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This paper presents a new, carefully designed algorithm for five bi-objective permutation flow shop

scheduling problems that arise from the pairwise combinations of the objectives (i) makespan, (ii) the

sum of the completion times of the jobs, and (iii) both, the weighted and non-weighted total tardiness of

all jobs. The proposed algorithm combines two search methods, two-phase local search and Pareto local

search, which are representative of two different, but complementary, paradigms for multi-objective

optimization in terms of Pareto-optimality. The design of the hybrid algorithm is based on a careful

experimental analysis of crucial algorithmic components of these two search methods. We compared our

algorithm to the two best algorithms identified, among a set of 23 candidate algorithms, in a recent review

of the bi-objective permutation flow-shop scheduling problem. We have reimplemented carefully these

two algorithms in order to assess the quality of our algorithm. The experimental comparison in this paper

shows that the proposed algorithm obtains results that often dominate the output of the two best

algorithms from the literature. Therefore, our analysis shows without ambiguity that the proposed

algorithm is a new state-of-the-art algorithm for the bi-objective permutation flow-shop problems

studied in this paper.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The permutation flow-shop scheduling problem (PFSP) is a well-
known scheduling problem that models production environments
found, for example, in manufacturing or chemical industries.

In flow-shop problems, each job consists of a set of operations,
each of which is to be carried out on a particular machine, and the
order of machines is the same for all jobs. For flow-shops, several
objectives have been considered as optimization goals. Common
objectives that are to be minimized include the completion time of
the last job (makespan) [1], the sum of completion times of all jobs
[2–4] and the total (weighted) tardiness [5]. These objectives are
also considered to be important in practical applications. Flow-
shop problems with these objectives are NP�hard from a specific
number of machines on [6,7]. For makespan this is the case for three
and more machines, for the sum of flowtimes for two or more, and
for the total (weighted) tardiness this is the case already for a single
machine. Therefore, large instances are often tackled by means of
approximate (heuristic) algorithms, and among these, stochastic
local search (SLS) algorithms [8] have proven to be particularly
effective.

Many optimization problems encountered in real life can be
evaluated according to various, often conflicting objectives.
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Therefore, since a few decades multi-objective optimization
attracts considerable efforts and has become a very active field
of research.

A significant amount of recent research deals with the applica-
tion of SLS algorithms to multi-objective problems and, in parti-
cular, to those problems that are tackled without a priori

information about the decision maker’s preferences [9,10]; in
this latter case, the goal becomes to find an as good as possible
approximation to the Pareto-optimal set.

In recent years, bi-objective PFSPs in terms of Pareto optimality
have attracted a substantial research effort. In this paper, we tackle
bi-objective PFSPs that arise from the pairwise combinations of the
objectives makespan, sum of completion times of all jobs and total
(weighted) tardiness. The recent comprehensive review and
experimental comparison by Minella et al. [11] summarizes the
current state-of-the-art for three bi-objective PFSPs, those arising
from the pairwise combinations of the objectives makespan, sum
of completion times, and total tardiness. They identified the
algorithms MOSA [12] and MOGLS [13] as the currently best
performing ones. In this paper, we present a new, hybrid state-
of-the-art SLS algorithm for these three bi-objective PFSPs and also
for two variants that replace the total tardiness objective with its
weighted version.

Our algorithm combines two multi-objective frameworks: two-
phase local search (TPLS) [14] and Pareto local search (PLS) [15].
TPLS uses a single-objective algorithm to solve several
scalarizations, that is, aggregations of the multiple objective
functions into a single-objective problem. PLS exhaustively
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searches for non-dominated solutions in the neighborhood of an
initial set. Lust and Teghem [16] have recently also combined
search methods based on scalarizations and dominance for tackling
the multi-objective TSP. Apart from differences in several details,
their approach focuses on algorithms that have a natural stopping
criteria, whereas our hybrid algorithm is designed with a user-
defined time limit in mind.

For the design of our SLS algorithm we follow a bottom-up SLS
algorithm engineering approach, and our first step is the develop-
ment of high-performing algorithms for each single objective PFSP.
As a starting point, we choose the iterated greedy (IG) algorithm of
Ruiz and Stützle [17], which is a state-of-the-art SLS algorithm for
the PFSP for makespan minimization. We extend this algorithm to
tackle the other objectives (the sum of flowtime, total tardiness
and weighted total tardiness). The result is a high-performing
algorithm for each single-objective problem.

In the next step of our algorithm engineering, we further
adapt these single-objective algorithms to tackle each of the five
bi-objective variants of the PFSP by integrating the IG algorithms
into the TPLS framework. We also implement PLS algorithms that
use various neighborhood operators to explore the search space.
We carry out a careful experimental study of the main algorithmic
components of the TPLS and PLS algorithms and then exploit the
gained insights to propose a hybrid SLS algorithm that combines
both algorithms.

In order to perform a fair evaluation of the quality of the
resulting hybrid algorithm, we reimplemented MOSA [12] and
MOGLS [13], two state-of-the-art algorithms for bi-objective PFSPs
[11]. Our experimental results show the excellent performance of
our proposed hybrid algorithm: it often finds Pareto fronts that
completely dominate those found by these two state-of-the-art
algorithms.

The contributions of this paper are several high-performing
single-objective algorithms for various PFSPs, improved variants of
the TPLS and PLS frameworks, and a method to engineer SLS
algorithms for bi-objective problems. We further combine these
individual contributions to produce a new hybrid algorithm that
advances the state-of-the-art for the five bi-objective PFSPs.
2. Preliminaries

In this section, we first introduce the flow-shop scheduling
problem. Next, we give some basic notions on multi-objective
optimization that are required in the rest of the paper. Finally, we
present TPLS and PLS, the two algorithm frameworks hybridized in
our final algorithm.

2.1. Permutation flow-shop scheduling problem

The flow-shop scheduling problem (FSP) is one of the most
widely studied scheduling problems. In the FSP, a set of n jobs
(J1,y,Jn) is to be processed on m machines (M1,y,Mm). All jobs go
through the machines in the same order, i.e., all jobs have to be
processed first on machine M1, then on machine M2, and so on until
machine Mm. This results in a set of (n!)m different candidate
solutions. A common restriction in the FSP is to forbid job passing,
i.e., the processing sequence of the jobs is the same on all machines.
In this case, a candidate solution can be represented as a permuta-
tion of the jobs and, hence, there are n! possible sequences. The
resulting problem is called permutation flow-shop scheduling
problem (PFSP).

In the PFSP, all processing times pij for a job Ji on a machine Mj are
fixed, known in advance, and non-negative. For a given job
permutation p, pi denotes the job in the ith position. Let Cij denote
the completion time of job Ji on machine Mj, then the completion
times of all jobs on all machines are given by the following formula:

Cp0j ¼ 0, j¼ 1, . . . ,m, ð1Þ

Cpi0 ¼ 0, i¼ 1, . . . ,n, ð2Þ

Cpi j ¼maxfCpi�1j,Cpi j�1gþpij, i¼ 1, . . . ,n, j¼ 1, . . . ,m: ð3Þ

For simplicity, in the remainder of the paper, Ci denotes the
completion time of a job Ji on the last machine Mm. The makespan is
the completion time of the last job in the permutation, that is,
Cmax ¼ Cpn . In the following, we refer to the PFSP with makespan
minimization as PFSP-Cmax; this problem isNP�hard in the strong
sense for mZ3 [7].

The other objectives studied in this paper are the minimization
of the sum of flowtimes and the minimization of the weighted

tardiness. Because all jobs are assumed to be available at time zero,
the sum of flowtimes is given by

Pn
i ¼ 1 Ci. This objective is also

known as sum of completion times or total completion time. We
refer to the PFSP with sum of flowtimes minimization as PFSP-SFT. It
is strongly NP�hard for only two machines [7].

In many practical situations, a job has a due date di. The
tardiness of a job Ji is then defined as Ti ¼ max{Ci�di, 0} and the
total weighted tardiness is given by

Pn
i ¼ 1 wi � Ti, where wi is a

weight assigned to job Ji. The problem of minimizing the total
weighted tardiness is denoted by PFSP-WT. If all weights wi are the
same, we say that the objective is the total tardiness, and we name it
PFSP-TT. The PFSP-TT and the PFSP-WT are strongly NP�hard even
for a single machine [6]. Most of the studies on the tardiness
objective, including the review of Minella et al. [11], focus only on
the non-weighted variant. However, in this work, we consider both,
the PFSP-TT and the PFSP-WT.

We tackle the bi-objective PFSPs that result from five possible
pairs of objectives (we do not consider the combination of the total
and weighted tardiness). We refer to these five bi-objective
problems as follows. PFSP-(Cmax, SFT) denotes the minimization
of the makespan and the sum of flowtimes, PFSP-(Cmax, TT) and
PFSP-(Cmax, WT) denote the minimization of the makespan and the
total tardiness and weighted tardiness, respectively; PFSP-(SFT, TT)
and PFSP-(SFT, WT) denote the minimization of the sum of
flowtimes and the total tardiness and weighted tardiness, respec-
tively. A number of algorithms have been proposed to tackle each of
these bi-objective problems separately. Rarely, the same paper has
addressed more than one combination. Minella et al. [11] give a
comprehensive overview of the literature on the three most
commonly tackled problems and present the results of a sound
and extensive experimental analysis of 23 algorithms. These
algorithms are either PFSP-specific or they are more general but
have been adapted by Minella et al. to tackle this problem. Their
review identifies a multi-objective simulated annealing (MOSA)
[12] as the best performing algorithm for all combinations of
objectives. They also point out a multi-objective genetic local
search (MOGLS) [13] as the best performing alternative. These
two algorithms are therefore the current state of the art for the
bi-objective PFSP variants tackled in this paper.

2.2. Multi-objective optimization

In multi-objective combinatorial optimization problems
(MCOPs), candidate solutions are evaluated according to an
objective function vector~f ¼ ðf1, . . . ,fqÞwith q objectives. Many early
studies used a simple a priori approach where some preferences are
given among the set of objectives. These preferences can be given as
a ponderation for each objective (scalarized approach), or as a total
order of the objectives (lexicographic approach).

If no a priori assumptions upon the decision maker’s preferences
can be made, the goal typically becomes to find a set of feasible
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solutions that ‘‘minimize’’ ~f in the sense of Pareto optimality, from
which the decision maker can choose a final solution a posteriori. In
such a case, a partial order is given on the set of feasible solutions,
defined as follows. If~u and~v are vectors in Rq (q being the number of
objectives), we say that~u dominates~v ð~u!~vÞ iff~ua~v and uirvi, i ¼

1,y,q. We say that ~u weakly dominates ~v ð~u$~vÞ iff uirvi, i¼1,y,q.
We say that ~u and ~v are mutually non-dominated iff ~uE~v and

~vE~u. We also say that~u and~v are non weakly-dominated if~u �~v and
~v �~u. For simplicity, we extend the dominance criteria to solutions,
that is, a solution s dominates another one su iff ~f ðsÞ!~f ðsuÞ.

If no su exists such that ~f ðsuÞ!~f ðsÞ, the solution s is called Pareto

optimal. The goal in MCOPs typically is to determine the set of all
Pareto-optimal solutions. Since this goal is in many cases computa-
tionally intractable [9], in practice the goal becomes to find the best
possible approximation to the set of Pareto optimal solutions within a
particular time limit. Any set of mutually non-dominated solutions
provides such an approximation but some approximations are better
than others. In fact, the notion of Pareto optimality can be extended to
compare sets of mutually non-dominated solutions [18]. In particular,
we can say that one set A dominates another set B ðA!BÞ, iff every
~bAB is dominated by at least one~aAA. When comparing two sets A

and B of non-dominated solutions, we say that A is better than B in
terms of Pareto optimality ðA v BÞ iff every ~bAB is dominated by or
equal to at least one~aAA, and AaB. If we have ADB, BDA, and AaB,
then A and B are incomparable ðAJBÞ, and none of the two sets is
preferred over the other according only to Pareto optimality.
2.3. Two-phase local search

TPLS [14] is a general algorithmic framework for multi-objective
optimization that consists of two phases. The first phase uses an
effective single-objective algorithm to find a high-quality solution
for one objective. The second phase solves a sequence of
scalarizations, that is, weighted sum aggregations of the multiple
objectives into a single scalar function. We focus on bi-objective
problems. Given a normalized weight vector ~l ¼ ðl,1�lÞ,
lA ½0,1� �R, the scalar value of a solution s with objective
function vector ~f ðsÞ ¼ ðf1ðsÞ,f2ðsÞÞ is computed as

flðsÞ ¼ l � f1ðsÞþð1�lÞ � f2ðsÞ: ð4Þ

Henceforth, a weight vector~l will be simply denoted by its first
component l.

One central idea of TPLS is to use the best solution found by the
previous scalarization as the initial solution for the next scalariza-
tion. This strategy exploits the connectedness of solutions, that is,
solutions that are close to each other in the solution space
are expected to be also close in the objective space. In our
implementation of TPLS, we first generate a very good solution
for each objective because we have good algorithms for each single-
objective problem (Section 3). Then, we solve a number of
scalarized problems using a sequence of weights. Algorithm 1
describes our implementation of the TPLS framework that
generates first one solution for each objective. SLS1 and SLS2

denote, respectively, the single-objective algorithms to minimize
the first and the second objectives. SLSL denotes the single-
objective algorithm to solve scalarized problems. 1to2 is a
Boolean determining the direction of the scalarizations, either
from the first objective to the second one or vice versa, and
therefore it also determines which of the two initial solutions
should be used as a seed for the first scalarization. When
all scalarizations have been solved, procedure Filter removes
dominated solutions from the archive. The weights to define
scalarized problems are generated using a recently proposed
weight setting strategy [19], which will be described in
Section 4.3.
Algorithm 1. Two-phase local search.
1: p
1 :¼ SLS1ðÞ
2: p
2 :¼ SLS2ðÞ
3: A
dd p1, p2 to Archive

4: i
f 1to2 then pu :¼ p1 else pu :¼ p2
5: f
or each weight l do

6:
 pu :¼ SLSLðpu,lÞ

7:
 Add pu to Archive

8: e
nd for

9: F
ilterðArchiveÞ
10: O
utput: Archive
2.4. Pareto local search

PLS is an iterative improvement method for solving MCOPs. It can
be seen as an extension of iterative improvement algorithms for
single-objective problems to the multi-objective context [15]. In PLS,
an acceptance criterion based on Pareto dominance replaces the usual
single-objective acceptance criterion. Algorithm 2 illustrates the PLS
framework. Given an initial archive of non-dominated solutions,
which are initially marked as unvisited (line 2), PLS iteratively applies
the following steps. First, a solution s is randomly chosen among the
unvisited ones in the archive (line 5). Then, the neighborhood of s is
fully explored and all neighbors that are not weakly dominated by s or
by any solution in the archive are added to the archive (lines 7–12).
Solutions in the archive dominated by the newly added solutions are
removed (procedure Filter on line 13). Once the neighborhood of s has
been fully explored, s is marked as visited (line 14). When all solutions
in the archive have been visited, the algorithm stops in a Pareto local
optimum [20].

Algorithm 2. Pareto local search.
1: I
nput: An initial set of non-dominated solutions A

2: e
xploredðsÞ :¼ false 8sAA

3: A
0 :¼ A

4: w
hile A0a| do

5:
 s :¼ extract solution randomly from A0
6:
 A0 :¼ A0\fsg
7:
 for each suAN ðsÞ do

8:
 if sEsu then

9:
 exploredðsuÞ :¼ false
10:
 AddðA,suÞ

11:
 end if

12:
 end for

13:
 FilterðAÞ

14:
 exploredðsÞ :¼ true
15:
 A0 :¼ fsAAjexploredðsÞ ¼ falseg
16: e
nd while

17: O
utput: A
We have also implemented a restricted version of PLS called
component-wise step (CW-step). CW-step adds non-dominated
solutions in the neighborhood of the initial solutions to the archive,
but it does not explore the neighborhood of these newly added
solutions further. CW-step may be interpreted as a specific variant
of PLS with an early stopping criterion. Because of this early
stopping criterion, it is clear that from a solution quality point of
view the CW-step generates worse non-dominated sets than PLS.
However, compared to running a full PLS, CW-step typically
requires only a very small additional computation time and has
been found to be useful in practice as a post-processing step of the
solutions produced by TPLS [21,14,22].
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3. Single-objective SLS algorithms

Since the aim of the TPLS framework is to extend the efficiency
of single-objective algorithms to the multi-objective context, the
performance of the underlying single-objective algorithms used by
TPLS is crucial. In fact, they should be state-of-the-art algorithms
for each single-objective problem, and as good as possible for the
scalarized problems resulting from the weighted sum aggrega-
tions. In this section, we describe the algorithms used to solve each
of the single-objective problems.

3.1. SLS algorithm for PFSP-Cmax

For the PFSP-Cmax, we re-implemented the iterated greedy (IG)
algorithm (IG-Cmax) by Ruiz and Stützle [17]. The IG algorithm has
shown to be very competitive when compared to more complex SLS
algorithms, and it requires only very few parameters to be set.
Algorithm 3 gives an algorithmic outline of IG. The essential idea of
IG is to iterate over the following steps. First, IG partially destructs a
complete solution by removing some of its components (procedure
Destruction). Next, a greedy constructive heuristic reconstructs the
partial solution (procedure Reconstruction). A local search
algorithm may further improve the newly constructed complete
solution (procedure LocalSearch). Finally, an acceptance criterion
determines whether the new solution replaces the current solution
for the next iteration.

Algorithm 3. Iterated greedy (IG).
1: p
 :¼ Generate Initial Solution

2: w
hile termination criterion not satisfied do

3:
 pR :¼ DestructionðpÞ

4:
 pu :¼ ReconstructionðpRÞ
5:
 pu :¼ LocalSearchðpuÞ /* optional */

6:
 p :¼ AcceptanceCriterionðp,puÞ

7: e
nd while

8: O
utput: p
IG-Cmax uses the well-known NEH constructive heuristic [23] to
construct the initial solution and to reconstruct a full solution from
a partial one in the main IG loop. NEH sorts the jobs in descending
order of their sum of processing times and inserts them following
this order in the partial solution at the best position according to
the objective value. When using IG-Cmax, this ordering is only used
when NEH creates the initial solution. In the main loop of IG,
the algorithm reconstructs a complete solution by reinserting
previously removed jobs in random order. After reconstruction,
the solution is improved by a first-improvement local search based
on the insert neighborhood. This neighborhood is defined such that
all pu are neighbors of p if they can be obtained from p by removing
a job pi and inserting it at a different position j. The local search
scans the neighborhood job by job. For a job pi, it determines the
best position where it can be inserted. If this best move improves
the objective value, it is immediately applied. These steps are then
repeated with the next job until a local optimum is found. We use a
speed-up proposed by Taillard [24] to find the best position to
insert a job in O(mn).

The acceptance criterion uses the Metropolis condition: A worse
solution is accepted with a probability given by expfðf ðpÞ�f ðpuÞÞ=Tg,
where f ðpÞ and f ðpuÞ are the objective values of the current and new
solution, respectively. T is a constant computed as

T ¼ Tc �

Pm
i ¼ 1

Pn
j ¼ 1 pij

n �m � 10
, ð5Þ

which is equivalent to the average of the processing times of the
jobs over all machines divided by 10 and multiplied by a constant
Tc, which is a user-defined parameter that has to be adjusted. The
idea behind the formula is to adapt the acceptance probability to
the instance size and to the variability of the objective function.
Ruiz and Stützle [17] report some experiments to identify good
parameter settings. According to their findings, the algorithm is
quite robust to different parameter settings. They finally set the
number of removed jobs d to 4 and Tc to 0.4, and we use the same
parameter settings.

3.2. SLS algorithm for PFSP-SFT

Given the very good performance of IG for makespan mini-
mization (PFSP-Cmax), we decided to adapt the IG algorithm to
tackle the PFSP-SFT. Although the main outline of IG (Algorithm 3)
remains the same, several modifications are necessary to reach a
high performance for the PFSP-SFT. In particular, the speed-up
proposed by Taillard for exploring the insertion neighborhood is
only valid for makespan minimization. Without this technique, the
complexity of exploring the full insertion neighborhood becomes
O(mn3), and there is no clear a priori advantage of using this
neighborhood operator over pairwise exchanges of jobs. Therefore,
we implement and test three neighborhood operators based on the
following moves: insertion, which is the same as for makespan
minimization but without the speed-up; exchange, which
exchanges the positions of any pair of jobs; and swap, which
considers only swaps of the positions of adjacent jobs. Our
implementation takes advantage of the following observation:
when a job in a (partial or complete) solution is moved to an earlier
or later position, this move does not affect the completion times of
jobs that precede the affected positions in the schedule. Therefore it
is not required to recompute the completion times of unaffected
jobs, which effectively halves the time of the neighborhood search.
Experimental tests [25,26], which are not reported here, showed
that the neighborhood operator based on swap moves leads to the
best results, and therefore we used this operator to tackle the PFSP-

SFT. More precisely, our local search sequentially examines all
possible swap moves, and if it finds an improvement, it performs
the move (first improvement) and continues the evaluation of the
remaining moves. Then, if the objective value has been improved, a
new sequential evaluation can be performed from the current
solution in order to reach a local optimum.

We also consider the possibility of stopping the iterative
improvement algorithm before reaching a local optimum. For
this purpose, we add a parameter NLS that limits the number of
neighborhood scans. Experimental tests suggest that the local
search often finds a local optimum in less than five neighborhood
scans. Therefore, we test possible settings of NLS in f1,2,3,4,1g. If
NLS ¼1, the search stops at a local optimum, no matter how many
neighborhood scans it takes.

For the initial solution, we use the same NEH algorithm as for
PFSP-Cmax since it was shown to provide good quality solutions for
PFSP-SFT as well [27].

We modified the formula for computing the temperature in the
acceptance criterion (Eq. (6)) because of the different range of
objective values. We experimentally found [26] that good results
are produced by using the formula

T ¼ Tc �

Pm
i ¼ 1

Pn
j ¼ 1 pij

m � 10
, ð6Þ

which is the same as Eq. (5) but multiplied by n.

3.3. SLS algorithm for PFSP-TT and PFSP-WT

We also adapted IG to tackle the PFSP-TT and the PFSP-WT. There
are many constructive heuristics for the tardiness criterion, none of
them being really optimized for the weighted tardiness. Therefore,



Table 1
IG parameter settings.

Problem d Tc NLS

PFSP-Cmax 4 0.4 1

PFSP-SFT 5 0.5 3

PFSP-TT 6 0.9 3

PFSP-WT 5 1.2 2

PFSP-(Cmax, SFT) 5 6 1

PFSP-(Cmax, TT) 4 5 1

PFSP-(Cmax, WT) 4 4 1

PFSP-(SFT, TT) 6 5 1

PFSP-(SFT, WT) 6 3 1

The settings for PFSP-Cmax are taken from Ruiz and Stützle [17], in particular the

neighborhood they use is based on best insertion moves and is stopped when

reaching a local optimum. The other settings were found by means of automatic

tuning (Section 3.5).
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we compared several constructive heuristics to find the best one for
these two objectives.

The well-known SLACK dispatching rule defines an order of jobs,
and it is often used as a simple constructive heuristic [5] to provide
acceptable solutions. We extended SLACK to take into account the
jobs weights, and we call this variant the WSLACK heuristic. Our
evaluation of WSLACK and other heuristics, reported in [25], has
shown that using WSLACK to provide the initial order for the NEH
algorithm produces the best results. A further modification of the
NEH algorithm is necessary for the case when there are several
positions for inserting a job that minimizes the objective value of a
(possibly partial) solution. This situation specially arises when the
solution is partial and each job can be processed before its due date,
and, hence, several insertion positions result in a tardiness value
of 0. Our implementation of the NEH algorithm inserts jobs in the
earliest position from such a set of equally good positions.

Because of the due dates assigned to the jobs, objective values
can differ very much between instances, and we could not find an
effective setting based on the input data for the formula of the
temperature (Eq. (5)) as for the other two objectives.

Therefore, for the PFSP-TT and the PFSP-WT, we modified the
acceptance criterion to accept a new solution with a probability p,
which depends on the relative difference between the objective
value of the current and the new solution and a parameter Tc:

p¼ expð100 � ððf ðpÞ�f ðpuÞÞ=f ðpÞÞ=TcÞ: ð7Þ

3.4. SLS algorithms for the scalarized problems

Given the very good performance of our IG algorithms to
minimize each objective [25,26], we also use IG to solve each
scalarized problem. To define the acceptance probability in the
procedure AcceptanceCriterion (Algorithm 3, line 6), we use the
same formula as for the tardiness objective (Eq. (7)). Another
important adaptation of IG for solving the scalarized problems is
the normalization of the objective values.

When solving the scalarization of a bi-objective problem, the
range of the two objectives may be rather different and, without
normalization, the objective with the highest values would be
almost the only one to be minimized because of its strong influence
on the weighted sum value. For this reason, we compute the
weighted sum using relative values rather than absolute values. The
normalization maps each objective to the range [1,100] by using
the worst and the best known values of each objective, with the
worst value corresponding to 100 and the best one to 1. Because the
best and worst values for each objective change during computa-
tion time, that is, the normalization is dynamic, we recalculate the
weighted sum value of the best known solution before comparing it
with the current solution if any objective bounds have changed.

Our normalization procedure also takes into account that the
range of the objective function values of partial solutions during the
reconstruction phase is smaller than for complete solutions. To
overcome this issue, the normalization mechanism keeps bounds
for each possible number of jobs in a partial solution, and, thus, uses
the adequate normalization for each partial or complete solution.
Since the destruction phase removes at most d jobs from a complete
solution, the normalization procedure needs to keep d sets of
objective bounds corresponding to the d possible number of jobs in
a partial or complete solution. Henceforth, we implicitly assume
that the appropriate normalization is performed when calculating
the weighted sum.

3.5. Parameter tuning

We fine-tuned the parameters d, Tc and NLS of each IG variant for
PFSP-SFT, PFSP-TT and PFSP-WT, and for the five scalarized
problems. The range of possible values for d was [2,12], for Tc it
was (0,10] (if Tc ¼ 0, a worse solution cannot be accepted), and for
NLS the set of possible values was f1,2,3,4,1g. We did not fine-tune
the parameters for the makespan minimization problem (PFSP-

Cmax), because Ruiz and Stützle [17] have already proposed good
parameter settings (see Section 3.1).

We used iterated F-Race [28] for the automatic tuning. For this
purpose, we generated 100 new instances for each number of jobs in
{20,50,100,200}, following the procedure described by Minella
et al. [11]. These instances have 20 machines, since they are the
hardest considered in this paper. All code is implemented in C++and
compiled with gcc version 3.4.6 using the -O3 flag. Experiments
presented in this paper are run on an Intel Xeon E5410 CPU 2.33 GHz
with 6 MB cache, under Cluster Rocks Linux. Each process uses one
single core due to the sequential implementation of the algorithm. For
each problem and each instance size, we performed five independent
runs of the automatic tuner and allocate a limit of 10 000 experiments
for each run. Each experiment involving the execution of one algorithm
configuration on one instance uses a time limit of ð0:1 � n �mÞ=30
seconds, that is, the time used by Minella et al. [11] divided by 30.
(In fact, for the time limits we heuristically adopted those used by
Minella et al., since they have run the experiments on a very similar
hardware as ours.) The choice of the time limits is also motivated by the
assumption that the TPLS phase of the final algorithm will be allocated
half of the total time and that we use 15 scalarizations overall.

To assess the importance of the parameter tuning on the solution
quality, we compared two versions of our algorithm. In the first, we
consider parameter settings that are specific to each number of jobs,
which is done by executing multiple tuning runs one for each number
of jobs. In the second, we use the same parameter settings for all
instance sizes of a problem, which is done by executing the tuning
runs using a mix of instances with different sizes. The size-indepen-
dent parameter settings produce only slightly worse results [29] and
they are arguably more robust when applied to instances of an
intermediate size, which is not considered in the tuning. Table 1
describes the parameter settings of IG we used to produce all results
given later in this paper. We provide as supplementary material [29]
results obtained using size-specific parameters.
4. Multi-objective algorithms

In this section, we turn our attention to the bi-objective
problems in terms of Pareto optimality. First, we briefly introduce
a tool used in the remainder of the paper to analyze and compare
multi-objective algorithms. Next, we empirically analyze the main
components of the two multi-objective frameworks used in this
paper, PLS and TPLS. The results of this analysis lead us to propose
a hybrid multi-objective algorithm that combines TPLS and PLS.
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This hybrid TP+PLS algorithm will be compared in Section 5 with
the state-of-the-art algorithms for the bi-objective PFSPs.
4.1. Quality assessment of multi-objective algorithms

The problem of evaluating the quality of multi-objective algo-
rithms is still a current research topic [18]. When trying to decide
which of two algorithms is better, the simplest case occurs when
the outcome of an algorithm A is better than that of an algorithm B,
given the relation defined in Section 2.2. More difficult is the case
when the outcomes of two or more algorithms are incomparable.
A further difficulty stems from the stochasticity of multi-objective
SLS algorithms, which requires to analyze the results of several runs
to assess the expected behavior of the algorithm. To overcome
these issues, quality indicators have been devised. These are scalar
values calculated for each non-dominated set (unary indicators) or
pairs of sets (binary indicators).

The hypervolume [30,18] is a unary measure used to evaluate
the quality of any non-dominated set. It is commonly employed to
compare several multi-objective algorithms by evaluating their
outputs when none of them is better than the other in the Pareto
sense, as defined in Section 2.2.

Good quality indicators as the hypervolume reflect desirable
characteristics of the non-dominated sets, while being consistent
with the Pareto optimality principle. Their simplicity, however,
does not allow to extract much information about the behavior
of the algorithm. A different approach that is well suited for
bi-objective problems is the use of exploratory graphical tools
based on the empirical attainment function (EAF).

The EAF of an algorithm gives an estimate of the probability of
an arbitrary point in the objective space being attained by
(dominated by or equal to) a solution obtained by a single run of
the algorithm [31]. An attainment surface delimits the region of the
objective space attained by an algorithm with a certain minimum
frequency. In particular, the worst attainment surface delimits the
region of the objective space that is always attained by an
algorithm, whereas the best attainment surface delimits the
region attained with the minimum non-zero frequency.
Similarly, the median attainment surface delimits the region of
the objective space attained by half of the runs of the algorithm.
Examining the empirical attainment surfaces allows to assess the
likely location of the output of an algorithm. In addition to this,
differences between the EAFs of two algorithms identify regions
of the objective space where one algorithm performs better
than another. Given a pair of algorithms, a plot of the differences
between their EAFs shows the differences in favor of each algorithm
side-by-side and encodes the magnitude of the difference in gray
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Fig. 1. In each plot is given one non-dominated set obtained by PLS using different quality

shown range.
levels: the darker, the stronger the difference at that point of the
objective space.

An example of such a plot is Fig. 2, where each side shows the
EAF differences in favor of one algorithm over the other. The
continuous lines are the same in each side of the plot and they
correspond to the overall best and overall worst attainment
surfaces, that is, they delimit, respectively, the region attained at
least once and the region attained always by any of the two
algorithms. These lines provide information about the best and
worst overall output, and any difference between the algorithms is
contained between these two lines. On the other hand, the dashed
lines are different in each side and they correspond to the median
attainment surface of each algorithm. López-Ibáñez et al. [32]
provide a more detailed explanation of these graphical tools.
4.2. Analysis of PLS components

In the following paragraphs, we study the two main compo-
nents of PLS, namely the initial set of solutions given as input to PLS
(the seed of PLS); and the neighborhood operator used for
generating new solutions. We also discuss a simple way to improve
the anytime property [33] of PLS.

Seeding: We analyze the computation time required by PLS and
the final quality of its output when seeding PLS with solutions of
different quality. We test seeding PLS with (i) one randomly
generated solution, (ii) two solutions, one for each single objective,
obtained by the appropriate version of the NEH heuristic for
each objective (Section 3), and (iii) two solutions obtained by IG
(Section 3) for each objective after 10 000 iterations. The neighborhood
used for PLS is a combination of exchange and insertion (for details, see
the next paragraph on the neighborhood operator).

Fig. 1 gives representative examples of non-dominated sets
obtained by PLS for each kind of seed along with the initial seeding
solutions of NEH and IG. Generally, seeding PLS with very good
initial solutions, as obtained by IG runs, produces better non-
dominated sets in terms of a wider range of the Pareto front and
better quality. This result is strongest for PFSP-(Cmax, SFT). As shown
on the supplementary material page [29], the differences between
the EAFs obtained for each kind of seed across 10 runs confirm this
result for the instance of Fig. 1 and also other instances. The
computation time required by PLS in dependence of the initial seed
is given in Table 2.

The results show that seeding PLS with solutions of higher
quality does not strongly affect the computation time required by
PLS. From these results, we also expect that seeding PLS with
solutions obtained by TPLS will further enhance the quality of the
results without an excessive computation time overhead.
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of seeds for instance 100�20_3. The randomly generated solutions are outside the



Table 2
Confidence intervals (at level¼0.95) of the computation time (seconds) of PLS for

different kinds of seeding solutions (random, heuristic, or IG seeds).

Problems n�m Random Heuristic IG

PFSP-(Cmax, SFT) 50�20 [7.794, 9.896] [5.596, 6.871] [4.291, 4.837]

100�20 [161.4, 193.4] [134.6, 149.9] [149.0, 175.3]

PFSP-(Cmax, WT) 50�20 [29.17, 34.05] [31.94, 35.77] [22.5, 25.53]

100�20 [577.5, 706.5] [690.4, 844.1] [590.4, 662.5]

PFSP-(SFT, WT) 50�20 [24.27, 29.16] [27.5, 28.85] [22.36, 25.03]

100�20 [673.5, 811.4] [776.5, 839.0] [831.7, 958.8]

For details see the text.

Table 3
Confidence intervals (at level¼0.95) of the computation time (seconds) of PLS using

different neighborhood operators.

Problems n�m Insertion Exchange Ex. + Ins.

PFSP-(Cmax, SFT) 50�20 [1.379, 1.766] [1.973, 2.448] [4.378, 5.303]

100�20 [65.93, 75.89] [71.11, 84.01] [147.6, 167.7]

PFSP-(Cmax, WT) 50�20 [9.451, 10.77] [11.87, 14.02] [21.67, 24.4]

100�20 [236.6, 267.1] [292.9, 336.4] [577.3, 645.9]

PFSP-(SFT, WT) 50�20 [8.682, 10.35] [13.04, 15.45] [22.04, 25.39]

100�20 [204.4, 273.7] [458, 527.9] [799.1, 945.5]

For details see the text.
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Neighborhood operator: Starting from two solutions obtained by IG
(Section 3) for each objective after 10 000 iterations, we test variants
of PLS based on three different neighborhoods: (i) insertion, (ii)
exchange, and (iii) the combination of exchange and insertion. The
latter one simply checks for all moves in the exchange and insertion
neighborhoods. We measure the computation time of PLS with each
neighborhood operator for different combinations of objectives in
Table 3. The computation time of the combined exchange and
insertion neighborhood is slightly more than the sum of the computa-
tion times for the exchange and the insertion neighborhoods
separately. For comparing the quality of the results, we examine
the EAF differences of 10 independent runs. Fig. 2 gives two represen-
tative examples. Typically, the exchange and insertion neighborhoods
produce better results in different regions of the Pareto front (top
plot), and obviously both of them are consistently outperformed by
the combined exchange and insertion neighborhood (bottom plot).
Given the complementarity of exchange and insertion to perform well
in different regions, we decided to use the combined neighborhood in
our hybrid approach.

Continuous improvement (anytime property): The original PLS stops
when no unexplored non-dominated solutions remain in the archive.
When using a limit for the computation time, for instance to compare
with other algorithms, PLS may naturally finish before the available
time is consumed, and, in this case, the remaining time would be
wasted. We therefore modify PLS to continue exploring the search
space up to the time limit by extending the neighborhood to those
solutions that can be reached by applying to each non-dominated
solution the exchange or the insert neighborhood operators twice.

Searching in this extended neighborhood, however, only
improves slightly the quality of the results for the smallest
instances since on the largest instances the computation time
available to PLS was not enough to even finish a single run using the
basic exchange and insert neighborhood operators.

4.3. Analysis of TPLS components

In this section, we examine several components of the TPLS
framework. Probably the most important is the weight setting
strategy, which defines the sequence of weights used by consecu-
tive scalarizations. We present an adaptive anytime weight setting
strategy that we recently proposed [19] and which was shown to be
superior to the classical, deterministic strategies [14]. Next, we
examine whether TPLS performs better than a restart strategy that
generates a new initial solution for each scalarization, indepen-
dently of previously found solutions. Finally, we discuss approp-
riate settings for the number of scalarizations.

Weight setting strategy: The original TPLS [14] uses a regular
sequence of equally distributed weights defined from either the
first objective to the second (1to2) or vice versa (2to1). The double

TPLS (D-TPLS) strategy [14] performs the first half of the scalar-
izations sequentially from one objective to the other, and another
half in the inverse direction.

We recently proposed TPLS variants [19] that try to improve the
anytime property so that for each possible stopping time they reach
an as good as possible performance. Among several proposed
anytime variants of TPLS, the Adaptive Focus variant, henceforth
simply called adaptive TPLS (A-TPLS), was found to perform overall
best. Therefore, we concluded that A-TPLS should be chosen as the
weight setting strategy for the PFSP, and we use it as the weight
setting strategy of our hybrid algorithm.

A-TPLS is inspired by the dichotomic scheme [34,16]. The
dichotomic scheme does not define the sequence of weights in
advance, but determines them in dependence of the solutions
already found. Formally, given a pair of solutions (s1, s2), the new
weight l is perpendicular to the segment defined in the objective
space by s1 and s2, that is,

l¼
f2ðs1Þ�f2ðs2Þ

f2ðs1Þ�f2ðs2Þþ f1ðs2Þ�f1ðs1Þ
: ð8Þ

A fundamental difference between A-TPLS and the dichotomic
scheme is that the latter has a natural stopping criterion, and it
progresses recursively depth-first [34,16]. By contrast, A-TPLS
explicitly aims to satisfy the anytime property by focusing on
the largest gap in the Pareto frontier approximation. Another
important difference is that none of the dichotomic schemes
proposed in the literature [34,16] uses as seeds the solutions
found by previous scalarizations, whereas chaining the scalariza-
tions is the main idea of the TPLS framework.

Algorithm 4. Adaptive ‘‘Anytime’’ TPLS strategy.
1:
 s1 :¼ SLS1ðÞ
2:
 s2 :¼ SLS2ðÞ
3:
 Add s1, s2 to Archive

4:
 S :¼ fðs1,s2Þg
5:
 while not stopping criteria met do

6:
ðssup,sinf Þ :¼ argmaxðs,suÞA Sf
~f ðsÞ~f ðsuÞg
7:
 Calculate l perpendicular to~f ðssupÞ
~f ðsinf Þ following Eq. (8)
8:
 Calculate l1 and l2 following Eq. (9)

9:
 ssupu :¼ SLSLðssup,l1Þ
10:
 sinf u :¼ SLSLðsinf ,l2Þ
11:
 Add ssupu and sinf u to Archive
12:
 UpdateðS,ssupuÞ
13:
 UpdateðS,sinf uÞ
14:
 end while

15:
 FilterðArchiveÞ

16:
 Output: Archive
Algorithm 4 outlines the main schema of A-TPLS. Initially, two
solutions are obtained by optimizing each single objective by
means of SLS1ðÞ and SLS2ðÞ. This pair of solutions is the initial element
of set S. At each iteration, the algorithm selects the pair of solutions
ðssup,sinf ÞAS with the largest Euclidean distance between its two
normalized objective vectors, and calculates a new weightl following



Fig. 3. The scalarization directions from each of the two seeds when y40.
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Eq. (8). Then, two new weights l1 and l2 are calculated from l:

l1 ¼ l�y � l and l2 ¼ lþyð1�lÞ, ð9Þ

where y is a parameter that modifies l towards the center of the
segment (see Fig. 3).1 The underlying single-objective SLS algorithm,
SLSL, solves then two scalarizations: one from solution ssup using
weight l1, and another from solution sinf using weight l2.

At the end of each iteration, the set of seeds S is updated (procedure
Update) as follows: If su is a newly found solution, it is added to S if it is
non-dominated. Solutions in S that possibly become dominated are
replaced by su, and any pair of solutions dominated by su is removed. If
a solution su is accepted for inclusion in S, then the segment
ðsleft ,srightÞAS with f1ðsleftÞo f1ðsuÞo f1ðsrightÞ if it exists, is removed
and two new segments ðsleft ,suÞ and ðsu,srightÞ are added to S.

Since each iteration produces two new solutions, a maximum of
three new segments is added to S in every iteration. Fig. 4 shows an
1 A value of y40 helps to ensure that scalarizations that start from the same

initial solution use different weights. This is particularly important if two adjacent

segments in S are almost parallel, since with y¼ 0 two scalarizations would be

solved using the same seed (the solution shared by the two segments) and very

similar weights. In our final algorithm, we use y¼ 0:25.
example of the update of S after the first iteration of the A-TPLS
algorithm.

TPLS versus restart: A central idea of TPLS-like strategies is to
use the solution found by a previous run of the underlying
single-objective algorithm as a seed to initialize the single-objec-
tive algorithm in a successive scalarization. A simpler strategy is to
use a random or heuristic solution to initialize the underlying
single-objective algorithm, effectively making each new scalariza-
tion an independent restart of the single-objective algorithm.



Fig. 4. The first iteration of the A-TPLS algorithm (with y¼ 0), su1 and su2 are the

newly added solutions. The segment ðsu1 ,su2Þ is the longest, and, hence, will be

explored next.
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So far in this paper, we have assumed that TPLS is superior to
independent restarts for the bi-objective PFSPs tackled in this
paper. To confirm this hypothesis, we performed experiments
comparing both strategies.

We implemented a Restart strategy derived from A-TPLS. In this
Restart strategy, the initial solution of each scalarization is gener-
ated by variants of the NEH heuristic for the scalarized problems.2

The Restart strategy solves only one scalarization for each pair of
solutions (since it does not involve the two different seeds),
however, in our experiments it still executes the same number
of scalarizations as A-TPLS. We tested the algorithms on five
randomly generated instances of size 20� 20, 50� 20, 100� 20.
Each algorithm performs 30 scalarizations, and we limit the overall
computation time to 0:05 � n �m seconds, equally distributed
among all scalarizations. We repeated each experiment 25 times
with different seeds for the random number generator.

For the small instances (n¼20), there are no clear differences
between the two strategies, the differences observed being not
consistent. However, for instances of 50 jobs (n¼50), we observe a
clear improvement of the TPLS strategy over Restart. This difference
is even stronger for instances of 100 jobs. Fig. 5 illustrates these
differences in two particular instances for one combination of
objectives, but we obtain similar results for the other bi-objective
problems [29]. Therefore, we conclude that the TPLS strategy is a
better strategy to tackle the bi-objective PFSPs.

Number of scalarizations: Given a fixed computation time limit,
there is a trade-off in TPLS between the number of scalarizations
(Nscalar) and the computation time allocated to solve each scalar-
ization. Intuitively, the number of non-dominated solutions found,
and, hence, how diverse is the resulting approximation to the
Pareto front, depends strongly on the number of scalarizations. On
the other hand, allocating more time to solve each scalarization
may lead to higher quality solutions. We carried out an experi-
mental analysis in order to find a good balance between these two
parameters.

We set the total computation time to ð0:05 � n �mÞ seconds,
using ð0:005 � n �mÞ seconds for each of the two initial solutions,
and dividing the remaining time equally among the scalarizations.
As the overall computation time remains the same, increasing the
number of scalarizations will decrease the time available to solve
each of these, and vice versa. We tested the A-TPLS algorithm with
the number of scalarizations NscalarAf10,20, 40,80g. We used the
hypervolume indicator [18,30] to compare the quality obtained for
the four values for Nscalar; the objective values are normalized to the
range [1,2) such that 2 corresponds to the worst value of the
corresponding objective plus one. Then we computed the
hypervolume of these normalized non-dominated sets, using
2 These variants insert jobs in the best positions according to the scalarized

objective value for a given weight.
(2,2) as the reference point. We used five instances of size
50�20_1 and 100�20_1 and 25 independent runs of A-TPLS
per instance. We performed an analysis of variance (ANOVA) in
order to determine if there are significant differences. The
difference in the results quality appeared to be rather small,
showing that A-TPLS is rather robust to the change of this
parameter. However, significant differences are never in disfavor
of 10 and 20 scalarizations, and therefore, we focus on a rather
small number of scalarizations in our final algorithm.

4.4. TPLS + CW-step, TPLS + PLS

As a final step of our algorithm engineering process, we compare
the performance trade-offs incurred by post-processing TPLS
results by either PLS or the CW-step (both using the combination
of the insertion and exchange neighborhood). For all instances, we
generated 10 initial sets of solutions by running TPLS for 30
scalarizations each of 1000 iterations of IG and, in order to reduce
variance, we apply CW-step and PLS once to each of these sets.

Table 4 gives the computation time that is incurred by PLS and
the CW-step after TPLS has finished. The CW-step incurs only a very
minor overhead with respect to TPLS, while PLS requires
considerably longer times, especially on instances with 100 jobs.
However, the times required for PLS to finish are much lower than
when seeding it with only two very good solutions (compare with
Table 2). With respect to solution quality, Fig. 6 compares TPLS
versus TPLS+CW-step (top), and TPLS+CW step versus TP+PLS
(bottom). As expected, the CW-step is able to slightly improve the
results of TPLS, while PLS produces much better results. In
summary, if the computation time is very limited, the CW-step
provides significantly better results at almost no computational
cost; if enough time is available, a full execution of PLS gives a
further substantial improvement. These conclusions lead us to
propose a hybrid TP+PLS algorithm, where a time-bounded PLS is
applied to the solutions obtained by TPLS.

4.5. Hybrid TP+PLS algorithm

We designed a final hybrid algorithm that uses TPLS to provide a
set of good initial solutions for PLS. This hybrid algorithm uses the
IG algorithm for each single objective to obtain two high-quality
initial solutions. Then it uses A-TPLS to perform a series of
scalarizations and to produce a set of high-quality, non-dominated
solutions. This set is then further improved by a time-bounded PLS
that uses a combined insertion plus exchange neighborhood
operator. The result is a hybrid TP+PLS algorithm for each of the
five bi-objective PFSPs. The parameters of TP+PLS are the time
given to the initial IG algorithms for each single objective, the
number of scalarizations of A-TPLS, the time given to each
scalarization, and the time limit of the final PLS run. In the next
section, we will examine adequate settings for these parameters
and compare the performance of our TP+PLS algorithm with state-
of-the-art algorithms.
5. Performance evaluation of TP+PLS

5.1. Experimental setup

For the experimental analysis of TP+PLS, we use the same
benchmark instances as Minella et al. [11]. This benchmark set
consists of 10 instances of size f20;50;100g � f5;10;20g and
f200g � f10;20g, originally proposed by Taillard [35] and
augmented with due dates by Minella et al. Recall that these
instances are different from the ones we used for the tuning of IG
and the design of the TP+PLS algorithm. In other words, we have a



Table 4
Confidence intervals (at level¼0.95) of the computation time (seconds) for CW-step

and PLS seeding with the output of TPLS.

Problems n�m CW-step PLS

PFSP-(Cmax, SFT) 50�20 [0.1934, 0.2186] [1.956, 2.555]

100�20 [1.374, 1.56] [53.66, 73.59]

PFSP-(Cmax, WT) 50�20 [0.3542, 0.3808] [6.484, 7.959]

100�20 [2.289, 2.57] [209.8, 275.3]

PFSP-(SFT, WT) 50�20 [0.334, 0.3563] [7.909, 9.446]

100�20 [2.349, 2.569] [323.7, 385.8]

For details see the text.
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clear separation between training instances used to define the
algorithms and test instances that are used for comparisons to
state-of-the-art algorithms.

Table 5 shows, for a given CPU time, how many iterations can be
performed by our implementation, on the hardware environment
we used (see Section 4.2), to indicate the relationship between
computation time and a measure of operation counts.
Each experiment is run until a time limit of 0:1 � n �m seconds, in
order to allow a time proportional to the instance size, as suggested
by Minella et al. [11]. Each experiment is repeated 25 times with
different random seeds. The main parameters of our TP+PLS
algorithm are the number of scalarizations (Nscalar), and the time
required by each scalarization. We perform longer runs of IG for
the two single objectives (IG{1,2}) than of the IG that solves
the scalarizations ðIGLÞ, with the time assigned to IG{1,2} being
1.5 times the time assigned to IGL. Once all scalarizations are
finished, the remaining time is spent on PLS.

Table 6 gives the value of these parameters for each instance
size. We set these values based on the following considerations.
First, we focus on the time settings for instances with 20machines,
and obtain the time settings for instances with 5 and 10 machines
by dividing it by 4 and 2, respectively. We assign 200 s to PLS for
instances of 200�20, 100 s for instances of 100�20, and 10 s for
instances of {20,50}�20. We use 12 scalarizations for all instance
sizes. Nonetheless, TP+PLS appears to be very robust with respect
to variations of these settings.

Note that the tuning of the IG algorithms in Section 3.5 was
done using slightly different computation time limits for each of



Table 5
Average number of iterations performed in 10 s by IG algorithms, for each

instance size.

Size Cmax SFT TT (Cmax, SFT) (Cmax, TT) (SFT, TT)

20� 5 68000 78000 60000 70500 65000 66000

20� 10 30200 48000 42300 42400 41500 45000

20� 20 14800 29000 26000 25000 24600 28000

50� 5 15800 18600 14300 16000 14600 15200

50� 10 4500 11100 9600 9400 9000 9900

50� 20 2100 5900 5400 5000 4800 5500

100� 5 4800 6200 4750 5100 4400 4700

100� 10 1330 3350 2900 2700 2500 2900

100� 20 500 1650 1550 1350 1300 1550

200� 10 460 900 800 730 680 790

200� 20 120 450 420 360 350 420

The numbers for weighted tardiness are similar to those for the total tardiness.

Table 6
Settings for the components of TP+PLS.

Instance size Time for IG{1,2} Time for IGL Nscalar Overall time

20�5 0.75 0.5 12 10

20�10 1.5 1.0 12 20

20�20 3.0 2.0 12 40

50�5 2.25 1.5 12 25

50�10 4.5 3.0 12 50

50�20 9.0 6.0 12 100

100�5 2.5 1.66 12 50

100�10 5.0 3.33 12 100

100�20 10.0 6.66 12 200

200�10 10.0 6.66 12 200

200�20 20.0 13.33 12 400

IG{1,2} denotes the IG algorithms that optimize each single objective. IGL denotes the

IG algorithm that solves scalarizations. Nscalar denotes the number of scalarizations

(it does not include IG{1,2}). PLS is run until the overall computation time is reached.

Computation times are given in seconds. Nscalar does not include the runs of IG for the

two initial solutions.
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the IG runs. In fact, we did not repeat the tuning of IG for these
slightly different computation time limits, since we anyway hope
the final IG algorithm to be relatively robust with respect to the
parameter settings so that a re-tuning would not result in very
strong gains in solution quality. The very high performance of
the hybrid algorithm, as shown in the following, confirms this
assumption.
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5.2. Comparison with reference sets

We first compare the results of our TP+PLS with the reference
sets provided by Minella et al. [11]. These reference sets correspond
to the non-dominated points from all outcomes of 10 independent
runs of 23 heuristics and metaheuristics, including algorithms for
specific PFSP variants or adaptations of algorithms originally
proposed for other problems. Each of those runs was stopped
after the same time limit as our TP+PLS. These reference sets were
obtained on an Intel Dual Core E6600 CPU running at 2.4 GHz,
which is similar in speed to the CPU we use. As illustrative
examples of the comparison between TP+PLS and the reference
sets, Fig. 7 shows the best, median and worst attainment surfaces of
TP+PLS together with the points of the reference set corresponding
to that instance.

The plots show that the median attainment surface of TP+PLS
typically matches and is often better than the reference set. That is, in
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at least half of the runs, TP+PLS obtains better solutions than those
from the reference set. Moreover, the worst attainment surface of
TP+PLS sometimes dominates the reference set. In such cases, the
worst solutions obtained by TP+PLS in 10 runs dominate all the
solutions of the reference set. This result is consistent across all
instances and all combinations of objectives, and it indicates the high
quality of the non-dominated sets obtained by our TP+PLS algorithm.
5.3. Comparison with MOSA and MOGLS

Given the good quality of TP+PLS suggested by the comparison
with reference sets, we next compare the results of TP+PLS with
multi-objective simulated annealing [12] and multi-objective
genetic local search [13], two algorithms that have recently been
shown to be state-of-the-art for various bi-objective PFSPs [11]. To
make this comparison more fair and account for possible differences
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in implementations and computing environment, we have reimple-
mented these two algorithms. We describe first the implementation
of these two algorithms, and we present later the results of our
experimental analysis.

Multi-objective simulated annealing (MOSA): Varadharajan and
Rajendran [12] designed MOSA for the bi-objective PFSP-(Cmax, SFT)
(minimization of the makespan and sum of flowtimes). Recently,
Minella et al. [11] identified MOSA as the best algorithm among 23
algorithms for the three bi-objective PFSPs arising from the
combinations of the objectives makespan, sum of flowtimes and
total tardiness. Varadharajan and Rajendran [12] proposed two
combinations of parameters for MOSA, one for shorter and another
for longer runs. We use here the parameters for longer runs, with a
higher value for the epoch length and a lower temperature
threshold.

The core of MOSA is a standard classical simulated annealing
algorithm, henceforth denoted by single-SA. It compares each new
solution with the current solution according to only one of the
objectives in order to accept the new solution or not. The choice of
the objective is done probabilistically for each comparison. The
probability to choose one objective over the other is kept constant
until the temperature reaches a certain value. Then single-SA
restarts by setting the temperature again to its initial value, but
the probability to choose an objective over the other one is slightly
changed.

From a high-level point of view, MOSA consists of two main
phases. The first phase starts from a solution provided by the NEH
heuristic to minimize the makespan, which is subsequently
improved by three improvement schemes (named JIBIS, OSSBIS
and JIBSS) that evaluate a sequence of insertion or exchange moves
by considering the job following either their index or their position,
and apply the improving moves. Then, single-SA is run four times
with different probabilities to consider the makespan instead of the
sum of flowtimes when a new solution has to be considered. These
probabilities for the four runs are (1, 0.83, 0.66, 0.5). Each run of
single-SA starts from the previous solution found and stops when
the temperature threshold is reached. The second phase of MOSA
starts from a solution provided by Rajendran’s heuristic [36], which
is a constructive heuristic to minimize the sum of flowtimes, and
this solution is further improved by the three improvement
schemes mentioned above. As in the first phase, single-SA is run
four times, with the probability of choosing the sum of flowtimes
objective over the makespan one being (1, 0.83, 0.66, 0.5). The
acceptance criterion is similar to the one defined in Eq. (7).

MOSA was originally proposed to tackle the bi-objective PFSP-

(Cmax, SFT) only. To provide an initial solution for the tardiness
objectives (weighted or not), we use the same heuristic (NEH+
WSLACK) as our algorithm (Section 3.1). Moreover, since the
stopping criterion of MOSA is a temperature threshold, we
further modify the algorithm to stop after a certain computation
time limit. For this purpose, we have considered two alternatives.
The first alternative uses a modified cooling rate of the temperature
that approximately reaches the temperature threshold when the
computation time reaches the limit. The second alternative keeps
the original cooling rate, and sets again the temperature to its initial
value when it reaches the threshold (but keeping the current
solution). This latter possibility allows to run the algorithm for a
precise computation time, which is exactly divided among the
eight runs of single-SA. We carried out some preliminary
experiments to compare the quality of the outputs provided by
each variant of MOSA. The quality of the non-dominated sets was
roughly equivalent, and we decided to use the second variant for
our comparison. The other parameter settings of MOSA are taken
directly from the original publication.

Multi-objective genetic local search (MOGLS): MOGLS, proposed
by Arroyo and Armentano [13], was the second-best algorithm for
the bi-objective PFSPs studied in the review of Minella et al. [11].
MOGLS uses elitism, the OX crossover to recombine solutions, and
the insertion operator for mutation. A partial enumeration
heuristic that constructs a set of non-dominated solutions [37]
provides the initial population. If this heuristic generates less non-
dominated solutions than the expected number of initial solutions
(i.e. the population size), then a diversification scheme for
permutation problems [38] generates the remaining solutions.
The original MOGLS—and, as far as we know, the implementation
of Minella et al. [11]—uses the version of non-dominated sorting
proposed by Deb et al. [39] in order to assign fitness to candidate
solutions. However, to be as fair as possible, in our implementation
of MOGLS, we use the faster version proposed by Jensen [40]. After a
given number of generations, a multi-objective local search is
performed on a subset of the current population, for a fixed number
of iterations. This subset is selected among the non-dominated
solutions of the current population using a clustering procedure
based on the centroids technique [41]. A list records the non-
dominated solutions already explored by the multi-objective local
search, to avoid exploring them again. The local search uses a
restricted insertion neighborhood, where each job is inserted in the
best position among the positions closer than a given distance
from the job’s initial position, and this distance decreases at each
iteration. The original and our implementation of this restricted
insertion operator use the same speed-up as the insertion operator
used in IG. The remaining parameters of MOGLS are set to the same
values as in the original publication.

Comparison of TP+PLS with MOSA and MOGLS: We test our
implementation of MOSA and MOGLS by extracting all non-
dominated solutions they obtained across 25 independent runs
each, and comparing these non-dominated sets with the reference
sets provided by Minella et al. [11]. As we mentioned earlier, these
reference sets were obtained from the results of 23 algorithms
including the implementation of MOSA and MOGLS by Minella et al.

The non-dominated sets extracted from the results of our
implementations of MOSA and MOGLS often dominate the refer-
ence sets (we provide these plots as supplementary material [29]).
Since the differences in implementation language and computation
environment with respect to Minella et al. [11] are small, we
believe that the comparison indicates that our implementation of
MOSA and MOGLS is at least as efficient as the original ones.

MOSA and MOGLS are run under the same experimental
conditions (language, compiler, computers) and for the same com-
putation time and the same number of runs (25) as TP+PLS.

We give in Table 7 the percentage of runs (computed for each
instance over the 625 pairwise comparisons of the 25 runs, and
averaged over the 10 instances of each size) that the output set of
our TP+PLS algorithm is better in the Pareto sense (in the sense
of ‘‘ v ’’ , see Section 2.2) than the output set obtained by a run of
MOSA, and, conversely, the average percentage of runs that the
output set of MOSA is better than TP+PLS. The same comparison is
done in Table 8 between TP+PLS and MOGLS. Detailed tables with
percentage values for each instance are available as supplementary
material [29]. Percentages in favor of our algorithm are very strong,
whereas the percentages in favor of MOSA and MOGLS are very low.
A value of 0 means that MOSA (or MOGLS) is not able to produce in
any run a non-dominated set better than the worst one produced
by TP+PLS in any of the 25 runs of the 10 instances of a given size.
The percentages in Table 7 show that for small instances of 20 jobs,
MOSA and our TP+PLS algorithm are difficult to compare. The low
percentages are explained by the fact that both algorithms often
find the same non-dominated set, which is probably the optimal
Pareto front. For these small instances, differences are not
consistent across instances and combinations of objectives, and
it cannot be said that any algorithm is clearly better than the other.
Nevertheless, for all the remaining instances, Tables 7 and 8 show



Table 7
For each bi-objective problem, the left column shows the percentage of runs (computed over 25 runs per instance and averaged over 10 instances of the same size) in which an

output set obtained by TP+PLS is better in the Pareto sense than an output set obtained by MOSA.

nxm PFSP-(Cmax, SFT) PFSP-(Cmax,TT) PFSP-(Cmax, WT) PFSP-(SFT, TT) PFSP-(SFT, WT)

TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA

20�5 4.66 5.83 6.1 1.34 14.95 0.18 10.19 26.31 0.02 20.15

20�10 1.87 9.2 0.07 0.26 0.02 0.06 0.19 0.63 0.03 0.07

20�20 0.13 1.23 1.27 1.57 1.99 2.32 3.63 5.55 4.2 10.09

50�5 89.49 0 84.33 0 79.22 0 98.13 0.08 33.67 0

50�10 72.92 0 63.17 0 63.24 0 94.07 0 20.53 0

50�20 75.94 0 61.11 0 63.01 0 5.79 0 14.72 0

100�5 84.97 0 70.5 0 67.12 0 93.66 2.54 9.72 0

100�10 76.94 0.05 69.86 0 37.49 0 95.38 0.58 16.84 0

100�20 73.17 0 63.29 0 23.81 0 97.35 0 15.31 0

200�10 18.04 0.16 24.5 0 4.15 0 91.77 3.72 0.02 0

200�20 15.16 0 37.83 0 0.25 0 78.23 6.28 1.04 0.02

The right column shows the converse values for the comparison of an output set of MOSA being better than an output set of TP+PLS.

Table 8
For each bi-objective problem, the left column shows the percentage of runs (computed over 25 runs per instance and averaged over 10 instances of the same size) in which an

output set obtained by TP+PLS is better in the Pareto sense than an output set obtained by MOGLS.

nxm PFSP-(Cmax, SFT) PFSP-(Cmax, TT) PFSP-(Cmax, WT) PFSP-(SFT, TT) PFSP-(SFT, WT)

TP+PLS MOGLS TP+PLS MOGLS TP+PLS MOGLS TP+PLS MOGLS TP+PLS MOGLS

20�5 18.35 0 26.39 0 28.36 0 57.52 0.14 26.64 0

20�10 18.79 0 11.52 0 5.46 0 20.7 0 17.63 0

20�20 13.82 0 19.58 0.13 25.47 0.06 20.44 0 18.83 0

50�5 39.45 0 58.11 0 75.38 0 99.29 0 95.1 0

50�10 60.28 0 70.46 0 81.08 0 96.76 0 98.21 0

50�20 74.77 0 74.44 0 70.3 0 97.85 0 97.75 0

100�5 24.97 1.12 87.79 0 76.11 0 91 4.5 42.3 0

100�10 62.43 0.27 93.02 0 79.17 0 96.21 0.04 97.4 0

100�20 83.88 0 83.42 0 68.14 0 99.55 0 98.57 0

200�10 9.55 0 81.6 0 60.03 0 94.73 1.88 28.91 0

200�20 33.37 0 83.3 0 35.45 0 96.72 0 83.19 0

The right column shows the converse values for the comparison of an output set of MOGLS being better than an output set of TP+PLS.
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the excellent results of our TP+PLS algorithm, with very high
percentages in its favor, whereas the percentages in favor of MOSA
and MOGLS are negligible.

Beyond the fact that TP+PLS often dominates MOSA and MOGLS
(Tables 7 and 8), one may wonder how important is the difference
between the sets. To answer this question, we also examine the EAF
differences between the algorithms (Section 4.1). Plots in Figs. 8–10
show some examples of these differences for three different
instances. These plots reveal strong differences and a large gap
along the whole Pareto frontier between the region typically
attained by MOSA and MOGLS and the region typically attained
by TP+PLS. Hence, we can conclude that the difference between the
non-dominated sets is not only very often in favor of our algorithm,
but that these differences are also very strong.

All the additional plots and detailed tables (including the ones
with the version of our hybrid algorithm using size-specific
parameters), together with new reference sets obtained from our
results are available as supplementary material [29].

Given such clear results, the usage of unary or binary perfor-
mance indicators, which assess the quality of non-dominated sets
that are not comparable in the Pareto sense, is superfluous. Our
conclusion from this assessment is that TP+PLS is the new state of
art for the bi-objective permutation flow-shop scheduling problem,
for all combinations of objectives we studied.
6. Conclusion

In this paper we have detailed the steps followed in the
engineering process of a multi-objective SLS algorithm for five
bi-objective permutation flow-shop problems.

The high-level design of the algorithm as consisting of a combina-
tion between the TPLS [14] and PLS [15] algorithm frameworks was
motivated by recent results on the experimental analysis of multi-
objective SLS algorithms [22] and by very recent successful
implementations of such ideas [16]. Here, we have followed a
bottom-up SLS algorithm engineering process that first engineered
effective SLS algorithms for each of the single-objective problems that
underly the bi-objective ones, and for the weighted sum scalarization
of pairs of objectives. In fact, high performing SLS algorithms for these
single-objective problems are of crucial importance for the final
performance of the TPLS algorithm. In a second step, we examined the
main components of the PLS and TPLS algorithm frameworks, which
constitute the components of the final hybrid algorithm. In this
process, new algorithmic features have been proposed and exploited
for each of the algorithm frameworks. In the case of TPLS, we have
used a strategy that adaptively sets the weights for the scalarizations
such that the algorithm adapts to the shape of the Pareto front and
that the algorithm improves the anytime behavior, that is, that it tries
to reach an as good as possible solution quality of the output
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independent of the final computation time. This strategy was also
found to be superior to a simple restart strategy and it was shown to
be rather robust with respect to the number of scalarizations. In the
study of the PLS algorithm components, we could show that PLS
strongly profits from seeding it with good initial solutions, a result
that also provided further motivation for the combination of the TPLS
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algorithms with PLS. Concerning the neighborhood to be used in PLS,
we found that a combination of the exchange and the insert
neighborhoods was beneficial. In a final step, we examined the
usefulness of combining TPLS with either the component-wise step
[14,22] or a time-bounded run of PLS, the latter resulting in clearly
superior solution quality.
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The final TP+PLS algorithm consists of a first phase, where high-
quality solutions are generated using TPLS; these provide the seed
for a time-bounded version of PLS. This algorithm not only obtains
better results than 23 other algorithms reported in the literature,
but also a careful experimental comparison of our proposal with
the two best existing algorithms for the bi-objective PFSPs shows
conclusively that our hybrid TP+PLS algorithm strongly outper-
forms the current state-of-the-art algorithms.
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Our results, in-depth experimental analyses [22] and other
similar success stories recently reported in the literature [16]
indicate the large potential of hybrid algorithms combining the
TPLS and PLS frameworks. We believe that the engineering
methodology followed here is applicable to other bi-objective
problems. Moreover, we plan to extend the TPLS framework and
our adaptive TPLS variant to problems with three or more objec-
tives in order to apply our hybrid SLS algorithm to such problems.
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[19] Dubois-Lacoste J, López-Ibáñez M, Stützle T. Adaptive ‘‘anytime’’ two-phase
local search. In: Learning and intelligent optimization, 4th international
conference, LION 4. Lecture notes in computer science, vol. 6073. Heidelberg,
Germany: Springer; 2010. p. 52–67.
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