker’s preferences.

Nevertheless, beyond the number of solutions explored, many-
objective optimization presents other challenges, such as the com-
putational effort to handle additional objectives or the difficulty of
processing and maintaining numerous solutions mapping to high-
dimensional objective spaces. Many-objective algorithms would
obviously benefit from any progress on CPU-intensive procedures
such as solution ranking, online archiving or the computation of
set quality indicators. Such progress would additionally allow us
to validate our results on broader benchmarks, and to experiment
with bounded-size local optimal sets (i.e., approximations) [25] and
representations of the Pareto set [35] relative to the best subset of
a given size. Furthermore, we plan to investigate different problem
classes, including continuous multi- and many-objective functions,
and to consider additional landscape features such as the solu-
tion space dimension or other types of dominance relations. Lastly,
many-objective optimizers often consider scalarization functions,
and it remains an open question whether the landscape of such
functions becomes harder or easier to optimize when adding more
objectives.

Reproducibility. Relevant data is available at the following URL:
https://doi.org/10.5281/zenodo.7625398.
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