
Ann Math Artif Intell (2011) 61:125–154
DOI 10.1007/s10472-011-9235-0

Improving the anytime behavior of two-phase
local search

Jérémie Dubois-Lacoste · Manuel López-Ibáñez ·
Thomas Stützle

Published online: 1 June 2011
© Springer Science+Business Media B.V. 2011

Abstract Algorithms based on the two-phase local search (TPLS) framework are
a powerful method to efficiently tackle multi-objective combinatorial optimization
problems. TPLS algorithms solve a sequence of scalarizations, that is, weighted sum
aggregations, of the multi-objective problem. Each successive scalarization uses a
different weight from a predefined sequence of weights. TPLS requires defining the
stopping criterion (the number of weights) a priori, and it does not produce satis-
factory results if stopped before completion. Therefore, TPLS has poor “anytime”
behavior. This article examines variants of TPLS that improve its “anytime” behavior
by adaptively generating the sequence of weights while solving the problem. The
aim is to fill the “largest gap” in the current approximation to the Pareto front. The
results presented here show that the best adaptive TPLS variants are superior to
the “classical” TPLS strategies in terms of anytime behavior, matching, and often
surpassing, them in terms of final quality, even if the latter run until completion.

Keywords Multi-objective · Anytime algorithms · Two-phase local search

Mathematics Subject Classification (2010) 68T20

J. Dubois-Lacoste (B) · M. López-Ibáñez · T. Stützle
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
e-mail: jeremie.dubois-lacoste@ulb.ac.be

M. López-Ibáñez
e-mail: manuel.lopez-ibanez@ulb.ac.be

T. Stützle
e-mail: stuetzle@ulb.ac.be



126 J. Dubois-Lacoste et al.

1 Introduction

Two-phase local search (TPLS) [19] is a stochastic local search (SLS) method for
tackling multi-objective combinatorial optimization problems in terms of Pareto-
optimality [20]. TPLS is an essential component of state-of-the-art algorithms for a
number of problems such as the bi-objective traveling salesman problem (bTSP) [17],
its variant with three objectives [21], and the bi-objective permutation flow-shop
scheduling problem (bPFSP) [5, 8]. In these algorithms, the solutions obtained by
TPLS are further improved by applying a Pareto Local Search [22].

The central idea of TPLS is to start with a high quality solution for a single
objective (first phase) and then to solve a sequence of scalarizations of the multi-
objective problem (second phase). In TPLS, each successive scalarization uses a
slightly different weight and starts from the best solution found by the previous
scalarization. Originally, the set of weights and, hence, the number of scalarizations,
is defined before the execution of TPLS in order to equally distribute the compu-
tational effort along the Pareto front [19]. This strategy implies that stopping TPLS
at an arbitrary time before it has performed the predefined number of scalarizations
would produce a poor approximation to the Pareto front in some regions. In this
sense, TPLS does not have a good anytime behavior.

Anytime algorithms [24] aim at producing an as high as possible performance
at any moment of their execution, without assuming a predefined termination
criterion. Recently, we proposed two variants of TPLS that improve its anytime
performance [6]. The first variant, Regular Anytime TPLS (RA-TPLS), uses a
regular distribution of the weight vectors, equally distributing the effort in all
directions of the objective space. We tested this variant on two bPFSPs, where the
objectives result in a different algorithm behavior for the underlying single-objective
algorithms. For these problems, we found that an adaptive TPLS, which adapts the
weights in dependence of the shape of the Pareto front, performed better than a
regular strategy.

In this paper, we re-examine RA-TPLS and the adaptive TPLS algorithms for the
bTSP and the bPFSP. In addition, we propose new design alternatives of adaptive
TPLS. First, we study the effect of performing one or two scalarizations per weight
(with different seeds), and we give evidence when each approach may be beneficial.
Second, we propose a new method to choose the region of the objective space where
the search should be intensified, that is, how to define the largest gap in the current
approximation of the Pareto front. Instead of using the Euclidean distance between
solutions [6], this new method is based on an optimistic estimate of the improvement
in the hypervolume indicator. Our experimental results show that the new method
further improves the results of the adaptive TPLS strategy in the bTSP, no matter
the shape of the front.

The main conclusion of our study is that the adaptive TPLS variants show a much
better anytime behavior than the original TPLS algorithms, and the best performing
adaptive variants typically return better quality approximations to the Pareto front,
as indicated by the hypervolume indicator.

The paper is structured as follows. In Section 2, we introduce some formal
definitions on bi-objective optimization and we present the original TPLS algorithms.
In Section 3, we present our first proposal to improve the anytime property of
TPLS. In Section 4, we propose an adaptive TPLS framework that not only satisfies



Improving the anytime behavior of two-phase local search 127

the anytime property, but that also adapts to the shape of the Pareto front to
maximize the performance. We perform in Section 5 a detailed statistical analysis to
compare all strategies. In Section 6, we propose the use of an optimistic estimation
of the potential hypervolume contribution to direct the search of adaptive TPLS,
and we show that it leads to further improvements in the bTSP. In Section 7, we
graphically examine the differences in quality of the algorithms. We conclude in
Section 8.

2 Preliminaries

In this paper, we focus on bi-objective combinatorial optimization problems and here
we describe relevant background for the remainder of the paper.

2.1 Bi-objective combinatorial optimization

In bi-objective combinatorial optimization problems, candidate solutions are evalu-
ated according to an objective function vector f = ( f1, f2). Assuming, without loss of
generality, that both objective functions must be minimized, the dominance criterion
defines a partial order among objective vectors as follows. Given two vectors u, v ∈
R

2, we say that u dominates v (u ≺ v) iff u �= v and ui ≤ vi, i = 1, 2. When u ⊀ v and
v ⊀ u, we say that u and v are mutually non-dominated. For simplicity, we extend
the dominance criteria to solutions, that is, a solution s dominates another one s′
iff f(s) ≺ f(s′). If no s′ exists such that f(s′) ≺ f(s), the solution s is called Pareto-
optimal. In a bi-objective optimization problem where no a priori assumptions upon
the decision maker’s preferences are made, the problem becomes to find a set of
feasible solutions that “minimize” f in the sense of Pareto optimality. Hence, the goal
is to determine the set of all Pareto-optimal solutions, whose image in the objective
space is called the Pareto front. Since this goal is in many cases computationally
intractable [9], in practice the goal becomes to find the best possible approximation
to the Pareto front within a specific time limit.

2.2 Two-phase local search

Two-phase local search (TPLS) [19] is a general algorithmic framework that, as the
name suggests, is composed of two phases. In the first phase, a single-objective
algorithm generates a high-quality solution for one of the objectives. This high-
quality solution serves as the starting point of the second phase, where a sequence of
scalarizations, that is, weighted sum aggregations of the multiple objective functions
into single scalar functions, are tackled. Each scalarization uses the best solution
found by the previous scalarization as the initial solution. TPLS will be successful
if effective single-objective algorithms are available, and solutions that are close to
each other in the solution space are also close in the objective space.

The advantage of considering weighted sum scalarized problems when tackling
a multi-objective one is that an optimal solution for the former is also a Pareto-
optimal solution for the latter. Different scalarizing functions may be used, such as
Tchebycheff functions, but the property mentioned above does not necessarily hold.
In a bi-objective problem, a normalized weight vector is of the form λ = (λ, 1 − λ),



128 J. Dubois-Lacoste et al.

Algorithm 1 Two-phase local search
1: π1 := SLS1()

2: π2 := SLS2()

3: Add π1, π2 to Archive
4: if 1to2 then
5: π ′ := π1

6: else
7: π ′ := π2

8: end if
9: for each weight λ do

10: π ′ := SLS�(π ′, λ)

11: Add π ′ to Archive
12: end for
13: RemoveDominated(Archive)

14: Output: Archive

λ ∈ [0, 1] ⊂ R, and the scalar value of a solution s with objective function vector
f(s) = ( f1(s), f2(s)) is computed as

fλ(s) = λ · f1(s) + (1 − λ) · f2(s). (1)

Depending on the sequence of weight vectors considered, there are two main
TPLS strategies in the literature:

Single direction (1to2 or 2to1) The simplest way to define a sequence of scalar-
izations is to use a regular sequence of weight vectors from the first objective to the
second or from the second objective to the first one. We call these alternatives 1to2 or
2to1, depending on the direction followed. For example, the successive scalarizations
in 1to2 are defined by the weights λi = 1 − (i − 1)/(Nscalar − 1), i = 1, . . . , Nscalar,
where Nscalar is the number of scalarizations. (For simplicity, we henceforth refer
to weight vectors by their first component only, since the second component can be
easily derived from (1).) In 2to1 the sequence is reversed. Two drawbacks of this
simple strategy are that (i) the direction chosen can give an advantage to the starting
objective, that is, the Pareto front approximation will be better on the starting side;
and that (ii) one needs to know in advance the computation time that is available in
order to define appropriately the number of scalarizations and the time spent on each
scalarization. Different from the original TPLS proposal [19], in our implementation
we first generate a very good solution for each single objective problem because
we have high performing algorithms for them and we want to be consistent with our
other TPLS variants in Sections 3, 4 and 6. However, we use only one of the solutions
as a starting solution for further scalarizations. Algorithm 1 gives the pseudo-code
of the single direction TPLS. We denote by SLS1 and SLS2 the SLS algorithms to
minimize the first and the second single objectives, respectively. SLS� is the SLS
algorithm to minimize the scalarized problem.

Double strategy We denote as Double TPLS (D-TPLS) [19] the strategy that first
goes sequentially from one objective to the other one, as in the usual TPLS. Then,
another sequence of scalarizations is generated starting from the second objective



Improving the anytime behavior of two-phase local search 129

back to the first one. This is, in fact, a combination of 1to2 and 2to1, where half of the
scalarizations are defined sequentially from one objective to the other, and the other
half in the opposite direction. This approach tries to avoid the bias of a single starting
objective. To introduce more variability, in our D-TPLS implementation, the weights
used in the second TPLS pass are located in-between the weights used for the first
TPLS pass. D-TPLS still requires to define the number of weights, and, hence, the
computation time, in advance.

3 Regular anytime TPLS

The original strategy of TPLS, which is based on defining successive weight vectors
with minimal weight changes, generates very good approximations to the areas of the
Pareto front “covered” by the weight vectors [19, 21]. However, if TPLS is stopped
prematurely, it leaves areas of the Pareto front unexplored. In this section, we present
our first proposal to improve the anytime behavior of TPLS.

3.1 Regular anytime strategy

We have proposed a TPLS-like algorithm, called regular anytime TPLS (RA-TPLS),
in which the weight for each new scalarization is defined in the middle of the interval
of two previous consecutive weights [6]. This strategy provides a finer approximation
to the Pareto front as the number of scalarizations increases, ensuring a fair distribu-
tion of the computational effort along the Pareto front and gradually intensifying the
search. The set of weights is defined as a sequence of progressively finer “levels” of
2k−1 scalarizations (at level k) with maximally dispersed weights �k in the following
manner: �1 = {0.5}, �2 = {0.25, 0.75}, �3 = {0.125, 0.375, 0.625, 0.875}, and so on.
Successive levels intensify the exploration of the objective space, filling the gaps in
the Pareto front. The two initial solutions minimizing each objective could be seen
as level 0: �0 = {0, 1}. Once RA-TPLS completes one level, the computational effort
has been equally distributed in all directions. However, if the search stops before
exploring all scalarizations at a certain level, the search would explore some areas
of the Pareto front more thoroughly than others. In order to minimize this effect,
RA-TPLS considers the weights within one level in a random order.

In order to be an alternative to TPLS, RA-TPLS starts each new scalarization
from a solution obtained from a previous scalarization. In particular, the initial
solution of the new scalarization (using a new weight) is one of the two solutions that
were obtained using the two weight vectors closest to the new weight. The algorithm
computes the weighted sum scalar values of these two solutions according to the new
weight, and selects the one with the better value as the initial solution of the new
scalarization.

The implementation of RA-TPLS requires three main data structures: Li is the
set of pairs of weights used in previous scalarizations, where i determines the level
of the search; Sd is a set of potential initial solutions, each solution being associated
with the corresponding weight that was used to generate it; Archive is the archive of
non-dominated solutions.

Algorithm 2 describes RA-TPLS in detail. In the initialization phase, an initial
solution is obtained for each objective using appropriate single-objective algorithms,



130 J. Dubois-Lacoste et al.

Algorithm 2 RA-TPLS
1: s1 := SLS1()

2: s2 := SLS2()

3: Add s1, s2 to Archive
4: L0 := {(1, 0)}; Li := ∅ ∀i > 0
5: Sd := {(s1, 1), (s2, 0)}
6: i := 0
7: while not stopping criterion met do
8: (λsup, λinf) := extract randomly from Li

9: Li := Li \ (λsup, λinf)

10: λ := (λsup + λinf)/2
11: s := ChooseSeed(Sd, λ)

12: s′ := SLS�(s, λ)

13: Add s′ to Archive
14: Sd := Sd ∪ (s′, λ)

15: RemoveDominated(Sd)

16: Li+1 := Li+1 ∪ (λsup, λ) ∪ (λ, λinf)

17: if Li = ∅ then i := i + 1
18: end while
19: RemoveDominated(Archive)
20: Output: Archive

SLS1() and SLS2(). These new solutions and their corresponding weights, λ = 1 and
λ = 0, respectively, are used to initialize L0 and Sd. In the next phase, the while loop
is iterated until a stopping criterion is met. At each iteration, a pair of consecutive
weights (λsup, λinf) is subtracted randomly from Li and used to calculate the new
weight λ = (λsup + λinf)/2. Then, procedureChooseSeed uses this weight λ to choose
a solution from the set of initial solutions Sd. To do so, first ChooseSeed finds
the two non-dominated solutions that were obtained from scalarizations using the
weights closest to λ:

sinf = {
si | max

(si,λi)∈Sd

{λi : λi < λ}}

ssup = {
si | min

(si,λi)∈Sd

{λi : λi > λ}} .
(2)

Next, ChooseSeed calculates the scalar value of ssup and sinf according to the
new weight λ following (1), and returns the solution with the smaller scalar value.
This solution is the initial solution for SLS� , the SLS algorithm used to tackle the
scalarizations. This algorithm produces a new solution s′, which is added to both
the global Archive and (together with its corresponding weight) to the set of initial
solutions Sd, from which any dominated solutions are removed. Finally, the set of
weights for the next level Li+1 is extended with the new pairs (λsup, λ) and (λ, λinf).
This completes one iteration of the loop. If the current set of weights Li is empty,
a level of the search is complete, and the algorithm starts using pairs of weights
from the next level Li+1. In principle, this procedure may continue indefinitely,
although larger number of scalarizations will lead to diminishing improvements in
the approximation to the Pareto front.



Improving the anytime behavior of two-phase local search 131

3.2 Experimental analysis

In the original publication, we applied RA-TPLS to two bPFSPs [6]. In this paper, we
perform a more comprehensive study by repeating the experiments on a larger set of
instances for the bPFSPs and including results on the bTSP. The latter allows us to
show that the shape of the Pareto front plays a fundamental role in the performance
of the RA-TPLS strategy.

All algorithms evaluated in this paper were implemented in C++, compiled with
gcc 4.4, and the experiments were run on a single core of Intel Xeon E5410 CPUs,
running at 2.33 Ghz with 6MB of cache size under Cluster Rocks Linux version
4.2.1/CentOS 4.

3.2.1 Case study: bi-objective traveling salesman problem (bTSP)

Given a complete graph G = (V, E) with n = |V| nodes {v1, . . . , vn}, a set of edges
E, and a cost associated to each edge c(vi, v j), the goal in the single-objective TSP is
to find a Hamiltonian tour p = (p1, . . . , pn) that minimizes the total tour cost:

minimize f (p) = c
(
vpn , vp1

) +
n−1∑

i=1

c
(
vpi , vpi+1

)

The single objective TSP may be directly extended to a multi-objective formula-
tion by assigning a vector of costs to each edge, where each component corresponds
to the cost of each objective. The goal then becomes to find the set of Hamiltonian
tours that “minimizes” a vector of objective functions, where each objective is
defined as above.

Here we focus on the bi-objective TSP (bTSP). We assume that the preferences of
the decision maker are not known a priori. Hence, the goal is to find a set of feasible
solutions that “minimizes” the bTSP in the sense of Pareto optimality. The bTSP
is frequently used for testing algorithms and comparing their performance [9, 21].
Moreover, TPLS is a main component of the current state-of-the-art algorithm [17]
for the bTSP.

Isometric and anisometric bTSP instances We created 10 Euclidean bTSP instances
by generating for each instance two sets of 1,000 points with integer coordinates
uniformly distributed in a square of side-length 105. We call these instances isometric
because both distance matrices have similar range.

In addition, we generated other bTSP instances, where the first distance matrix
(corresponding to the first objective) is Euclidean whereas the second matrix (corre-
sponding to the second objective) is randomly generated with distance values in the
range [1, maxdist], with maxdist ∈ {5, 10, 25, 100}. Given the different range of both
distance matrices, we call these instances anisometric. We generated 10 instances of
1,000 nodes for each value of maxdist, that is, 40 anisometric bTSP instances in total.

Experimental setup for the bTSP The underlying single-objective algorithm for the
TSP is an iterated local search (ILS) algorithm based on a first-improvement 3-opt
algorithm [13].1 In order to speed up the algorithm, we compute a new distance

1This algorithm is available online at http://www.sls-book.net/

http://www.sls-book.net/


132 J. Dubois-Lacoste et al.

matrix for each scalarization and we recompute the candidate sets used by the speed-
up techniques of this ILS algorithm. For each scalarization, ILS runs for 1,000 ILS
iterations (equal to the number of nodes in the instance). With our implementation
and computing environment, 1,000 iterations require between 0.5 and 1 CPU seconds
depending on the instances. Each of the two initial solutions is generated by running
ILS for 2,000 iterations. Finally, each run of the multi-objective algorithms performs
30 scalarizations after generating the two initial solutions. The normalization of the
objectives, necessary when solving a scalarization or calculating a weighted sum
of the objectives, is performed by normalizing the two distance matrices to the
same range.

We measure the quality of the results by means of the hypervolume unary
measure [10, 25]. In the bi-objective space, the hypervolume measures the area of
the objective space that is weakly dominated by the image of the solutions in a
non-dominated set. This area is bounded by a reference point that is worse in all
objectives than all points in all non-dominated sets measured. The larger is this
area, the better is a non-dominated set. To compute the hypervolume, the objective
values of all non-dominated solutions are normalized to the range [1, 2], the values
corresponding to the limits of the interval being the minimum and the maximum
values ever found for each objective. We use (2.1, 2.1) as the reference point for
computing the hypervolume.

Experimental evaluation of RA-TPLS on bTSP instances We first study how the
different TPLS strategies satisfy the anytime property by examining the quality of the
Pareto front as the number of scalarizations increases. For each TPLS strategy, we
plot the hypervolume value after each scalarization averaged across 15 independent
runs. Figure 1 shows four exemplary plots comparing RA-TPLS, 1to2 and D-TPLS
on two isometric bTSP instances, and two anisometric bTSP instances. We do not
show the strategy 2to1 for isometric instances because it performs almost identical
to 1to2 w.r.t. the hypervolume; however, for anisometric instances we include 2to1
due to its rather different behavior when compared to 1to2. These plots are repre-
sentative of the general results on other instances; the complete results are given as
supplementary material [7].

For isometric bTSP instances, according to the top plots in Fig. 1, the three
strategies reach similar final quality. However, there are strong differences in the
development of the hypervolume during the execution of the algorithms. The
hypervolume of the Pareto front approximations generated by RA-TPLS shows a
quick initial increase, and for few scalarizations a much higher value than D-TPLS
and 1to2. Hence, if the algorithms are interrupted before completing the pre-defined
number of scalarizations, RA-TPLS would clearly produce the best results.

For anisometric bTSP instances, where the first objective corresponds to a Euclid-
ean distance matrix and the second objective corresponds to a randomly generated
matrix with distance values in the range [1, maxdist], the bottom plots in Fig. 1 show
a clear difference between strategies 1to2 and 2to1. Moreover, the smaller the value
of maxdist, the larger is the difference. The value of maxdist also affects the anytime
behavior and final performance of RA-TPLS. For small maxdist, both 1to2 and D-
TPLS seem to outperform RA-TPLS at various times. This can be explained as
follows. Smaller values of maxdist result in a very large number of optimal solutions
for the second objective. In such instances, the first scalarization of 2to1, which



Improving the anytime behavior of two-phase local search 133

0 5 10 15 20 25 30

0.
5

0.
7

0.
9

1.
1

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
D−TPLS
RA−TPLS

(max dist = 5)

0 5 10 15 20 25 30

0.
9

1.
0

1.
1

1.
2

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
2to1
D−TPLS
RA−TPLS

0 5 10 15 20 25 30

0.
5

0.
7

0.
9

1.
1

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
D−TPLS
RA−TPLS

(max dist = 100)

0 5 10 15 20 25 30

0.
7

0.
8

0.
9

1.
0

1.
1

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
2to1
D−TPLS
RA−TPLS

Fig. 1 Development of the hypervolume over the number of scalarizations for 1to2, D-TPLS and
RA-TPLS for two isometric (top plots) and two anisometric (bottom plots) bTSP instances. For
anisometric instances we also plot the results of 2to1, since they differ strongly from 1to2. For
isometric instances, there is almost no difference between 1to2 and 2to1. Anisometric instances with
intermediate values of maxdist (equal to 10 or 25) show a compromise trend between the two extreme
values 5 and 100 (see supplementary material [7])

uses a nonzero weight for the first objective and a large weight for the second,
generates a solution with a value of the second objective being still optimal and
a good value of the first objective. This translates into a huge initial improvement
of the hypervolume. The underlying reason is that the initial solution minimizing
the second objective is weakly dominated by the solution returned for solving the
first scalarization. Several subsequent scalarizations of 2to1 improve only slightly the
value of the first objective, while keeping the optimal value of the second objective;
therefore, the hypervolume improves very slowly. Only when the weight for the first
objective grows large enough, a solution with a non-optimal value of the second
objective is chosen, and the hypervolume starts improving in larger steps. On the
other hand, when starting from the first objective in 1to2, every scalarization finds
non-dominated solutions closer to each other, and the hypervolume grows initially
slower than what is observed for the first huge step in 2to1. However, as soon
as the weight of the second objective is large enough that only optimal values
of the second objective solutions are accepted, the hypervolume quickly reaches
its maximum. Finally, D-TPLS obtains better results because it progresses faster
towards the second objective. All these behaviors show that equally distributing the
computational effort in all directions does not pay off in these instances. It leads to a
waste of scalarizations when being close to the optimum of the second objective, and



134 J. Dubois-Lacoste et al.

very slow progress when being close to the optimum of the first objective. This effect
will be even stronger in the case of the bPFSP.

3.2.2 Case study: bi-objective permutation f low-shop scheduling problem

The flow-shop scheduling problem [14] models a very common type of environment
in industry and it is therefore one of the most widely studied scheduling problems.
In the flow-shop scheduling problem, a set of n jobs (J1, . . . , Jn) is to be processed
on m machines (M1, . . . , Mm). All jobs go through the machines in the same order,
i.e., all jobs have to be processed first on machine M1, then on machine M2, and
so on until machine Mm. A typical additional constraint is to forbid job passing,
and, as a result, the processing sequence of the jobs is the same on all machines.
Thus, any permutation of the jobs is a candidate solution. This formulation is called
permutation flow-shop scheduling problem (PFSP).

In the PFSP, all processing times pij for a job Ji on a machine Mj are fixed, known
in advance, and non-negative. Furthermore, we assume that all jobs are available
at time 0. Ci denotes the completion time of a job Ji on the last machine Mm. The
makespan (Cmax) is the completion time of the last job in the permutation. The PFSP
with makespan minimization for more than two machines is NP-hard in the strong
sense [11].

The other objectives studied in this paper are the minimization of the sum of
completion times and the minimization of the total tardiness. The sum of completion
times is given by

∑n
i=1 Ci. The PFSP with sum of completion times minimization is

strongly NP-hard already for two machines [11]. Each job may have an additional
associated due date di. The tardiness of a job Ji is defined as Ti = max{Ci − di, 0}, and
the total tardiness is given by

∑n
i=1 Ti. The PFSP with total tardiness minimization is

strongly NP-hard even for a single machine [4].
As a case study, in this paper we focus on two bPFSP variants:

1. PFSP-(Cmax,
∑

Ci) denotes the minimization of the makespan and the sum of
completion times, and

2. PFSP-(Cmax,
∑

Ti) denotes the minimization of the makespan and the total
tardiness.

Experimental setup for the bPFSP Recently, we developed a new, hybrid state-of-
the-art SLS algorithm for these two bPFSPs [5, 8]. A crucial component in this hybrid
algorithm is TPLS using effective iterated greedy (IG) algorithms [23] adapted to
each objective and combinations thereof. We use here the same IG algorithms to
implement the various TPLS variants. Concretely, each TPLS algorithm generates
two initial solutions for each objective by running 1,000 iterations of the correspond-
ing IG algorithm. Then, it performs 30 scalarizations, each scalarization running 500
iterations of the IG corresponding to the combination of objectives.

We generate 10 benchmark instances with n = 50 and m = 20 (50 × 20), and 10
instances with n = 100 and m = 20 (100 × 20), following the procedure described
by Minella et al. [18]. These instances are available as supplementary material [7].
Given the large discrepancies in the range of the various objectives, all objectives are
dynamically normalized using the maximum and minimum values found during each
run for each objective. We compute and plot the evolution of the hypervolume as
done earlier for the bTSP.



Improving the anytime behavior of two-phase local search 135

PFSP- (Cmax , Σ Σ

ΣΣ

Ci) 50x20

0 5 10 15 20 25 30

0.
6

0.
7

0.
8

0.
9

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
2to1
D−TPLS
RA−TPLS

PFSP- (Cmax , T i) 50x20

0 5 10 15 20 25 30

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
2to1
D−TPLS
RA−TPLS

PFSP- (Cmax , Ci) 100x20

0 5 10 15 20 25 30

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
2to1
D−TPLS
RA−TPLS

PFSP- (Cmax , T i) 100x20

0 5 10 15 20 25 30

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of scalarizations

H
yp

er
vo

lu
m

e

1to2
2to1
D−TPLS
RA−TPLS

Fig. 2 Development of the average hypervolume over the number of scalarizations for 1to2, 2to1,
D-TPLS, and RA-TPLS for bPFSP. Results are given for one instance of size 50 × 20 (left column)
and one instance of size 100 × 20 (right column). The problems are PFSP-(Cmax,

∑
Ci) (top plots)

and PFSP-(Cmax,
∑

Ti) (bottom plots)

Experimental evaluation of RA-TPLS on bPFSP instances We examine the quality
of the result of each TPLS variant, 1to2, 2to1, D-TPLS, and RA-TPLS during the run
of the algorithm. Figure 2 shows the development of the hypervolume of each TPLS
variant, averaged across 15 independent runs. The plots show that the hypervolume
value of 1to2, 2to1, and D-TPLS is rather poor up to the point that the sequence of
weights reaches the other objective. On the other hand, RA-TPLS quickly reaches
a high hypervolume in very few scalarizations. In terms of final quality, however,
D-TPLS clearly performs better than RA-TPLS as soon as the former reaches half
of its scalarizations and starts performing scalarizations back from the second to the
first one. This fact and the differences between 1to2 and 2to1 strongly indicate that,
for the bPFSPs considered here, the starting objective plays a significant role on both
the anytime behavior and the final solution quality.

4 Adaptive TPLS

The TPLS variants discussed so far generate a sequence of weights that is determined
by the number of scalarizations, and aims to allocate the same computational effort
to all regions of the Pareto front. This strategy, however, may not be adequate when
the underlying single-objective algorithm shows a different performance for each



136 J. Dubois-Lacoste et al.

objective, and the shape of the Pareto front is not regular in all search directions.
Recently, we proposed an adaptive TPLS variant that dynamically generates weights
in order to adapt the search to the shape of the Pareto front [6]. In this section, we
explain this adaptive TPLS variant and discuss possible improvements that have not
been considered before.

4.1 Adaptive anytime strategy

Our adaptive TPLS [6] is inspired by the dichotomic scheme proposed by Aneja and
Nair [1] for exact algorithms and recently used for the approximate case by Lust
and Teghem [17]. The dichotomic scheme does not define the weights in advance
but determines them in dependence of the solutions already found. More formally,
given a pair of solutions (s1, s2), the new weight λ is perpendicular to the segment
(henceforth denoted by an overline) defined by s1 and s2 in the objective space, that
is, assuming the range of the objectives are normalized or equal, we have

λ = f2(s1) − f2(s2)

f2(s1) − f2(s2) + f1(s2) − f1(s1)
. (3)

The dichotomic scheme used in these two earlier papers has a natural stopping
criterion, and it progresses recursively depth-first. As a result, if stopped early, it
would assign an uneven computational effort along the front, leading to a poor
distribution of solutions and, hence, to poor anytime behavior. Moreover, Lust and
Teghem [17] apply the dichotomic scheme as a Restart strategy that starts each
scalarization from a newly generated initial solution. In the exact case, the algorithm
of Aneja and Nair [1] is deterministic, and, hence, applying the same weight results in
the same output. Also, the concept of seeding a scalarization is not considered. Our
extension of the dichotomic strategy to the TPLS framework makes effective use of
solutions found by previous scalarizations to seed later scalarizations and satisfies the
anytime property [6]. We describe this adaptive TPLS strategy as Algorithm 3.

The main data structure is a set S of pairs of solutions found in previous
scalarizations. This set is initialized with the solutions found by optimizing each single
objective using SLS1() and SLS2(). At each iteration, the algorithm selects the pair
of solutions (ssup, sinf) ∈ S whose images define the “largest gap” in the objective
space, using a given norm ‖(f(s), f(s′)‖ to compare every pair of solutions. The idea
is to focus the search on the largest gap in the Pareto front in order to obtain a well-
spread set of non-dominated solutions. This is different from the original dichotomic
scheme, which explores segments recursively. We originally proposed to use as norm
the Euclidean distance in the normalized objective space [6], and we use this norm in
the following. However, we propose a new alternative in Section 6. After choosing
the pair of solutions (ssup, sinf) according to the norm, the algorithm calculates a new
weight λ perpendicular to the segment f(ssup)f(sinf) in the objective space, following
(3). Next, the underlying single-objective SLS algorithm, SLS� , is run using the
weight λ either once, starting from either ssup and sinf, or twice, starting one time
from solution ssup and one time from solution sinf. Which of these two possibilities is
chosen, depends on the parameter one_seed_case.

In the last step of an iteration, procedureUpdate updates the set of initial solutions
S using the new solutions found. If s′ is a new solution, any single solution in S
dominated by s′ is replaced by s′, and any pair of solutions (weakly) dominated by



Improving the anytime behavior of two-phase local search 137

Algorithm 3 Adaptive “anytime” TPLS strategy
1: s1 := SLS1()

2: s2 := SLS2()

3: Add s1, s2 to Archive
4: S := {(s1, s2)}
5: while not stopping criteria met do
6: (ssup, sinf) := arg max(s,s′)∈S ‖(f(s), f(s′)‖
7: Calculate λ perpendicular to f(ssup)f(sinf) following (3)
8: if one_seed_case then
9: s := ChooseRandomly(ssup, sinf)

10: s′ := SLS�(s, λ)

11: Add s′ to Archive
12: Update(S, s′)
13: else
14: s′

sup := SLS�(ssup, λ)

15: s′
inf := SLS�(sinf, λ)

16: Add s′
sup and s′

inf to Archive
17: Update(S, s′

sup)

18: Update(S, s′
inf)

19: end if
20: end while
21: RemoveDominated(Archive)
22: Output: Archive

s′ is removed. The dichotomic scheme [1, 17] only accepts solutions for inclusion
in S if they lie within the triangle defined in the objective space by the solutions
ssup and sinf, and their local ideal point, which is the point ( f1(ssup), f2(sinf)) (see
Fig. 3). Heuristic algorithms may, however, generate solutions that are in the gray
area outside the triangle. Solutions outside the gray area are either dominated
or not supported (that is, non-dominated but not optimal for any scalarization);
therefore, our adaptive strategy accepts all solutions in the gray area for inclusion
in S. If a solution s′ is accepted for inclusion in S, then the pair (s1, s2) ∈ S with

Fig. 3 Only solutions in the
gray area are accepted as
initial solutions for further
scalarizations (see the text for
details)



138 J. Dubois-Lacoste et al.

Fig. 4 A single iteration of the Adaptive “Anytime” TPLS strategy with two initial solutions (AN-
TPLS-2seed). On the left the state before the iteration and on the right after S has been updated. The
next segment that will be considered is (s′

sup, s′
inf) because of its larger distance

f1(s1) < f1(s′) < f1(s2) is removed, and two new pairs (s1, s′) and (s′, s2) are added
to S. Since each iteration produces at most two new solutions (s′

sup and s′
inf, or simply

s′
1 in the one-seed variant), a maximum of three new pairs are added to S every

iteration. Figure 4 shows an example of the update of S after one iteration of the
adaptive algorithm. We call the algorithm that uses two initial solutions AN-TPLS-

0 5 10 15 20 25 30

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

(max dist = 5)

0 5 10 15 20 25 30

1.
00

1.
05

1.
10

1.
15

1.
2

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

0 5 10 15 20 25 30

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

(max dist = 100)

0 5 10 15 20 25 30

0.
85

0.
95

1.
05

1.
15

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

Fig. 5 Development of the hypervolume over the number of scalarizations for D-TPLS, RA-
TPLS, AN-TPLS-2seed and AN-TPLS-1seed for two isometric TSP instances and two anisometric
TSP instances. Anisometric instances with intermediate value of maxdist show a compromise trend
between the two extremes shown here (see supplementary material [7])



Improving the anytime behavior of two-phase local search 139

2seed in what follows (for adaptive normal TPLS), and we call AN-TPLS-1seed its
variant using only one initial solution (in the outline of Algorithm 3, this corresponds
to one_seed_case=true).

4.2 Experimental evaluation of adaptive TPLS on bTSP instances

To evaluate the performance of AN-TPLS-2seed and its variant AN-TPLS-1seed,
we use the same experimental setup described in Section 3. We present the average
hypervolume evolution of AN-TPLS-2seed and AN-TPLS-1seed in Fig. 5, comparing
it to D-TPLS and RA-TPLS.

For the two isometric instances, AN-TPLS-1seed appears to be better than AN-
TPLS-2seed. By checking carefully the output, we noticed that the underlying ILS
algorithm usually finds two solutions whose images are very close to each other in
the objective space or possibly even the same. Hence, using two initial solutions gives
a negligible improvement with respect to the hypervolume in comparison to using a
single one.

For the two anisometric instances, AN-TPLS-1seed is again the best strategy.
Interestingly, one can see that the higher the value of maxdist, the closer is the
performance of RA-TPLS to AN-TPLS-1seed. This is due to the fact that by

PFSP- (Cmax , Σ

Σ

Σ

Σ

Ci) 50x20

0 5 10 15 20 25 30

0.
6

0.
7

0.
8

0.
9

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

PFSP- (Cmax ,
 

T i) 50x20

0 5 10 15 20 25 30

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

PFSP- (Cmax , Ci) 100x20

0 5 10 15 20 25 30

0.
75

0.
85

0.
95

1.
05

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

PFSP- (Cmax ,
 

T i) 100x20

0 5 10 15 20 25 30

0.
80

0.
90

1.
00

1.
10

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
RA−TPLS
AN−TPLS−1seed
AN−TPLS−2seed

Fig. 6 Development of the hypervolume over the number of scalarizations for D-TPLS, RA-TPLS,
AN-TPLS-2seed and AN-TPLS-1seed for bPFSP. Results are given for one instance of size 50
× 20 (left column) and one instance of size 100 × 20 (right column). The problems are PFSP-
(Cmax,

∑
Ci) (top plots) and PFSP-(Cmax,

∑
Ti) (bottom plots)



140 J. Dubois-Lacoste et al.

increasing maxdist, instances are “smoother” in the sense they resemble more the
isometric ones and, therefore, there is less need to adapt the weights to the particular
shape of the Pareto front.

4.3 Experimental evaluation of adaptive TPLS on bPFSP instances

To test on a problem that has a front resulting from objectives with different
properties, we use again the bPFSPs that were already described in Section 3.2.2.
Results are presented in Fig. 6. In contrast with the results on the bTSP, AN-TPLS-
2seed clearly outperforms RA-TPLS and it is also significantly better than AN-
TPLS-1seed. Still, D-TPLS shows on several instances better final performance than
AN-TPLS-2seed according to the hypervolume indicator.

4.4 Further analysis of AN-TPLS-1seed and AN-TPLS-2seed

The results of the evaluation of Adaptive TPLS show that AN-TPLS-1seed is the
best strategy for bTSPs while AN-TPLS-2seed is the best strategy for bPFSPs. In
this section, we illustrate the fact that the different behavior of the underlying single-
objective algorithms for each problem leads to such results. To do so, we examine
in detail the scalarizations performed by AN-TPLS-2seed for the first three weights
and each of the two seeds. We perform 15 independent runs of each scalarization,
and we plot the objective vectors of the solutions obtained. Figure 7 presents the
results for an isometric bTSP instance. The left plot shows the objective vectors of
the solutions obtained with the first weight, using each of the two initial solutions as
seed. The line indicates the direction of the search (the weight vector). The objective
vector obtained by each of the 15 independent runs is represented by the same
symbol as the seed used to initialize the corresponding run. In this case, all points
overlap, that is, the resulting objective vectors fall into a tiny area of the objective
space, independently of which initial solution was used as seed. The middle and right
plots of Fig. 7 show the results of the same experiment for the second and the third
weight, respectively. Hence, there is no significant advantage in using two different

1e+07 2e+07 3e+07 4e+07 5e+07

1e
+

07
2e

+
07

3e
+

07
4e

+
07

5e
+

07

1e+07 2e+07 3e+07 4e+07 5e+07

1e
+

07
2e

+
07

3e
+

07
4e

+
07

5e
+

07

1e+07 2e+07 3e+07 4e+07 5e+07

1e
+

07
2e

+
07

3e
+

07
4e

+
07

5e
+

07

Fig. 7 Distribution of objective vectors in the objective space after the first (left plot), the second
(middle plot) and third (right plot) weights, for an isometric bTSP instance. The two vectors plotted
with filled, black symbols (circle or triangle) are the initial ones, used to define the weight (the
direction is represented with a line) and used as seeds. The symbol of each point denotes the seed
from which they have been obtained



Improving the anytime behavior of two-phase local search 141

3900 3950 4000 4050 4100 4150

13
00

00
13

20
00

13
40

00
13

60
00

3900 3950 4000 4050 4100 4150
13

00
00

13
20

00
13

40
00

13
60

00
3900 3950 4000 4050 4100 4150

13
00

00
13

20
00

13
40

00
13

60
00

Fig. 8 Distribution of objective vectors in the objective space after the first (left plot), the second
(middle plot) and third (right plot) weights, for a PFSP-(Cmax,

∑
Ci) instance. The two vectors

plotted with filled, black symbols (circle or triangle) are the initial ones, used to define the weight
(the direction is represented with a line) and used as seeds. The symbol of each point denotes the
seed from which they have been obtained

initial solutions with the same weight with respect to increasing the hypervolume. We
observed the same behavior on the anisometric bTSP instances.

We repeat the experiment for the bPFSP (using IG as the underlying single-
objective algorithm) and present the results in Fig. 8. The situation is very different
now. As the plots show, there is a larger variability on the location of the resulting
objective vectors, even for those solutions obtained from the same seed. More
importantly, the vectors resulting from the two different seeds are located in two
clearly distinct clusters, despite all being solutions for the same scalarized problem.
Hence, performing a scalarization from two different seeds is advantageous in the
case of the bPFSP in order to obtain a better distribution of solutions along the
Pareto front and, hence, a higher value of the hypervolume indicator.

This insight might be used to define when it is better to use one or two initial so-
lutions. A simple way to choose automatically AN-TPLS-1seed or AN-TPLS-2seed
would be to use AN-TPLS-2seed for the first weight, and consider the Euclidean
distance between the objective vectors of the two solutions obtained. If the distance
is large enough, it might be advantageous to continue with AN-TPLS-2seed; while
if points are very close, it might be better to switch to AN-TPLS-1seed. Another
possibility to choose the best strategy would be to launch both strategies, allowing
two scalarizations for each. The search would then continue with the strategy that
leads to the larger hypervolume. Evaluating these ideas is beyond the scope of this
paper, and, hence, we let this question open for future investigation.

4.5 Adaptive focus TPLS

In AN-TPLS-2seed, when two adjacent segments in S are almost parallel, two
scalarizations are solved using the same initial solution (the solution shared by the
two segments) and very similar weights (because the two vectors perpendicular to
the segments will again be almost parallel). A careful analysis of AN-TPLS-2seed
showed that such situation actually occurs, and may result in negligible progress of
the search. In order to avoid this problem, one can focus the search direction of each
scalarization towards the center of each segment and further improve the results of
AN-TPLS-2seed. We call this variant adaptive focus TPLS (AF-TPLS).



142 J. Dubois-Lacoste et al.

Fig. 9 AF-TPLS strategy: the
two weights are “focused” to
the center of the segment

Given a segment f(s1)f(s2), with f1(s1) < f1(s2), AF-TPLS generates two weights
λ1 and λ2 as

λ1 = λ − θ · λ and λ2 = λ + θ(1 − λ), (4)

where λ is the weight perpendicular to the segment computed by (3), and θ is a
parameter that modifies λ towards the center of the segment (see Fig. 9).

PFSP- (Cmax , Σ Σ

Σ Σ

Ci) 50x20

0 5 10 15 20 25 30

0.
6

0.
7

0.
8

0.
9

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
AN−TPLS−2seed
AF−025−TPLS

PFSP- (Cmax ,
 

T i) 50x20

0 5 10 15 20 25 30

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
AN−TPLS−2seed
AF−025−TPLS

PFSP- (Cmax , Ci) 100x20

0 5 10 15 20 25 30

0.
75

0.
85

0.
95

1.
05

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
AN−TPLS−2seed
AF−025−TPLS

PFSP- (Cmax ,
 

T i) 100x20

0 5 10 15 20 25 30

0.
80

0.
90

1.
00

1.
10

Number of scalarizations

H
yp

er
vo

lu
m

e

D−TPLS
AN−TPLS−2seed
AF−025−TPLS

Fig. 10 Development of the hypervolume over the number of scalarizations for D-TPLS, AN-TPLS-
2seed and AF-TPLS. Results are given for one instance of size 50 × 20 (left column) and one
instance of size 100 × 220 (right column). The problems are PFSP-(Cmax,

∑
Ci) (top plots) and

PFSP-(Cmax,
∑

Ti) (bottom plots)



Improving the anytime behavior of two-phase local search 143

These two new weights replace the weight λ in Algorithm 3, that is, the run of
the SLS algorithm that uses s1 as initial solution solves a scalarization according to
weight λ1, while the run starting from s2 uses the weight λ2. A value of θ = 0 would
reproduce the AN-TPLS-2seed strategy.

4.6 Experimental evaluation of adaptive focus on bPFSP instances

We test AF-TPLS on the bPFSP using different values of θ = {0.05, 0.15, 0.25, 0.5}.
Plots that present a comparison of AF-TPLS using these values are provided as
supplementary material [7]. The values 0.25 and 0.15 show a similar performance,
indicating a relative robustness of AF-TPLS with respect to the setting of θ . For the
following comparisons, we consider only AF-TPLS using 0.25. In Fig. 10, we present a
comparison of AF-TPLS, AN-TPLS-2seed and D-TPLS. AF-TPLS is at least as good
as AN-TPLS-2seed, and it is often able to outperform it. Furthermore, AF-TPLS
reaches a final quality often equal to or better than the one reached by D-TPLS. The
instance 100 × 20_1 of problem PFSP-(Cmax,

∑
Ti) (bottom-right in Fig. 10) is

actually the only instance of the 20 we tested where D-TPLS performs clearly better
than AF-TPLS.

5 Statistical analysis

We have examined so far the results of the different approaches by comparing their
performance in each instance. In order to assess the performance over the whole
set of instances, we perform the following statistical analysis on each problem. The
analysis is based on the Friedman test for analyzing non-parametric unreplicated
complete block designs, and its associated post-test for multiple comparisons [3].
First, we calculate the mean hypervolume of the 15 runs of each algorithm for
each instance. Then, we perform the Friedman test using the ten instances as the
blocking factor, and the different strategies as the treatment factor. In most cases,
the Friedman test rejects the null hypothesis with a p-value lower than 0.05. Then,
we rank the strategies per instance according to the mean hypervolume, the lower
rank the better. From this ranking we calculate the difference (�R) between the
sum of ranks of each strategy and the best ranked one (with the lowest sum of
ranks). Finally, we calculate the minimum difference between the sum of ranks of two
strategies that is statistically significant (�Rα), given a significance level of α = 0.05.
We indicate in bold face the best strategy (the one having the lowest sum of ranks)
and those that are not significantly different from the best one.

5.1 Results on the bTSP

We perform the statistical tests after the algorithms have performed 10, 20 and
30 scalarizations. We compare the strategies 1to2, D-TPLS, RA-TPLS, AN-TPLS-
2seed and AN-TPLS-1seed. We do not consider AF-TPLS since it leads to poor
performance for bTSP instances (see the supplementary material [7]).

Results are given in Table 1 for isometric instances and in Table 2 for anisometric
ones. When the value of the critical difference (�Rα) is equal to 0, the strategies
have the same ranking over all instances. The numbers in parenthesis are the



144 J. Dubois-Lacoste et al.

Table 1 Statistical analysis for the isometric bTSP

Nscalar �Rα Strategies (�R)

10 0 AN-TPLS-1seed, RA-TPLS (10), AN-TPLS-2seed (20), D-TPLS (30), 1to2(40)
20 0 AN-TPLS-1seed, RA-TPLS (10), D-TPLS (20), AN-TPLS-2seed (30), 1to2(40)
30 0 1to2, RA-TPLS (10), AN-TPLS-1seed (20), D-TPLS (30), AN-TPLS-2seed (40)

For each number of scalarizations, strategies are ordered according to the rank obtained. The
numbers in parenthesis are the difference of ranks relative to the best strategy. The strategy that
is significantly better than the other ones is indicated in bold face. For isometric bTSP the ordering
of all strategies is the same on all instances and, hence, �Rα = 0

difference of ranks relative to the best strategy. For isometric instances, AN-TPLS-
1seed is the best strategy before completion. However, when algorithms run until
completion, 1to2 is significantly better than the other ones. For anisometric instances,
we performed independent tests for each value of maxdist and we found that the
results are consistent across the different values of maxdist. AN-TPLS-1seed is always
significantly better than all the other strategies. Hence, it is the strategy that should
be used for anisometric instances, no matter the value of maxdist.

5.2 Results on the bPFSPs

For the bPFSP, we perform the same procedure separately for each combination
of objectives, each instance size 50 × 20 and 100 × 20, and we measure the
hypervolume after 10, 20 and 30 scalarizations. We compared D-TPLS, RA-TPLS,
AN-TPLS-2seed, AN-TPLS-1seed and AF-TPLS (with θ = 0.25). The results are
given in Table 3.

Table 2 Statistical analysis for the anisometric bTSP

Nscalar �Rα Strategies (�R)

maxdist = 5
10 3.31 AN-TPLS-1seed, AN-TPLS-2seed (14), 1to2(16), D-TPLS (30), RA-TPLS (40)
20 2.03 AN-TPLS-1seed, AN-TPLS-2seed (10), 1to2(20), RA-TPLS (31), D-TPLS (39),
30 3.31 AN-TPLS-1seed, AN-TPLS-2seed (10), 1to2(24), RA-TPLS (26), D-TPLS (40)

maxdist = 10
10 0 AN-TPLS-1seed, D-TPLS (10), AN-TPLS-2seed (20), RA-TPLS (30), 1to2(40)
20 2.03 AN-TPLS-1seed, AN-TPLS-2seed (11), 1to2(19), RA-TPLS (30), D-TPLS (40)
30 0 AN-TPLS-1seed, AN-TPLS-2seed (10), 1to2(20), RA-TPLS (30), D-TPLS (40)

maxdist = 25
10 0 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (20), D-TPLS (30), 1to2(40)
20 3.31 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (24), D-TPLS (26), 1to2(40)
30 4.11 AN-TPLS-1seed, AN-TPLS-2seed (14), 1to2(17), RA-TPLS (29), D-TPLS (40)

maxdist = 100
10 0 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (30), D-TPLS (20), 1to2(40)
20 3.31 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (24), D-TPLS (26), 1to2(40)
30 4.11 AN-TPLS-1seed, AN-TPLS-2seed (14), 1to2(17), RA-TPLS (29), D-TPLS (40)

For each number of scalarizations, strategies are ordered according to the rank obtained. The
numbers in parenthesis are the difference of ranks relative to the best strategy. The strategy that
is significantly better than the other ones is indicated in bold face



Improving the anytime behavior of two-phase local search 145

Table 3 Statistical analysis for the bPFSP

Nscalar �Rα Strategies (�R)

(Cmax,
∑

Ci) 50 × 20
10 5.41 AF-TPLS, AN-TPLS-2seed (6), AN-TPLS-1seed (12), RA-TPLS (26), D-TPLS (36)
20 7.65 AN-TPLS-2seed, AF-TPLS (2), AN-TPLS-1seed (20), D-TPLS (21), RA-TPLS (32)
30 9.63 AN-TPLS-2seed, AF-TPLS (3), D-TPLS (4), AN-TPLS-1seed (13), RA-TPLS (30)

(Cmax,
∑

Ci) 100 × 20
10 6.51 AF-TPLS, AN-TPLS-2seed (4), AN-TPLS-1seed (5), RA-TPLS (23), D-TPLS (33)
20 9.91 AF-TPLS, AN-TPLS-2seed (2), AN-TPLS-1seed (11), D-TPLS (18), RA-TPLS (29)
30 9.44 D-TPLS, AF-TPLS (8), AN-TPLS-2seed (16), AN-TPLS-1seed (27), RA-TPLS (29)

(Cmax,
∑

Ti) 50 × 20
10 3.88 AF-TPLS, AN-TPLS-2seed (5), AN-TPLS-1seed (16), RA-TPLS (27), D-TPLS (37)
20 5.36 AF-TPLS, AN-TPLS-2seed (13), D-TPLS (23), AN-TPLS-1seed (24), RA-TPLS (40)
30 5.76 AF-TPLS, D-TPLS (1), AN-TPLS-2seed (11), AN-TPLS-1seed (25), RA-TPLS (33)

(Cmax,
∑

Ti) 100 × 20
10 4.97 AF-TPLS, AN-TPLS-2seed (14), AN-TPLS-1seed (14), RA-TPLS (28), D-TPLS (39)
20 10.36 AF-TPLS, AN-TPLS-2seed (13), D-TPLS (19), AN-TPLS-1seed (22), RA-TPLS (31)
30 8.42 D-TPLS, AF-TPLS (2), AN-TPLS-2seed (21), RA-TPLS (23), AN-TPLS-1seed (29)

For each number of scalarizations, strategies are ordered according to the rank obtained. The
numbers in parenthesis are the difference of ranks relative to the best strategy. Strategies that are
not significantly different to the best one are indicated in bold face. See the text for details

For a low number of scalarizations, the adaptive strategies (AN-TPLS-2seed and
AF-TPLS) are always superior to the classical TPLS strategies. Moreover, AF-TPLS
is never significantly worse than D-TPLS, when the latter runs until completion (30
scalarizations), while the opposite is true two times. In conclusion, AF-TPLS would
be the strategy of choice for bPFSP problems.

6 Optimistic hypervolume improvement as selection criterion

The main idea of the adaptive anytime strategies is to focus the search on the most
promising region of the objective space for improving the quality of the Pareto front
approximation. In this sense, the algorithm aims at filling the “largest gaps” in the
Pareto front approximation. In order to measure the “size of the gap”, we use a
norm as described in line 6 of Algorithm 3 (Section 4), where the pair of solutions
that maximizes it are selected as seeds for the next scalarization.

For all experiments presented so far, we have used as norm the Euclidean distance
on the normalized objective space. Although this distance leads to a good “visual”
distribution of solutions, it may not lead to the selection of the seeds with the
maximum potential of improving quality. A measure of the quality of the current
Pareto front approximation is the hypervolume, and therefore, we could select the
pair of seeds that may lead to the largest improvement of the hypervolume. Assuming
that the new solution found is within the rectangle defined in the objective space by
the two seeds, the maximum improvement in terms of hypervolume is proportional
to the area of this rectangle. Hence, using normalized objective values, we compute
this norm as follows:

‖(s, s′)‖HV = |(( f1(s) − f1(s′)) · (( f2(s) − f2(s′))| (5)



146 J. Dubois-Lacoste et al.

0 5 10 15 20 25 30

1.
00

1.
05

1.
10

Number of scalarizations

H
yp

er
vo

lu
m

e

AN−TPLS−1seed
AN−TPLS−1seed−HV

PFSP- (Cmax ,Σ ΣCi) 50x20

0 5 10 15 20 25 30

0.
65

0.
75

0.
85

0.
95

Number of scalarizations

H
yp

er
vo

lu
m

e

AF−025−TPLS
AF−025−TPLS−HV

(max dist = 5)

0 5 10 15 20 25 30

1.
15

1.
17

1.
19

Number of scalarizations

H
yp

er
vo

lu
m

e

AN−TPLS−1seed
AN−TPLS−1seed−HV

PFSP- (Cmax ,
 

T i) 50x20

0 5 10 15 20 25 30

0.
70

0.
80

0.
90

Number of scalarizations

H
yp

er
vo

lu
m

e

AF−025−TPLS
AF−025−TPLS−HV

Fig. 11 Development of the hypervolume over the number of scalarizations for AN-TPLS-1seed
using Euclidean distance and ‖(s, s′)‖HV for one isometric TSP instance (top-left), one anisometric
TSP instance (top-right), and one instance of bPFSP with the two different combinations of objectives

This optimistic hypervolume improvement is different from measuring the contri-
bution to the hypervolume of each solution for the purposes of selecting or discarding
some solutions [2, 15].

We compare this optimistic hypervolume improvement with the Euclidean dis-
tance as the selection criterion in AN-TPLS-1seed, which is the best adaptive TPLS
strategy for the isometric and the anisometric bTSP, and AF-TPLS, which is the best
adaptive TPLS strategy for the bPFSP.

Figure 11 shows the development of the hypervolume of the resulting adaptive
TPLS variants. The version of AN-TPLS-1seed that uses the ‖(s, s′)‖HV norm is

Table 4 Statistical analysis for the isometric bTSP

Nscalar �Rα Strategies (�R)

10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), 1to2(20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), 1to2(20)
30 0 AN-TPLS-1seedHV , 1to2(10), AN-TPLS-1seed (20)

For each number of scalarizations, strategies are ordered according to the rank obtained



Improving the anytime behavior of two-phase local search 147

Table 5 Statistical analysis for the anisometric bTSP

Nscalar �Rα Strategies (�R)

maxdist = 5
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

maxdist = 10
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

maxdist = 25
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

maxdist = 100
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

For each number of scalarizations, strategies are ordered according to the rank obtained. The
numbers in parenthesis are the difference of ranks relative to the best strategy. The strategy that
is significantly better than the other ones is indicated in bold face

slightly but consistently better than the one that uses the Euclidean distance. For
AF-TPLS on the bPFSP, results are not as consistent as for the bTSP (additional
plots are available as supplementary material [7]).

Table 6 Statistical analysis for the bPFSP

Nscalar �Rα Strategies (�R)

(Cmax,
∑

Ci) 50 × 20
10 3.87 AF-TPLS, AF-TPLSHV (3), D-TPLS (16.5)
20 6.80 AF-TPLSHV , AF-TPLS (3), D-TPLS (13.5)
30 8.23 AF-TPLSHV , AF-TPLS (4), D-TPLS (11)

(Cmax,
∑

Ci) 100 × 20
10 3.96 AF-TPLSHV , AF-TPLS (4), D-TPLS (17)
20 7.07 AF-TPLSHV , AF-TPLS (2), D-TPLS (13)
30 pval>0.05 D-TPLS, AF-TPLSHV , AF-TPLS

(Cmax,
∑

Ti) 50 × 20
10 4.54 AF-TPLSHV , AF-TPLS (4), D-TPLS (17)
20 4.54 AF-TPLSHV , AF-TPLS (4), D-TPLS (17)
30 pval>0.05 AF-TPLSHV , AF-TPLS, D-TPLS

(Cmax,
∑

Ti) 100 × 20
10 3.96 AF-TPLS, AF-TPLSHV (6), D-TPLS (18)
20 6.86 AF-TPLS, AF-TPLSHV (10), D-TPLS (14)
30 pval>0.05 AF-TPLS, D-TPLS, AF-TPLSHV

For each number of scalarizations, strategies are ordered according to the rank obtained. The
numbers in parenthesis are the difference of ranks relative to the best strategy. Strategies that are
not significantly different to the best one are indicated in bold face. See the text for details



148 J. Dubois-Lacoste et al.

To assess the statistical significance of the differences between the two selection
criteria over all instances, we perform the same statistical analysis as in the previous
section. For the isometric bTSP, we compare in Table 4 the quality of AN-TPLS-
1seed, its variant that uses the ‖(s, s′)‖HV norm (AN-TPLS-1seedHV), and 1to2,
which outperformed all other strategies in terms of final quality. We compare in
Table 5 AN-TPLS-1seed, AN-TPLS-1seedHV , and D-TPLS, for the anisometric
bTSP. The results are consistent for the two types of instances, and all values of
maxdist. AN-TPLS-1seedHV is the best-ranked strategy and it is always significantly
better than all the other ones, including 1to2. In the case of the bPFSP, Table 6
compares the two adaptive strategies AN-TPLS-2seed and AF-TPLS, their variants
using the ‖(s, s′)‖HV norm, and D-TPLS. The improvement is not as consistent as for

After 15 scalarizations out of 30

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1e
+

07
3e

+
07

5e
+

07

ob
je

ct
iv

e 
2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1e
+

07
3e

+
07

5e
+

07

ob
je

ct
iv

e 
2

AN−TPLS−1seed

After completion of 30 scalarizations

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1e
+

07
3e

+
07

5e
+

07

ob
je

ct
iv

e 
2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1e
+

07
3e

+
07

5e
+

07

ob
je

ct
iv

e 
2

AN−TPLS−1seed

Fig. 12 EAF differences for one isometric TSP instance, after 15 scalarizations (top) and after
30 scalarizations (bottom). Strategies are 1to2 (left) and AN-TPLS-1seed (right). Plots for other
instances are available as supplementary material [7]



Improving the anytime behavior of two-phase local search 149

the bTSP. However, AF-TPLSHV is most often the best-ranked strategy and never
significantly worse than the best ranked one.

7 Graphical analysis based on the EAF differences

We further explore the differences between RA-TPLS, AF-TPLS and D-TPLS by
examining the empirical attainment functions (EAF) of the final results after 30
scalarizations. The EAF of an algorithm provides the probability, estimated from
several runs, of an arbitrary point in the objective space being attained by (dominated
by or equal to) a solution obtained by a single run of the algorithm [12]. Examining
the differences between the EAFs of two algorithms allows us to identify regions of

max dist = 5

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

10
00

15
00

20
00

25
00

30
00

ob
je

ct
iv

e 
2

AN−TPLS−2seed

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

10
00

15
00

20
00

25
00

30
00

ob
je

ct
iv

e 
2

AN−TPLS−1seed

max dist = 100

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1e

+
04

3e
+

04
5e

+
04

ob
je

ct
iv

e 
2

AN−TPLS−2seed

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1e

+
04

3e
+

04
5e

+
04

ob
je

ct
iv

e 
2

AN−TPLS−1seed

Fig. 13 EAF differences for two anisometric TSP instances (maxdist = 5, top, and maxdist = 100,
bottom), after completing 30 scalarizations. Strategies are AN-TPLS-2seed (left) and AN-TPLS-
1seed (right). Other values of maxdist show similar trends. Plots for other instances are available
as supplementary material [7]



150 J. Dubois-Lacoste et al.

the objective space where one algorithm performs better than another. Given a pair
of algorithms, the differences in favor of each algorithm are plotted side-by-side and
the magnitude of the difference is encoded in gray levels. For more details, we refer
to López-Ibáñez et al. [16].

7.1 Graphical analysis on bTSP instances

For the isometric bTSP, we compare the best strategy AN-TPLS-1seed, with the sec-
ond best, 1to2. Figure 12 shows the differences in the EAFs of these two strategies for
one isometric instance. In the top plot, we show the differences after 15 scalarizations
out of 30, whereas the bottom plot compares the final quality. The EAF differences
after 15 scalarizations show that 1to2 simply does not cover a significant part of the
objective space, whereas AN-TPLS-1seed covers the front equally in all directions.

max dist = 5

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

10
00

15
00

20
00

25
00

30
00

ob
je

ct
iv

e 
2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

10
00

15
00

20
00

25
00

30
00

ob
je

ct
iv

e 
2

AN−TPLS−1seed

max dist = 100

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1e

+
04

3e
+

04
5e

+
04

ob
je

ct
iv

e 
2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1e

+
04

3e
+

04
5e

+
04

ob
je

ct
iv

e 
2

AN−TPLS−1seed

Fig. 14 EAF differences for two anisometric TSP instances (maxdist = 5, top, and maxdist = 100,
bottom), after completing 30 scalarizations. Strategies are 1to2 (left) and AN-TPLS-1seed (right).
Plots for other instances are available as supplementary material [7]



Improving the anytime behavior of two-phase local search 151

Here we color in black the region of the objective space attained by more than 80% of
the runs of each algorithm, to help to visualize this behavior. This plot and the ones
for other instances [7] show very clearly the lack of the anytime property in 1to2, and
the much better anytime behavior of AN-TPLS-1seed. The EAF differences after
completion of the 30 scalarizations show differences in favor of both algorithms along
the whole Pareto front. In this case, 1to2 appears to be better in the center of the
Pareto front, whereas the adaptive TPLS finds better solutions along the extremes.
Similar results are observed for other instances [7].

For anisometric instances, we first give in Fig. 13 plots that show the EAF
differences between AN-TPLS-2seed and AN-TPLS-1seed. These plots support the
conclusion from the statistical test, namely that AN-TPLS-1seed is better than AN-

PFSP- (Cmax ,
 

Ci) 50x20_1 −− 15 scalarizations out of 30

3850 3950 4050 4150 4250
Cmax

1.
28

e+
05

1.
32

e+
05

1.
36

e+
05

Σ
C

i

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3850 3950 4050 4150 4250
Cmax

1.
28

e+
05

1.
32

e+
05

1.
36

e+
05

ΣC
i

AF−TPLS

PFSP- (Cmax ,Σ

Σ

Ci) 50x20_1 −− Completion of 30 scalarizations

3850 3950 4050 4150 4250
Cmax

1.
28

e+
05

1.
32

e+
05

1.
36

e+
05

Σ
C

i

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3850 3950 4050 4150 4250
Cmax

1.
28

e+
05

1.
32

e+
05

1.
36

e+
05

Σ
C

i

AF−TPLS

Fig. 15 EAF differences for one bPFSP instance, after 15 scalarizations out of 30 (top plot) and after
completing the 30 scalarizations (bottom plot). Strategies are 1to2 (left) and AF-TPLS (right). The
instance shown is 50 × 220_1 and the combination of objectives is PFSP-(Cmax,

∑
Ci). Plots for

other instances are available as supplementary material [7]



152 J. Dubois-Lacoste et al.

TPLS-2seed for this problem, which is true also when varying maxdist. In comparison
with 1to2 (the best among the classical TPLS strategies for this problem), AN-TPLS-
1seed is clearly better for a small values of maxdist (top plot of Fig. 14), whereas for
large values of maxdist = 100 (bottom plot of Fig. 14), the results are similar to the
ones obtained in the isometric bTSP instances.

7.2 Graphical analysis on bPFSP

Figure 15 illustrates the EAF differences between AF-TPLS and 1to2 on one instance
for PFSP-(Cmax,

∑
Ci), after 15 scalarizations out of 30 and after completing the 30

scalarizations. In both cases, there are strong differences in favor of AF-TPLS.

8 Conclusion

TPLS is a key component of effective bi-objective optimization algorithms [5, 8, 17].
However, the originally proposed TPLS framework has an important drawback: it re-
quires to know in advance the available computation time to distribute appropriately
the computational effort and to reach high quality results. Stopping the algorithm
earlier than scheduled would lead to poor performance, as we have shown in this
paper. Therefore, the original TPLS framework has poor anytime behavior.

In this paper, we have addressed this weakness. We have proposed new ways
to define the weights used to start new scalarizations and the order in which these
weights are considered.

Our first proposal, RA-TPLS, improves strongly the anytime behavior of classical
TPLS strategies and, thus, outperforms these if they are stopped before completion.
However, the final quality of the Pareto front approximations obtained by the
classical TPLS strategies, for example D-TPLS, is better than that of RA-TPLS.
Therefore, we have proposed adaptive TPLS variants that define the scalarizations
adaptively in dependence of the solutions obtained in previous scalarizations.

Our adaptive TPLS variants are inspired by the dichotomic scheme proposed for
exact algorithms [1]. Yet, exact algorithms require prohibitively high computation
time for the problems considered here. We studied various variants of adaptive TPLS
algorithms that differ in the number of initial solutions (one or two) that are used per
weight, variants for focusing the search towards the center of a segment, and different
ways of choosing the region of the objective space where to intensify the search.
Our experimental results have unambiguously shown that (i) the adaptive TPLS
variants have better anytime behavior than the non-adaptive anytime TPLS variant
and (ii) the best adaptive TPLS variants typically also improve over the final quality
of the approximations to the Pareto front reached by the best classical TPLS variants.
Hence, our results suggest that the new adaptive TPLS variants should replace the
classical variants in future TPLS applications.

Acknowledgements This work was supported by the META-X project, an Action de Recherche
Concertée funded by the Scientific Research Directorate of the French Community of Belgium, and
by the MIBISOC network, an Initial Training Network funded by the European Commission, grant



Improving the anytime behavior of two-phase local search 153

PITN–GA–2009–238819. Thomas Stützle acknowledges support from the Belgian F.R.S.-FNRS, of
which he is a Research Associate. The authors also acknowledge support from the FRFC project
“Méthodes de recherche hybrides pour la résolution de problèmes complexes”.

References

1. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)
2. Beume, N., Naujoks, B., Emmerich M.: SMS-EMOA: multiobjective selection based on domi-

nated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
3. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)
4. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res.

15(3), 483–495 (1990)
5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Effective hybrid stochastic local search algo-

rithms for biobjective permutation flowshop scheduling. In: Blesa, M.J., Blum C., Di Gaspero,
L., Roli, A., Sampels, M., Schaerf, A. (eds.) Hybrid Metaheuristics, Lecture Notes in Computer
Science, vol. 5818, pp 100–114. Springer, Heidelberg (2009)

6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Adaptive “anytime” two-phase local search.
In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization, 4th International Confer-
ence, LION 4, Lecture Notes in Computer Science, vol. 6073, pp. 52–67. Springer, Heidelberg
(2010)

7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Supplementary Material: Improving the Any-
time Behavior of Two-Phase Local Search. http://iridia.ulb.ac.be/supp/IridiaSupp2010-012 (2010)

8. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective
flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

9. Ehrgott, M., Gandibleux, X.: Approximative solution methods for combinatorial multicriteria
optimization. TOP 12(1), 1–88 (2004)

10. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for
the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation
(CEC 2006), pp. 1157–1163. IEEE Press, Piscataway (2006)

11. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math.
Oper. Res. 1, 117–129 (1976)

12. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of
stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello,
C.A., Corne, D. (eds.) Evolutionary Multi-criterion Optimization (EMO 2001). Lecture Notes in
Computer Science, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)

13. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco (2005)

14. Johnson, D.S.: Optimal two- and three-stage production scheduling with setup times included.
Nav. Res. Logist. Q. 1, 61–68 (1954)

15. Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondomi-
nated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

16. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local search algo-
rithms in biobjective optimization. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss,
M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 209–222.
Springer, Berlin (2010)

17. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman
problem. Journal of Heuristics 16(3), 475–510 (2010)

18. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the
flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)

19. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem.
In: Fonseca. C.M., et al. (eds.) Evolutionary Multi-criterion Optimization (EMO 2003). Lecture
Notes in Computer Science, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)

20. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial
optimization: a review. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and
Metaheuristics, pp. 29–1—29–15. Chapman & Hall/CRC, Boca Raton (2007)

http://iridia.ulb.ac.be/supp/IridiaSupp2010-012


154 J. Dubois-Lacoste et al.

21. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective
traveling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009)

22. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling
salesman problem: an experimental study. In: Gandibleux, X., et al. (eds.) Metaheuristics for
Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535,
pp. 177–200. Springer(2004)

23. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

24. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–83 (1996)
25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the

strength Pareto evolutionary algorithm. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)


	Improving the anytime behavior of two-phase local search
	Abstract
	Introduction
	Preliminaries
	Bi-objective combinatorial optimization
	Two-phase local search

	Regular anytime TPLS
	Regular anytime strategy
	Experimental analysis
	Case study: bi-objective traveling salesman problem (bTSP) 
	Case study: bi-objective permutation flow-shop scheduling problem


	Adaptive TPLS
	Adaptive anytime strategy
	Experimental evaluation of adaptive TPLS on bTSP instances
	Experimental evaluation of adaptive TPLS on bPFSP instances
	Further analysis of AN-TPLS-1seed and AN-TPLS-2seed
	Adaptive focus TPLS
	Experimental evaluation of adaptive focus on bPFSP instances

	Statistical analysis
	Results on the bTSP
	Results on the bPFSPs

	Optimistic hypervolume improvement as selection criterion
	Graphical analysis based on the EAF differences
	Graphical analysis on bTSP instances
	Graphical analysis on bPFSP

	Conclusion
	References



