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Interplanetary Trajectories
a. Real Missions



Earth to Venus Messenger (NASA)

=) Venus Flyby 1

“Launch and

DSM = Deep Space Maneuver Earth Flyby
& . l_tRSM1 i 5 DSM2 DSM3  DSM4 DSM 5 MOI
a a enus Venus ’\«IOFCLJ Mercury Mercury Mercury
@ @3 ’ L 2 ®
2004 2005 2006 2007 2008 2008 2009 2011
Aug. 3 Aug. 2 Oct.24 Jun.5 Jan.14 Oct.6 Sep. 29 Mar. 18

-
Spacecraft orbits the Sun 2.7 times



Venus to Mercury Messenger (NASA)
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Mercury Flybys Messenger (NASA)
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2004-08-03 MESSENGER

" MESSENGER

" Earth

B Mercury

B Venus Q

By Phoenix7777 - Own workData source: Index of

0.0km/s 114,373,224km Ipub/naiffMESSENGER/kemels/spk/, NAIF, NASA, CC BY-SA

4.0,
https://commons.wikimedia.org/w/index.php?curid=70686151




Messenger (NASA)




Cassini (NASA)
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1997-10-15 Cassini

By Phoenix7777 - Own work O'OOkm/s 1I256r 125, 168km

Data source: Index of /pub/naif/ CASSINI/kernels/spk/zzarchive/,
NAIF, NASABSP file: cassini_merge.bspvvejga_soi2titan_pfile.bsptour9201_pfile.bsp,
CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70455328
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Cassini (NASA)

Water in Enceladus?



Messenger (NASA)
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Hyabusa (JAXA)
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Hyabusa (JAXA)

Rubble piles exist!



Dawn (NASA)

Vesta /

departure
July ‘12

Q Launch/
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Bepi Colombo (ESA)

0.5 ‘~
Online Viewer

¥ [km]

05!

(3) E\Ienusi\; 5o :
27 Mar 2014 : s :

- (@venus2 ., MM :

" s i 05 0 05 . T
x [km]



https://bepicolombo.esac.esa.int/itl-viewer/where/

Building blocks

1. Moving for free: Lagrange propagation
2. Changing orbits: Lambert’s Problem
3. Change speed (almost) for free: Mivovitch Fly-bys

(slingshot manoeuvre)



Moving for free:
Orbital (Lagrange) Propagation
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Orbital (Lagrange) Propagation
(moving without consuming fuel)

We can “propagate” a body to any time in the future
i.e., predict the future position and velocity
of a celestial body from starting conditions -

Basic operation in various
software packages

from poliastro.examples import iss

]:

]: 1ss

]: .. orbit around Earth (&) at epoch 2013-03-18 12:00:00.000 (UTC)
]: iss.rv ()

]: ([859.07, -4137.20, 5295.56] km, [7.37, 2.08, 0.44] km/s)

]: iss.propagate (30 << u.day) .rv ()

] ([1568.72, 4533.24, -4803.90] km, [-7.20, -0.24, -2.57] km/s)



Orbital (Lagrange) Propagation
(moving without consuming fuel)

We can “propagate” a body to any time in the future
i.e., predict the future position and velocity Vo
of a celestial body from starting conditions ="

Uy .
Basic operation in various / ro
software packages T

import pykep as pk
import numpy as np
r,v = pk.propagate lagrangian(rO = [1,0,0], vO = [0,1,0], tof = np.pi/2, mu = 1)

4.87 us = 59.4 ns per loop (mean % std. dev. of 7 runs, 100000 loops each)



Building blocks

2. Changing orbits: Lambert’s Problem



How to visit a celestial body A with our spacecraft S ?

v  when we depart (epoch)
t how long we travel
(z + t = when we arrive)

r, pointin orbit of S at epoch 7

r, pointin orbit of A at epoch z + ¢

Av, impulse required at epoch 7
to intercept A

Av,, impulse required at epoch 7 + {
to match orbit of A

(Av1, sz) = Lambert(S, A, 7, 1)



How to visit a celestial body A with our spacecraft S ?

v  when we depart (epoch)
t how long we travel
(z + t = when we arrive)

r, pointin orbit of S at epoch 7 Y2 7,
r, pointin orbit of Aatepochr +t

Av, impulse required at epoch 7
to intercept A

Av, impulse required at epoch 7 + ¢
to match orbit of A

import pykep as pk
import numpy as np
| = pk.lambert_problem(r1 =[1,0,0], r2 = [0,1,0], tof = np.pi/2, mu = 1., cw = False, max_revs = 0)

6.03 us £ 169 ns per loop (mean + std. dev. of 7 runs, 100000 loops each)



Lambert’s Problem

earth 2000-jJan-01
mars 2001-0Oct-02
Lambert solution (0 revs.)
Lambert solution (1 revs.)
Lambert solution (1 revs.)

All Lambert problems have

1 single revolution solution 10.06
10.04
and may also have 2-N multiple ~0.02
revolution solutions %0:2
(if enough transfer time) I




Lagrange Propagation

AT

Predicting the time evolution of an
orbit from starting conditions NVO
It is an initial value problem

(Cauchy)

Its solution can be efficiently
obtained in terms of the Lagrange
coefficients F,G

Iy

Kepler’s equation needs to be solved (B=y

. . S H
to invert the eccentric anomaly - , Y =—5=F
time relation. r(0) = ro




Building blocks

3. Mivovitch Fly-bys (gravity assist, sling-shot maneuver)



Mivovitch sling-shot (gravity assist)
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Mivovitch sling-shot (gravity assist)

Gain Lose
Speed Speed




Mivovitch sling-shot (gravity assist)

Sun Frame

»

Planet Frame

By Rachelz9999 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54663103 L 4




Mivovitch sling-shot (gravity assist)

By Rachelz9999 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54663119
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Deep Space Maneuver (DSM)

e 3-impulse transfer

—

. Lambert transfer between P1 and P2

2. At M1, do another Lambert transfer
between M1 and P2 '

More flexibility to reduce fuel consumption
One more decision variable: time to M1 \
Twice the cost to evaluate

XX

Vasile, Massimiliano, and Paolo De Pascale. "Preliminary design of multiple gravity-assist
trajectories." Journal of Spacecraft and Rockets 43, no. 4 (2006): 794-805.



Deep Space Maneuver (DSM)

Deep Space Av,

Vasile, Massimiliano, and Paolo De Pascale. "Preliminary design of multiple gravity-assist
trajectories." Journal of Spacecraft and Rockets 43, no. 4 (2006): 794-805.



Asteroid Routing Problem SURFIN SRR
We are given: & Q i
e nasteroidstovisit A={a,, ..., a} A " ,
e Spacecraft departing from Earth and s
using only impulsive maneuvers

Minimize two objectives:

2n
o= Z |Avj] (energy consumption, km/s)
i=1
and

2n
T = Z t; (elapsed time since Tg, days)
i=1



Asteroid Routing Problem x10°

A solution (71, t) where

@ T € S, permutation of the asteroids
@ t={t),..., t2n} € RS

parking and transit times.

(1) s launches from Earth at 19 + £

y (km)

to reach a, (1) in time t (impulse Avy)

(2) s remains in ay(q) for time t3

(impulse Avy)

(3) s launches to reach arn(2) in time t4

(impulse Avsz)

(4) s remains in a;(,) for time t5

(impulse Avyg) -4 3 0 2
() ss4 x (km) x 108



Asteroid Routing Problem
e Outer problem: Find the optimal permutation = of the asteroids

e Inner problem: Find optimal vector t of times given n
o Using 1000 iterations of deterministic SLSQP
(Sequential Least Squares Programming) algorithm
o Given the same n, SLSQP returns the same t

How to solve the outer problem?



Asteroid Routing Problem: Benchmark generator

Generate random instances given n and seed
by sampling from 80 000 asteroids

Data from the 11th Global Trajectory Optimisation Competition
https://gtoc11.nudt.edu.cn

Astrophysics calculations (propagation, Lambert maneuver, etc.)
using poliastro (v0.16) (Cano Rodriguez et al., 2015)

Solves the inner problem using Scipy’s SLSQP

Calculates objective functions for you



Asteroid Routing Problem

%108 Av=180.4 km/s, T=2165.7 days, f=324.7

y (km)

NRERERERERERRRRRRRRE

CEGO+Greedy

Names and epochs
2121-01-01 00:00 (Earth)
2121-01-01 00:00 (Impulse 0)
2121-09-09 08:55 (Asteroid 0)
2121-09-09 08:55 (Impulse 1)
2122-04-01 17:59 (Asteroid 6)
2122-04-01 17:59 (Impulse 2)
2122-11-06 17:02 (Asteroid 3)
2122-11-06 17:02 (Impulse 3)
2123-10-13 21:00 (Asteroid 1)
2123-10-13 21:00 (Impulse 4)
2124-05-06 13:56 (Asteroid 4)
2124-05-06 13:56 (Impulse 5)
2124-09-26 00:35 (Asteroid 9)
2124-09-26 00:35 (Impulse 6)
2125-06-12 06:00 (Asteroid 5)
2125-06-12 06:00 (Impulse T)
2125-10-04 22:07 (Asteroid 7)
2125-10-04 22:07 (Impulse 8)
2126-05-21 08:48 (Asteroid 8)
2126-05-21 08:48 (Impulse 9)
2126-12-06 16:51 (Asteroid 2)

on ARP n =10 seed=73

UMM+Greedy

Av=276.9 km/s, T=3492.0 days, f=509.6

Names and epochs
2121-01-01 00:00 (Earth)
2121-01-01 00:00 (Impulse 0)
2121-10-08 05:03 (Asteroid 8)
2121-10-08 05:03 (Impulse 1)
2122-07-22 00:35 (Asteroid 5)
2122-07-22 00:35 (Impulse 2)
2123-04-17 02:35 (Asteroid 3)
2123-04-17 02:35 (Impulse 3)
2124-07-21 00:29 (Asteroid 0)
2124-07-21 00:29 (Impulse 4)
2125-07-06 11:04 (Asteroid 4)
2125-07-06 11:04 (Impulse 5)
2126-01-23 02:17 (Asteroid 2)
2126-01-23 02:17 (Impulse 6)
2127-02-27 11:42 (Asteroid 9)
2127-02-27 11:42 (Impulse 7)
2127-12-16 04:29 (Asteroid 7)
2127-12-16 04:29 (Impulse 8)
2129-03-06 03:20 (Asteroid 6)
2129-03-06 03:20 (Impulse 9)
2130-07-24 23:35 (Asteroid 1)

on ARP n =10 seed=73



Mivovitch sling-shot

Fly by -> rotation of relative velocity




Building blocks

iii. Mivovitch Fly-bys (planetary kick manoeuvre)

import pykep
import numpy as np
v2_eq, delta_ineq = pk.fb_con([1000,0,0], [900,440,0], pk.planet.jpl_Ip(‘earth’))

3.17 ps = 31.7 ns per loop (mean % std. dev. of 7 runs, 100000 loops each)

import pykep
import numpy as np
vout = pk.fbo_prop(v =[1,0,0],v_pla =[0,1,0], rp=2., beta=3.1415/2, mu_pla=1.)

3.47 ps + 68.1 ns per loop (mean + std. dev. of 7 runs, 100000 loops each)



Optimization problems in Space

MGA: Multiple Gravity Assist Interplanetary Trajectory
o box-constrained, low dimension, possibly combinatorial, SO, MO

MGA-1DSM: MGA where only one Deep Space Maneuver is allowed in
each leg
o box-constrained high dimension, possibly combinatorial, SO, MO

MGA-LT: MGA Low-Thrust maneuvers
o non linear constraint, high dimension, possibly combinatorial SO, MO

Tours and multiple visits:
o mainly combinatorial, similar to TSP variants, SO, MO



MGA Model

Given a planetary sequence of N planets find:

x=[t, ,1,...1Ty,T, 1]

dep®

To minimise:

J=AV+AV, +...+ AV, (+AV,,)

arr
Subject to:

x€E[x,x]
(A V2 < C3launch )

dep

6. Mg

3 Venus 29/4/2012 §
2. Venus 9/2/2011

5. Venus 3/1/2013.

4. Earth 29/6/2012

Planetary sequence: EVVEVMe



Earth-Mars
transfer

Chemical
propulsion
200 days of
transfer

MJD2000 used

AV [m/s]

MGA: 1D case

x 10
P singula?ity
non-differentiable

0 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000
ta [d

Pierluigi Di Lizia and Gianmarco Radice. “Advanced Global Optimisation Tools for Mission Analysis and Design”, ACT Technical Report, 2004.



Earth-Mars
transfer

Chemical
propulsion

Days and
MJD2000 used

MGA: 2D case

Pierluigi Di Lizia and Gianmarco Radice. “Advanced Global Optimisation Tools for Mission Analysis and Design”, ACT Technical Report, 2004.



MGA: 3D case

Earth-Jupiter-Saturn transfer
Local optima cluster together

Better local optima are close to the
global one

Clustered local optima have similar
objective values

AV [mis)
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MGA-1DSM: model

T = [tOSVooaua'vanaTO:l+°°°+[Tp348,’7.iaTi]

« Features of the MGA-1DSM model:

« DSM value can be zero

« Multi-revs are included

« Resonant returns and backflips
included

« Multiple objectives and combinatorial
part possible: see SpOC: Trappist Tour

111

Ballistic arc
Lambert sofution {O revs.)

ballistic arc

Lambert solution {0 revs.)
earth 2016-Dec-30

venus 2017-May-10
earth 2018-jun-28



https://optimize.esa.int/challenge/spoc-trappist-tour/About

MGA-LT: model



f@. Voo

MGA-LT: model



MGA-LT: model

f(). Voo, ._\"1



MGA-LT: model

f(). Voo, AVl



MGA-LT: model



MGA-LT: model

<




MGA-LT: model

x=[t0]
+[T1’mfl5V:ril’Vyilavzil’vxflavyflavzfl]
+[T2amf2aV:c'iZaVinaVzi2anf2aVyf2asz2]+---
+lul,ul,ul]+[uZ, ud u]+..

constraints:
mismatch
|ue?|
|sz| — |sz+1|

VieVilze

« Features of the MGA-LT model:

- Easy switch between low and high fidelity
« Large convergence radius

earth 2009-Nov-24
venus 2011-Feb-25

mercury 2011-Dec-14

earth 2011-Aug-05
mars 2014-Apr-26




Interplanetary Trajectories
GTOC problems



The America’s cup of rocket science

GTOC: Global Trajectory Optimization Competition
Taking place every year (roughly)

Near-to-impossible interplanetary trajectory problem: complexity
ensures a clear competition winner

Open to academia, industry and space agencies
Winners organize and define the following edition

Creating a formidable database of challenging problems
and solution methods

Competition duration is, usually, one month

The problem is rigorously defined so that solutions can be ranked
with respect to a quantitative objective value




GTOC 1: Save the Earth

Team name Value
Jet Propulsion Laboratory 1,850,000
Deimos Space 1,820,000
GMV 1,455,000
Moscow Aviation Institute 1,364,000
Politecnico di Torino 1,290,000
CNES/CS 1,194,000
Glasgow University 385,000
Moscow University 351,152
Alcatel 330,385
DLR 330,000

Tsinghua University 89,000



GTOC2: Multiple Asteroid Rendezvous

: o D— 1 Politecnico di Torino 98.64

1 R, Moscow Aviation Institute and Khrunichev State Research 87.93
[ e ,//:‘ l\\ / Advanced Concepts Team (ESA) 87.05
| \\\ﬂ%;‘ Centre National d’Etudes Spatiales (CNES) 85.43

: ‘ GMV Aerospace and Defence 85.28

- German Aerospace Center (DLR) 84.48

@ Politecnico di Milano 82.48
@ Alcatel Alenia Space 76.37

- k Moscow State University 75.08

| .. U Tsinghua University 56.87

Carnegie Mellon University 27.94



Distance from the sun, AU
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http://www.youtube.com/watch?v=BIy5g4bvskM

GTOC X



http://www.youtube.com/watch?v=nlnlORplDTI

Some ESA (ACT) resources
1.

Den. =~ W

It can (likely) all be evolved!

trajectory
problems) ﬁ B “f‘ff
optimize.esa.int (a gym from i?\ A containing problerrtts suitable for
evolutionary approaches) @

pykep (a C++/python module with trajectory Aroblems bU|Id|ng blocks)
pyamo?2 (a C++/python module for masswelymparalletevolutlons)
.decagpy (a python module for differentiable genetic prdgrammlng)

J;hIS ver;y tutorzral”



https://sophia.estec.esa.int/gtoc_portal/
https://optimize.esa.int
https://esa.github.io/pykep/
https://esa.github.io/pygmo2/
https://darioizzo.github.io/dcgp/docs/python/index.html

... a representation
problem, rocket
science to the
rescue!




Building blocks

ii. Lambert’s Problem

import pykep
import numpy as np
| = pk.lambert_problem(r1 = [1,0,0], r2 = [0,1,0], tof = np.pi/2, mu = 1., cw = False, max_revs = 0)

6.03 us = 169 ns per loop (mean = std. dev. of 7 runs, 100000 loops each)



Lambert’s Problem

Going from one point to another in a fixed time.
It is, again, a TPBVP.
Its modern solution relies on results from

Lambert, Gauss, Lagrange and in more modern
times Battin, Lancaster and Blanchard

It turns out that all Lambert problems have 1
solution and, according to the transfer time, may

also have 2:N multiple revolution solutions. P=y
: v=—4&r
I‘(O) =1
B(T) =15




o \
Pioneer 10
92 g Voyager 2
88 .
8 gy
‘82 /
d
Impossible without the A ":
correct representation! Kl
S / Pioneer 11
Uranus
Neptune Voyager 1
N ‘90 A ' )
Pluto Y, o
» ‘8648



Mivovitch sling-shot




Mivovitch sling-shot

Spacecraft velocity has changed in the absolute frame




Representations (encodings) developed so far ...
... in development



Part Il:
Solution

approaches
to optimization

problems
In Space

x 108
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Names and epochs
2121-01-01 00:00 (Earth)
2121-01-01 00:00 (Impulse 0)
2121-10-08 05:03 (Asteroid 8)
2121-10-08 05:03 (Impulse 1)
2122-07-22 00:35 (Asteroid 5)
2122-07-22 00:35 (Impulse 2)
2123-04-17 02:35 (Asteroid 3)
2123-04-17 02:35 (Impulse 3)
2124-07-21 00:29 (Asteroid 0)
2124-07-21 00:29 (Impulse 4)
2125-07-06 11:04 (Asteroid 4)
2125-07-06 11:04 (Impulse 5)
2126-01-23 02:17 (Asteroid 2)
2126-01-23 02:17 (Impulse 6)
2127-02-27 11:42 (Asteroid 9)
2127-02-27 11:42 (Impulse 7)
2127-12-16 04:29 (Asteroid 7)
2127-12-16 04:29 (Impulse 8)
2129-03-06 03:20 (Asteroid 6)
2129-03-06 03:20 (Impulse 9)
2130-07-24 23:35 (Asteroid 1)

from Lopez-Ibafiez et al. (2022)



Solution approaches to optimization problems in Space

- Exact (optimal) solutions often impossible / impractical
.4 Both gradient-based and gradient-free NLP solvers

Meta-heuristics:

o Monotonic Basin Hopping (MBH),
o JDE, CMA-ES, MOEA/D,

o PSO, ACO

o Tree search, e.g., Beam Search

.4 Hybrid methods: Beam P-ACO



Non Linear Blackbox Numerical Search
e Continuous problems (MGA-LT):

O

Constrained = Penalised objective function

o Combinatorial + Continuous (interplanetary tours and multiple visits)

@)

Given a fixed combinatorial solution (outer problem)
optimize the continuous variables (inner problem)

o NLP solution approaches (Yam et al., 2011):

(@)

@)

Local search: fast deterministic NLP methods, e.g., SQP
Global search:
> Simulated Annealing with adaptive neighborhood

> Monotonic Basin Hopping (MBH)
(= Iterated Local Search)

solution space S



Evolutionary Algorithms

GAs, DE and CMA-ES = by far the most popular approaches

GeC

S
for solving trajectory optimization problems N

Hybridization and problem-specific operators:

O

o

o

Variable-length chromosomes (Gad, 2011)
Dynamic-size multi-population (Abdelkhalik & Gad, 2012)

Order-based GA for partial permutations (Izzo et al., 2014)
= “Hidden” genes: chromosome contains a complete permutation
but fithess is computed from a partial one

Inver-Over Operator (Tao & Michalewicz, 1998)
modified for TSPs that are not invariant to cycling,
e.g., debris removal (I1zzo et al., 2015)

Self-adaptive DE + various constraint handling techniques for MDA-1DM
(Labroqueére et al., 2014)



Ant Colony Optimization Ant Colony

Optimization

e Combinatorial formulations (select pairs of body & transfer):

O

e MIDACO: Mixed-Integer Distributed Ant Colony Optimization
(Schluter et al., 2013)

O

O

Non-standard ACO for MGA (Ceriotti & Vasile, 2010)

Black-Box Constrained Non-Convex Mixed-Integer

Based on Extended ACO algorithm:
Samples solutions from multi-kernel Gauss PDFs
(similar to ACOR by Socha & Dorigo, 2008)

= A.\: /“f\\\‘
Coupled with the oracle penalty method U & }" \ 1% ,\ | \
for constraint handling ZERATRIAILEE AT
Hybridized with local deterministic SQP £ /X AN a.;lll[l!lu{:lslg |

for further optimizing continuous variables



Tree Search Methods E, a,,

e Combinatorial: Tours and multiple visits

e Each node is a (partial) trajectory

m
_‘QJ

Q
>

e Construct solution incrementally adding
a trajectory leg (fly-by, rendezvous, ...)

m
Q

e Branching typically involves solving a
numerical inner problem to execute the G

maneuver, e.g., Lambert’s problem. i
e The inner problem may need to be optimized, B8
e.g., find optimal fof and AV using NLP
o We CANNOT exhaustively search the tree: E,a,a,
complete DFS or BFS are impractical
E, a,a,

SR
'

o Probabilistically/heuristically decide what to
branch and what branches to prune

D [T
)
:\-



Tree SearCh Methods from Izzo et al (2016)
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(a) Breadth-first-search (BFS) (b) Depth-first-search (DFS) (¢) Beam-search (BS)
e DFS + branch pruning criteria (Izzo et al., 2014):
o remaining fuel/time;
o partial mission score;
o best complete solution found so far, ...

-
Cat Y. e v, v v,

e Beam-search: rank nodes at equal depth and prioritize what to expand
o Winner of GTOCS5 (Petropoulos et al., 2014)
o MO version applied to GTOC7 (lzzo et al., 2016)
o Beam-size X Solving time of inner problem = Time exploring next depth
o In some problems partial trajectories are not comparable (e.g, GTOCG)



Other Tree Search Methods

X DFS + pruning criteria: Difficult to estimate running time
X Beam-search: Too greedy if nodes at same depth are not comparable

e Lazy Race Tree Search (Izzo et al., 2013):
o Beam composed of nodes of different depth
but within same mission time window
o GTOCG6, Gold “Humies” Award at GECCO 2013

e Monte Carlo Tree Search (Hennes & 1zzo, 2015)
o Heuristic-free selection policy (UCB)
o Expansion: add random node
o Simulation: stochastic sampling Selection ——| Expansion |—— Simulation || Backplopa&,atlon

m add all nodes to the tree 09\0
o Backprop: update policy
o Contraction: prune

Thllll

completed subtrees o iy [. One simulated  The rsult of ths gar

l[d }l\d bl\}pld lll

Repeated X times

from Chaslot et al. (2008)




Hybrid methods




Hybrid methods

e Combinatorial + Continuous Hybrids

e Tree search + ACO:

> Beam P-ACO: Beam Population-based-ACO (Simaes et al., 2017)
inspired by Beam-ACO from classical constrained sequence-based problems
(Blum, 2005; Lépez-lbanez & Blum, 2010)

e Different metaheuristics at the outer and inner level:

> Integer GA (outer: optimal flyby sequence)
+ Cooperative PSO-DE (inner: transfer) for MGA (Englander et al., 2012)



Multi-objective approaches

e Many problems (and inner problems) have multiple
conflicting objectives:

o Total cumulative velocity increment AV,
o Total time of flight (TOF)

o Number of bodies visited

e Typically aggregated into a single “mission score”

o Few multi-objective approaches:
o MOEA/D + seeding with extreme points: min AV and min TOF (Izzo et al., 2015b)
o MHACO = MIDACO + Nondominated sorting + HV contribution (Acciarini et al. 2020)

> Qutperforms MOEA/D and NSGA-II on 4 trajectory optimization problems



Multi-objective approaches (zz0 ot . 2015b)
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Space-specific heuristics

e Preprocessing steps that reduce search space size
e.g., reduced box-bounds by gravity assist space pruning for MGA (Izzo et al., 2007)

e Nearest neighbor distances between orbital bodies:

x Euclidean distance ignores relative velocity

v Orbital distance (phasing) indicators (Izzo et al., 2016):

Estimates “distance” at departure time
Improved orbital distance (Simées et al., 2017):

Also takes into account the “distance”
at arrival time

x108

z (km) x108

Names and epochs
@ 2121-01-01 00:00 (Earth)

2121-01-01 00:00 (Impulse 0)
e 2121-10-08 05:03 (Asteroid 8)
m—— 2121-10-08 05:03 (Impulse 1)
m— 2122-07-22 00:35 (Asteroid 5)
m— 2122-07-22 00:35 (Impulse 2)
m— 2123-04-17 02:35 (Asteroid 3)
m— 2123-04-17 02:35 (Impulse 3)

m— 2124-07-21 00:29 (Asteroid 0)
m— 2124-07-21 00:29 (Impulse 4)
m— 2125-07-06 11:04 (Asteroid 4)

2125-07-06 11:04 (Impulse 5)
2126-01-23 02:17 (Asteroid 2)
s 2126-01-23 02:17 (Impulse 6)
m— 2127-02-27 11:42 (Asteroid 9)
2127-02-27 11:42 (Impulse 7)

2127-12-16 04:29 (Asteroid 7)
e 2127-12-16 04:29 (Impulse 8)
e 2129-03-06 03:20 (Asteroid 6)

m— 2129-03-06 03:20 (Impulse 9)



Space-specific heuristics

e Clustering (e.g., using the above indicators)
> DBSCAN (lIzzo et al., 2016)

e Cluster pruning (lzzo, 2010)

> Define/update box/distance bounds
to focus on promising areas



Solution approaches to optimization problems in Space

MGA
> jDE, CMA-ES, PSO

MGA-1DSM

> GA: NASA Versatile ImpulSive Interplanetary Trajectory OptimizeR
(VISITOR)

> CMA-ES with smart restarts: https://qithub.com/dietmarwo/fast-cma-es

Multi-objective variants
> MHACO or MOEA/D or NSGA-II + seeding with single-objective extremes

MGA-LT
> MBH (Monotonic Basin Hopping), EAs + numerical local search (memetic)

Asteroid tours and TSP variants
> beam search, beam P-ACO, lazy race tree search,
order based GAs, inver-over operator, etc....


https://software.nasa.gov/software/LAR-18538-1
https://software.nasa.gov/software/LAR-18538-1
https://github.com/dietmarwo/fast-cma-es

Existing benchmarks

Optimize ESA Platform: https://optimize.esa.int
o Miscellanea of problems, leaderboard based.

GTOC: Global Trajectory Optimization Competition
o Complex and large interplanetary trajectory problems
o 12 editions so far (https://gtoc12.tsinghua.edu.cn)

pykep gym: https://github.com/esa/pykep/tree/master/pykep/trajopt/gym
o Miscellanea of problems.

(Izzo et al., 2015)

Tours and TSP variants
o TSP, TSP-CS, TSP-DCS for: Active space debris removal trajectory design
o Multi-rendezvous Spacecraft Trajectory Optimization
o Asteroid Routing Problem: https://qithub.com/MLopez-lbanez/AsteroidRoutingProblem
o SpOC: Mining: Mine the Belt

Global Trajectory Optimisation Problems Database (GTOP, no longer maintained):
o Miscellanea of problems (https://www.esa.int/gsp/ACT/projects/atop/)



https://optimize.esa.int
https://gtoc12.tsinghua.edu.cn/
https://github.com/esa/pykep/tree/master/pykep/trajopt/gym
https://www.esa.int/gsp/ACT/projects/active_debris_removal/
https://github.com/lfsimoes/beam_paco__gtoc5
https://github.com/MLopez-Ibanez/AsteroidRoutingProblem
https://optimize.esa.int/challenge/spoc-mining/p/mine-the-belt
https://www.esa.int/gsp/ACT/projects/gtop/

Conclusions

.4 Lots of interesting optimization problems with “unusual” features
.4 Lots of benchmarks, simulation tools and software available

4 Competitions and challenges



Conclusions

Lots of interesting optimization problems with “unusual” features
Lots of benchmarks, simulation tools and software available

Competitions and challenges
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Expensive Black-Box Permutation Optimization

Black-box: f (1) = \n ® Previous works

® Surrogate-based (CEGO)

Expensive: [Zaefferer et al., 2014]
o

e - - I
° Each evaluation is costly ! Ant Colony Optimization and

Between 100 — 1000 evaluations ACO+surrogate-model:
® [P’erez C aceres et al., 2015]

Unbalaced Mallows Model (UMM):
[lrurozki & L opez-Ib’an’ez, 2021]

Permmutation-based

JTE Sn o
eg, m=(3,2,451)

Either representing an order Typically benchmarked on:
or a ranking. TSP, QAP, LOP, PFSP . . .

Real-world expensive black-box permutation problems ?
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