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Interplanetary Trajectories
a. Real Missions



Messenger (NASA)
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Messenger (NASA)

By Phoenix7777 - Own workData source: Index of 
/pub/naif/MESSENGER/kernels/spk/, NAIF, NASA, CC BY-SA 
4.0, 
https://commons.wikimedia.org/w/index.php?curid=70686151
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Messenger (NASA)



Cassini (NASA)



Cassini (NASA)

By Phoenix7777 - Own work
Data source: Index of /pub/naif/CASSINI/kernels/spk/zzarchive/, 
NAIF, NASABSP file: cassini_merge.bspvvejga_soi2titan_pfile.bsptour9201_pfile.bsp,
CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70455328

     Cassini–Huygens 
     Jupiter  
     Saturn
     Earth
     Venus  
      2685 Masursky



Water in Enceladus?

Cassini (NASA)



Messenger (NASA)



Hyabusa (JAXA)



Rubble piles exist!

Hyabusa (JAXA)



Dawn (NASA)



Bepi Colombo (ESA)

Online Viewer

https://bepicolombo.esac.esa.int/itl-viewer/where/


Building blocks

1. Moving for free: Lagrange propagation

2. Changing orbits: Lambert’s Problem

3. Change speed (almost) for free: Mivovitch Fly-bys

(slingshot manoeuvre)



Moving for free:
Orbital (Lagrange) Propagation



In [1]: from poliastro.examples import iss
In [2]: iss
Out[2]: … orbit around Earth (♁) at epoch 2013-03-18 12:00:00.000 (UTC)
In [4]: iss.rv()
Out[4]: ([859.07, -4137.20, 5295.56] km, [7.37, 2.08, 0.44] km/s)
In [5]: iss.propagate(30 << u.day).rv()
Out[5]: ([1568.72, 4533.24, -4803.90] km, [-7.20, -0.24, -2.57] km/s)

Orbital (Lagrange) Propagation
(moving without consuming fuel)

● We can “propagate” a body to any time in the future
i.e., predict the future position and velocity
of a celestial body from starting conditions

● Basic operation in various
software packages



Orbital (Lagrange) Propagation
(moving without consuming fuel)

● We can “propagate” a body to any time in the future
i.e., predict the future position and velocity
of a celestial body from starting conditions

● Basic operation in various
software packages

import pykep as pk
import numpy as np
r,v = pk.propagate_lagrangian(r0 = [1,0,0], v0 = [0,1,0], tof = np.pi/2, mu = 1)

4.87 µs ± 59.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)



Building blocks

2. Changing orbits: Lambert’s Problem



How to visit a celestial body A with our spacecraft S ?
𝜏 when we depart (epoch)
t how long we travel

(𝜏 + t = when we arrive)
r1 point in orbit of S at epoch 𝜏
r2 point in orbit of A at epoch 𝜏 + t
∆v1  impulse required at epoch 𝜏

to intercept A
∆v2  impulse required at epoch 𝜏 + t

to match orbit of A

(∆v1, ∆v2) = Lambert(S, A, 𝜏, t)



How to visit a celestial body A with our spacecraft S ?
𝜏 when we depart (epoch)
t how long we travel

(𝜏 + t = when we arrive)
r1 point in orbit of S at epoch 𝜏
r2 point in orbit of A at epoch 𝜏 + t
∆v1  impulse required at epoch 𝜏

to intercept A
∆v2  impulse required at epoch 𝜏 + t

to match orbit of A

(∆v1, ∆v2) = Lambert(S, A, 𝜏, t)import pykep  as pk
import numpy as np
I = pk.lambert_problem(r1 = [1,0,0], r2 = [0,1,0], tof = np.pi/2, mu = 1., cw = False, max_revs = 0)

6.03 µs ± 169 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)



Lambert’s Problem

All Lambert problems have
1 single revolution solution

and may also have 2·N multiple 
revolution solutions
(if enough transfer time)



Lagrange Propagation

1. Predicting the time evolution of an 
orbit from starting conditions

2. It is an initial value problem 
(Cauchy)

3. Its solution can be efficiently 
obtained in terms of the Lagrange 
coefficients F,G

4. Kepler’s equation needs to be solved 
to invert the eccentric anomaly - 
time relation.



Building blocks
3. Mivovitch Fly-bys (gravity assist, sling-shot maneuver)



Mivovitch sling-shot (gravity assist)



Mivovitch sling-shot (gravity assist)



Mivovitch sling-shot (gravity assist)

By Rachelz9999 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=54663103



Mivovitch sling-shot (gravity assist)

By Rachelz9999 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=54663119



Deep Space Maneuver (DSM)

Vasile, Massimiliano, and Paolo De Pascale. "Preliminary design of multiple gravity-assist 
trajectories." Journal of Spacecraft and Rockets 43, no. 4 (2006): 794-805.

● 3-impulse transfer

1. Lambert transfer between P1 and P2

2. At M1, do another Lambert transfer
between M1 and P2

✅ More flexibility to reduce fuel consumption
❌ One more decision variable: time to M1❌ Twice the cost to evaluate



Deep Space Maneuver (DSM)

Vasile, Massimiliano, and Paolo De Pascale. "Preliminary design of multiple gravity-assist 
trajectories." Journal of Spacecraft and Rockets 43, no. 4 (2006): 794-805.



Asteroid Routing Problem

We are given:

● n asteroids to visit A = {a1, . . . , an}
● Spacecraft departing from Earth and 

using only impulsive maneuvers



Asteroid Routing Problem



Asteroid Routing Problem

● Outer problem: Find the optimal permutation π of the asteroids

● Inner problem: Find optimal vector t of times given π 
○ Using 1000 iterations of deterministic SLSQP

(Sequential Least Squares Programming) algorithm
○ Given the same π, SLSQP returns the same t

How to solve the outer problem?



Asteroid Routing Problem: Benchmark generator

● Generate random instances given n and seed
by sampling from 80 000 asteroids

● Data from the 11th Global Trajectory Optimisation Competition
https://gtoc11.nudt.edu.cn 

● Astrophysics calculations (propagation, Lambert maneuver, etc.)
using poliastro (v0.16) (Cano Rodríguez et al., 2015)

● Solves the inner problem using Scipy’s SLSQP

● Calculates objective functions for you



Asteroid Routing Problem

CEGO+Greedy
on ARP n = 10 seed=73

UMM+Greedy
on ARP n = 10 seed=73



Fly by -> rotation of relative velocity

Mivovitch sling-shot



Building blocks
iii. Mivovitch Fly-bys (planetary kick manoeuvre)

import pykep
import numpy as np
v2_eq, delta_ineq = pk.fb_con([1000,0,0], [900,440,0], pk.planet.jpl_lp('earth'))

3.17 µs ± 31.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

import pykep
import numpy as np
vout = pk.fb_prop(v = [1,0,0],v_pla = [0,1,0], rp=2., beta=3.1415/2, mu_pla=1.)

3.47 µs ± 68.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)



Optimization problems in Space
● MGA: Multiple Gravity Assist Interplanetary Trajectory

○ box-constrained, low dimension, possibly combinatorial, SO, MO

● MGA-1DSM: MGA where only one Deep Space Maneuver is allowed in 
each leg

○ box-constrained high dimension, possibly combinatorial, SO, MO

● MGA-LT: MGA Low-Thrust maneuvers
○ non linear constraint, high dimension, possibly combinatorial SO, MO

● Tours and multiple visits:
○ mainly combinatorial, similar to TSP variants, SO, MO



Given a planetary sequence of N planets find:

To minimise:

Subject to:

Planetary sequence: EVVEVMe
Launch window constraint

Launcher constraint

MGA Model



MGA: 1D case

1. Earth-Mars 
transfer

2. Chemical 
propulsion

3. 200 days of 
transfer

4. MJD2000 used

Pierluigi Di Lizia and Gianmarco Radice. “Advanced Global Optimisation Tools for Mission Analysis and Design”, ACT Technical Report, 2004.



MGA: 2D case

1. Earth-Mars 
transfer

2. Chemical 
propulsion

3. Days and 
MJD2000 used

Pierluigi Di Lizia and Gianmarco Radice. “Advanced Global Optimisation Tools for Mission Analysis and Design”, ACT Technical Report, 2004.



MGA: 3D case

1. Earth-Jupiter-Saturn transfer
2. Local optima cluster together
3. Better local optima are close to the 

global one
4. Clustered local optima have similar 

objective values



MGA-1DSM: model

• Features of the MGA-1DSM model:

• DSM value can be zero
• Multi-revs are included
• Resonant returns and backflips 

included

• Multiple objectives and combinatorial 
part possible: see SpOC: Trappist Tour

https://optimize.esa.int/challenge/spoc-trappist-tour/About


MGA-LT: model



MGA-LT: model



MGA-LT: model



MGA-LT: model



MGA-LT: model



MGA-LT: model



• Features of the MGA-LT model:

• Easy switch between low and high fidelity 
• Large convergence radius

MGA-LT: model



Interplanetary Trajectories
GTOC problems



1. GTOC: Global Trajectory Optimization Competition
2. Taking place every year (roughly)
3. Near-to-impossible interplanetary trajectory problem: complexity 

ensures a clear competition winner
4. Open to academia, industry and space agencies
5. Winners organize and define the following edition
6. Creating a formidable database of challenging problems

and solution methods
7. Competition duration is, usually, one month
8. The problem is rigorously defined so that solutions can be ranked 

with respect to a quantitative objective value

 The America’s cup of rocket science
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Team name Value 

 

1. Jet Propulsion Laboratory 1,850,000

2. Deimos Space 1,820,000

3. GMV 1,455,000

Moscow Aviation Institute 1,364,000

Politecnico di Torino 1,290,000

CNES/CS 1,194,000

Glasgow University 385,000

Moscow University 351,152

Alcatel 330,385

DLR 330,000

Tsinghua University 89,000

GTOC 1: Save the Earth



Team name Value 

 

1. Politecnico di Torino 98.64

2. Moscow Aviation Institute and Khrunichev State Research 87.93

3. Advanced Concepts Team (ESA) 87.05

Centre National d’Etudes Spatiales (CNES) 85.43

GMV Aerospace and Defence 85.28

German Aerospace Center (DLR) 84.48

Politecnico di Milano 82.48

Alcatel Alenia Space 76.37

Moscow State University 75.08

Tsinghua University 56.87

Carnegie Mellon University 27.94

GTOC2: Multiple Asteroid Rendezvous



GTOC: remarkable trajectories



GTOC 8

http://www.youtube.com/watch?v=BIy5g4bvskM


GTOC X

http://www.youtube.com/watch?v=nlnlORplDTI


It can (likely) all be evolved!

Some ESA (ACT) resources:
1. GTOC portal (contains the description of very difficult trajectory 

problems)
2. optimize.esa.int (a gym from ESA containing problems suitable for 

evolutionary approaches)
3. pykep (a C++/python module with trajectory problems building blocks)
4. pygmo2 (a C++/python module for massively parallel evolutions)
5. dcgpy (a python module for differentiable genetic programming)
6. This very tutorial!!

https://sophia.estec.esa.int/gtoc_portal/
https://optimize.esa.int
https://esa.github.io/pykep/
https://esa.github.io/pygmo2/
https://darioizzo.github.io/dcgp/docs/python/index.html


… a representation 
problem, rocket 
science to the 
rescue!



Building blocks
ii. Lambert’s Problem

import pykep
import numpy as np
l = pk.lambert_problem(r1 = [1,0,0], r2 = [0,1,0], tof = np.pi/2, mu = 1., cw = False, max_revs = 0)

6.03 µs ± 169 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)



Lambert’s Problem

1. Going from one point to another in a fixed time.
2. It is, again, a TPBVP.
3. Its modern solution relies on results from 

Lambert, Gauss, Lagrange and in more modern 
times Battin, Lancaster and Blanchard

4. It turns out that all Lambert problems have 1 
solution and, according to the transfer time, may 
also have 2·N multiple revolution solutions.



Impossible without the 
correct representation!



Mivovitch sling-shot



Spacecraft velocity has changed in the absolute frame

Mivovitch sling-shot



Representations (encodings) developed so far …
… in development



Part II:
Solution 

approaches
to optimization 

problems
in Space

from López-Ibáñez et al. (2022)



Solution approaches to optimization problems in Space
� Exact (optimal) solutions often impossible / impractical

✅ Both gradient-based and gradient-free NLP solvers

✅ Meta-heuristics: 
○ Monotonic Basin Hopping (MBH),  
○ jDE, CMA-ES, MOEA/D,
○ PSO, ACO
○ Tree search, e.g., Beam Search

✅ Hybrid methods: Beam P-ACO



Non Linear Blackbox Numerical Search
● Continuous problems (MGA-LT):

○ Constrained ⇒ Penalised objective function
● Combinatorial + Continuous (interplanetary tours and multiple visits)

○ Given a fixed combinatorial solution (outer problem)
optimize the continuous variables (inner problem)

● NLP solution approaches (Yam et al., 2011):
○ Local search: fast deterministic NLP methods, e.g., SQP
○ Global search:

➢ Simulated Annealing with adaptive neighborhood
➢ Monotonic Basin Hopping (MBH)

(≈ Iterated Local Search)



Evolutionary Algorithms
● GAs, DE and CMA-ES  ⇒  by far the most popular approaches

for solving trajectory optimization problems

● Hybridization and problem-specific operators:

○ Variable-length chromosomes (Gad, 2011)

○ Dynamic-size multi-population (Abdelkhalik & Gad, 2012)

○ Order-based GA for partial permutations (Izzo et al., 2014)
 ⇒ “Hidden” genes: chromosome contains a complete permutation
    but fitness is computed from a partial one

○ Inver-Over Operator (Tao & Michalewicz, 1998)
modified for TSPs that are not invariant to cycling,
e.g., debris removal (Izzo et al., 2015)

○ Self-adaptive jDE + various constraint handling techniques for MDA-1DM 
(Labroquère et al., 2014)



● MIDACO: Mixed-Integer Distributed Ant Colony Optimization
(Schlüter et al., 2013)

○ Black-Box Constrained Non-Convex Mixed-Integer

○ Based on Extended ACO algorithm: 
Samples solutions from multi-kernel Gauss PDFs
(similar to ACOR by Socha & Dorigo, 2008)

○ Coupled with the oracle penalty method
for constraint handling

○ Hybridized with local deterministic SQP
for further optimizing continuous variables

Ant Colony Optimization
● Combinatorial formulations (select pairs of body & transfer):

○ Non-standard ACO for MGA (Ceriotti & Vasile, 2010)



Tree Search Methods
● Combinatorial: Tours and multiple visits

● Each node is a (partial) trajectory

● Construct solution incrementally adding
a trajectory leg (fly-by, rendezvous, …)

● Branching typically involves solving a 
numerical inner problem to execute the 
maneuver, e.g., Lambert’s problem.

● The inner problem may need to be optimized, 
e.g., find optimal tof and ΔV using NLP

● We CANNOT exhaustively search the tree:
complete DFS or BFS are impractical

● Probabilistically/heuristically decide what to 
branch and what branches to prune

E

E, a1

E, an

E, a1, a2

E, a1, an

E, ak

E, a1, ak

E, ak, 
a1

E, ak, 
an-1

E, ak, aj

E, an, a1

E, an, 
an-1

E, an, ak



Tree Search Methods

● Beam-search: rank nodes at equal depth and prioritize what to expand
○ Winner of GTOC5 (Petropoulos et al., 2014)
○ MO version applied to GTOC7 (Izzo et al., 2016)
○ Beam-size ✕ Solving time of inner problem ≈ Time exploring next depth
○ In some problems partial trajectories are not comparable (e.g, GTOC6)

from Izzo et al (2016)

● DFS + branch pruning criteria (Izzo et al., 2014):
○ remaining fuel/time;
○ partial mission score;
○ best complete solution found so far, …



Other Tree Search Methods
✘ DFS + pruning criteria: Difficult to estimate running time
✘ Beam-search: Too greedy if nodes at same depth are not comparable

● Lazy Race Tree Search (Izzo et al., 2013):
○ Beam composed of nodes of different depth

but within same mission time window
○ GTOC6, Gold “Humies” Award at GECCO 2013

from Chaslot et al. (2008)

● Monte Carlo Tree Search (Hennes & Izzo, 2015)
○ Heuristic-free selection policy (UCB)
○ Expansion: add random node
○ Simulation: stochastic sampling

■ add all nodes to the tree
○ Backprop: update policy
○ Contraction: prune

completed subtrees



Hybrid methods



Hybrid methods
● Combinatorial + Continuous Hybrids

● Tree search + ACO:

➢ Beam P-ACO: Beam Population-based-ACO (Simões et al., 2017)
inspired by Beam-ACO from classical constrained sequence-based problems

(Blum, 2005; López-Ibáñez & Blum, 2010)

● Different metaheuristics at the outer and inner level:

➢ Integer GA (outer: optimal flyby sequence) 
+ Cooperative PSO-DE (inner: transfer) for MGA (Englander et al., 2012)



Multi-objective approaches
● Many problems (and inner problems) have multiple

conflicting objectives:

○ Total cumulative velocity increment ΔVtot

○ Total time of flight (TOF)

○ Number of bodies visited 

● Typically aggregated into a single “mission score”

● Few multi-objective approaches:

○ MOEA/D + seeding with extreme points: min ΔV  and min TOF  (Izzo et al., 2015b)

○ MHACO = MIDACO + Nondominated sorting + HV contribution (Acciarini et al. 2020)

➢ Outperforms MOEA/D and NSGA-II on 4 trajectory optimization problems



Multi-objective approaches (Izzo et al., 2015b)



Space-specific heuristics
● Preprocessing steps that reduce search space size

e.g., reduced box-bounds by gravity assist space pruning for MGA  (Izzo et al., 2007)

● Nearest neighbor distances between orbital bodies:

✘ Euclidean distance ignores relative velocity

✔ Orbital distance (phasing) indicators (Izzo et al., 2016):

Estimates “distance” at departure time

👍 Improved orbital distance (Simões et al., 2017):

Also takes into account the “distance”
at arrival time



Space-specific heuristics

● Clustering (e.g., using the above indicators)

➢ DBSCAN (Izzo et al., 2016)

● Cluster pruning (Izzo, 2010)

➢ Define/update box/distance bounds
to focus on promising areas  



Solution approaches to optimization problems in Space

● MGA 
➢ jDE, CMA-ES, PSO

● MGA-1DSM
➢ GA: NASA Versatile ImpulSive Interplanetary Trajectory OptimizeR 

(VISITOR) 
➢ CMA-ES with smart restarts: https://github.com/dietmarwo/fast-cma-es 

● Multi-objective variants
➢ MHACO or MOEA/D or NSGA-II + seeding with single-objective extremes 

● MGA-LT
➢ MBH (Monotonic Basin Hopping), EAs + numerical local search (memetic)

● Asteroid tours and TSP variants
➢ beam search, beam P-ACO, lazy race tree search,

order based GAs,  inver-over operator, etc....

https://software.nasa.gov/software/LAR-18538-1
https://software.nasa.gov/software/LAR-18538-1
https://github.com/dietmarwo/fast-cma-es


Existing benchmarks
● Optimize ESA Platform: https://optimize.esa.int

○ Miscellanea of problems, leaderboard based.

● GTOC: Global Trajectory Optimization Competition
○ Complex and large interplanetary trajectory problems
○ 12 editions so far (https://gtoc12.tsinghua.edu.cn)

● pykep gym: https://github.com/esa/pykep/tree/master/pykep/trajopt/gym
○ Miscellanea of problems.

● Tours and TSP variants
○ TSP, TSP-CS, TSP-DCS for: Active space debris removal trajectory design 
○ Multi-rendezvous Spacecraft Trajectory Optimization
○ Asteroid Routing Problem: https://github.com/MLopez-Ibanez/AsteroidRoutingProblem 
○ SpOC: Mining: Mine the Belt

● Global Trajectory Optimisation Problems Database (GTOP, no longer maintained):
○ Miscellanea of problems (https://www.esa.int/gsp/ACT/projects/gtop/)

(Izzo et al., 2015)

https://optimize.esa.int
https://gtoc12.tsinghua.edu.cn/
https://github.com/esa/pykep/tree/master/pykep/trajopt/gym
https://www.esa.int/gsp/ACT/projects/active_debris_removal/
https://github.com/lfsimoes/beam_paco__gtoc5
https://github.com/MLopez-Ibanez/AsteroidRoutingProblem
https://optimize.esa.int/challenge/spoc-mining/p/mine-the-belt
https://www.esa.int/gsp/ACT/projects/gtop/


Conclusions

✅ Lots of interesting optimization problems with “unusual” features

✅ Lots of benchmarks, simulation tools and software available

✅ Competitions and challenges
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Expensive Black-Box Permutation Optimization

 Black-box: f (π) =

 Expensive:

Each evaluation is costly !

Between 100 – 1000 evaluations

 Permutation-based

π ∈ Sn
e.g., π = (3, 2, 4, 5, 1)

Either representing an order 
or a ranking.

Previous works
Surrogate-based (CEGO)
[Zaefferer et al., 2014]

Ant Colony Optimization and 
ACO+surrogate-model:
[P´erez C´aceres et al., 2015]

Unbalaced Mallows Model (UMM):
[Irurozki & L´opez-Ib´an˜ez, 2021]

Typically benchmarked on:
TSP, QAP, LOP, PFSP . . .

Real-world expensive black-box permutation problems ?
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