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Abstract

This paper describes a general hybrid metaheuristic for combinatorial optimization labelled Construct, Merge, Solve
& Adapt. The proposed algorithm is a specific instantiation of a framework known from the literature as Generate-
And-Solve, which is based on the following general idea. First, generate a reduced sub-instance of the original
problem instance, in a way such that a solution to the sub-instance is also a solution to the original problem instance.
Second, apply an exact solver to the reduced sub-instance in order to obtain a (possibly) high quality solution to the
original problem instance. And third, make use of the results of the exact solver as feedback for the next algorithm
iteration. The minimum common string partition problem and the minimum covering arborescence problem are
chosen as test cases in order to demonstrate the application of the proposed algorithm. The obtained results show that
the algorithm is competitive with the exact solver for small to medium size problem instances, while it significantly
outperforms the exact solver for larger problem instances.

Keywords: Metaheuristics, Exact Solver, Hybrid Algorithms, Minimum Common String Partition, Minimum
Covering Arborescence

1. Introduction

In this paper we introduce a general algorithm for combinatorial optimization labelled Construct, Merge, Solve&
Adapt (CMSA). The proposed algorithm belongs to the class of hybrid metaheuristics [1, 2, 3, 4], which are algorithms
that combine components of different techniques for optimization. Examples are combinations of metaheuristics with
dynamic programming, constraint programming, and branch & bound. In particular, the proposed algorithm is based
on the following general idea. Imagine it were possible to identify a substantially reduced sub-instance of a given
problem instance such that the sub-instance contains high-quality solutions to the original problem instance. This
would allow applying an exact technique—such as, for example, a mathematical programming solver—with little
computational effort to the reduced sub-instance in order to obtain a high-quality solution to the original problem
instance. This is for the following reason. For many combinatorial optimization problems the field of mathematical
programming—and integer linear programming (ILP) in particular—provides powerful tools; for a comprehensive in-
troduction into this area see, for example, [5]. ILP-solvers are in general based on a tree search framework but further
include the solution of linear programming relaxations of a given ILP model for the problem at hand (besides primal
heuristics) in order to obtain lower and upper bounds. To tighten these bounds, various kinds of additional inequalities
are typically dynamically identified and added as cutting planes to the ILP-model, yielding a branch & cut algorithm.
Frequently, such ILP approaches are highly effective for small to medium sized instances of hard problems, even
though they often do not scale well enough to large instances relevant in practice. Therefore, in those cases in which
a problem instance can be sufficiently reduced, a mathematical programming solver might be very efficient in solving
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This is a pre-print version of the paper: C. Blum, P. Pinacho, M. López-Ibáñez, and J. A. Lozano. Construct, Merge, Solve & Adapt: A New General Algorithm
for Combinatorial Optimization. Computers & Operations Research, 68:75-88, 2015. doi: 10.1016/j.cor.2015.10.014

http://dx.doi.org/10.1016/j.cor.2015.10.014
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the reduced problem instance.

1.1. Related Work
The general idea described above is present in several works from the literature. For example, it is the underlying

idea of the general algorithm framework known as Generate-And-Solve (GS) [6, 7, 8, 9]. In fact, our algorithm can
be seen as an instantiation of this framework. The GS framework decomposes the original optimization problem
into two conceptually different levels. One of the two levels makes use of a component called Solver of Reduced
Instances (SRI), in which an exact method is applied to sub-instances of the original problem instance that maintain
the conceptual structure of the original instance, that is, any solution to the sub-instance is also a solution to the
original instance. At the other level, a metaheuristic component deals with the problem of generating sub-instances
that contain high quality solutions. In GS, the metaheuristic component is called Generator of Reduced Instances
(GRI). Feedback is provided from the SRI component to the GRI component, for example, by means of the objective
function value of the best solution found in a sub-instance. This feedback serves for guiding the search process of the
GRI component.

Even though most existing applications of the GS framework are in the context of cutting, packing and loading
problems—see, for example, [7, 8, 9, 10, 11]—other successful applications include the ones to configuration prob-
lems arising in wireless networks [12, 13, 14]. Moreover, it is interesting to note that the applications of GS published
to date generate sub-instances in the GRI component using either evolutionary algorithms [10, 14] or simulated an-
nealing [11, 13]. Finally, note that in [10] the authors introduced a so-called density control operator in order to control
the size of the generated sub-instances. This mechanism can be seen as an additional way of providing feedback from
the SRI component to the GRI component.

Apart from the GS framework, the idea of solving reduced problem instances to optimality has also been explored
in earlier works. In [15, 16], for example, the authors tackle the classical traveling salesman problem (TSP) by
means of a two-phase approach. The first phase consists in generating a bunch of high-quality TSP solutions using
a metaheuristic. These solutions are then merged, resulting in a reduced problem instance, which is then solved to
optimality by means of an exact solver. In [17] the authors present the following approach for the prize-collecting
Steiner tree problem. First, the given problem instance is reduced in such a way that it still contains the optimal
solution to the original problem instance. Then, a memetic algorithm is applied to this reduced problem instance.
Finally, a mathematical programming solver is applied to find the best solution to the problem instance obtained by
merging all solutions of the first and the last population of the memetic algorithm. Massen et al. [18, 19] use an
ant colony optimization algorithm to generate a large number of feasible routes for a vehicle routing problem with
feasibility constraints, then apply an exact solver to a relaxed set-partitioning problem in order to select a subset of
the routes. This subset is used to bias the generation of new routes in the next iteration.

Finally, note that a first, specific, application of the general algorithm proposed in this work has been published
in [20] in the context of the minimum weight arborescence problem.

1.2. Contribution of this Work
Even though—as outlined above—there is important related work in the literature, the idea of iteratively solving

reduced problem instances to optimality has not yet been explored in an exhaustive manner. In this work we introduce
a generally applicable algorithm labelled Construct, Merge, Solve & Adapt (CMSA) for tackling combinatorial
optimization problems. The algorithm can be seen as a specific instantiation of the GS framework. It is designed to
take profit from ILP solvers such as CPLEX even in the context of large problem instances to which these solvers
can not be applied directly. In particular, the main feature of the algorithm is the generation of sub-instances of the
original problem instance by repeated probabilistic solution constructions, and the application of an ILP solver to the
generated sub-instances. Hereby, the way of generating sub-instances by merging the solution components found in
probalistically constructed solutions distinguishes our algorithm from other instantiations of the GS framework from
the literature. This feature is actually quite appealing, because our algorithm can easily be applied to any problem for
which (1) a constructive heuristic and (2) an exact solver are known.

We consider two test cases for the proposed algorithm: (1) the minimum common string partition (MCSP) prob-
lem [21], and a minimum covering arborescence (MCA) problem, which is an extension of the problem tackled in [20].
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For both problems, ILP solvers such as CPLEX are very effective in solving small to medium size problem instances.
However, their performance deteriorates (1) in the context of the MCSP problem when the length of the input strings
exceeds 600, and (2) in the context of the MCA problem when the number of nodes of the input graph exceeds 1000.
We will show that the CMSA algorithm is a new state-of-the-art algorithm for the MCSP problem, especially for
benchmark instances for which the application of CPLEX to the original ILP model is not feasible. In the context of
the MCA problem we will show that our algorithm is able to match the performance of CPLEX for small and medium
size problem instances. Moreover, when large size instances are tackled, the algorithm significantly outperforms a
greedy approach.

1.3. Organization of the Paper

The remaining part of the paper is organized as follows. The CMSA algorithm is outlined in general terms
in Section 2. The application of this algorithm to the minimum common string partition problem is described in
Section 3, whereas its application to the minimum covering arborescence problem is outlined in Section 4. An
extensive experimental evaluation is provided in Section 5. Finally, in Section 6 we provide conclusions and an
outlook to future work.

2. Construct, Merge, Solve & Adapt

In the following we assume that, given a problem instance I to a generic problem P, set C represents the set
of all possible components of which solutions to the problem instance are composed. C is henceforth called the
complete set of solution components with respect to I. Note that, given an integer linear (or non-linear) programming
model for problem P, a generic way of defining the set of solution components is to say that each combination of a
variable with one of its values is a solution component. Moreover, in the context of this work a valid solution S to
I is represented as a subset of the solution components C, that is, S ⊆ C. Finally, set C′ ⊆ C contains the solution
components that belong to a restricted problem instance, that is, a sub-instance of I. For simplicity reasons, C′ will
henceforth be called a sub-instance. Imagine, for example, the input graph in case of the TSP. The set of all edges can
be regarded as the set of all possible solution components C. Moreover, the edges belonging to a tour S —that is, a
valid solution—form the set of solution components that are contained in S .

The Construct, Merge, Solve & Adapt (CMSA) algorithm works roughly as follows. At each iteration, the
algorithm deals with the incumbent sub-instance C′. Initially this sub-instance is empty. The first step of each
iteration consists in generating a number of feasible solutions to the original problem instance I in a probabilistic
way. In the second step, the solution components involved in these solutions are added to C′ and an exact solver is
applied in order to solve C′ to optimality. The third step consists in adapting sub-instance C′ by removing some of
the solution components guided by an aging mechanism. In other words, the CMSA algorithm is applicable to any
problem for which (1) a way of (probabilistically) generating solutions can be found and (2) a strategy for solving the
problem to optimality is known.

In the following we describe the CMSA algorithm, which is pseudo-coded in Algorithm 1, in more detail. The
main loop of the proposed algorithm is executed while the CPU time limit is not reached. It consists of the following
actions. First, the best-so-far solution S bsf is initialized to null, and the restricted problem instance (C′) to the empty
set. Then, at each iteration a number of na solutions is probabilistically generated (see function ProbabilisticSolution-
Generation(C) in line 6 of Algorithm 1). The components of all these solutions are added to set C′. The age of a newly
added component c (age[c]) is set to 0. After the construction of na solutions, an exact solver is applied to find the best
solution S ′opt in the restricted problem instance C′ (see function ApplyExactSolver(C′) in line 12 of Algorithm 1). In
case S ′opt is better than the current best-so-far solution S bsf, solution S ′opt is stored as the new best-so-far solution (line
13). Next, sub-instance C′ is adapted, based on solution S ′opt and on the age values of the solution components. This
is done in function Adapt(C′, S ′opt, agemax) in line 14 as follows. First, the age of each solution component in C′ is
increased by one, and, subsequently, the age of each solution component in S ′opt ⊆ C′ is re-initialized to zero. Finally,
those solution components from C′ whose age has reached the maximum component age (agemax) are deleted from
C′. The motivation behind the aging mechanism is that components which never appear in an optimal solution of C′

should be removed from C′ after a while, because they slow down the exact solver. On the other side, components
which appear in optimal solutions seem to be useful and should therefore remain in C′. In general, the average size
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Algorithm 1 Construct, Merge, Solve & Adapt (CMSA)

1: input: problem instance I, values for parameters na and agemax
2: S bsf := null, C′ := ∅
3: age[c] := 0 for all c ∈ C
4: while CPU time limit not reached do
5: for i = 1, . . . , na do
6: S := ProbabilisticSolutionGeneration(C)
7: for all c ∈ S and c < C′ do
8: age[c] := 0
9: C′ := C′ ∪ {c}

10: end for
11: end for
12: S ′opt := ApplyExactSolver(C′)
13: if S ′opt is better than S bsf then S bsf := S ′opt

14: Adapt(C′, S ′opt, agemax)
15: end while
16: output: S bsf

of set C′ depends on the parameter values. For example, the higher the value of agemax, the higher the average size
of C′ during a run of the algorithm. In summary, the behavior of the general CMSA algorithm depends on the values
of two parameters: the number of solution construction per iteration (na) and the maximum allowed age (agemax) of
solution components. Moreover, as long as the mechanism for probabilistically generating solutions has a non-zero
probability for generating an optimal solution, the probability to find an optimal solution converges to one with a
growing computation time limit. This completes the general description of the algorithm.

3. Application to the MCSP Problem

The MCSP problem is an NP-hard string problem from the bioinformatics field. String problems are very common
in bioinformatics. This family of problems includes, among others, string consensus problems such as the far-from
most string problem [22, 23], the longest common subsequence problem and its variants [24, 25], and alignment
problems [26]. These problems are often computationally very hard, if not even NP-hard [27].

The MCSP problem can technically be described as follows. Given are two input strings s1 and s2 of length n
over a finite alphabet Σ. The two strings are related, which means that each letter appears the same number of times
in each of them. This definition implies that s1 and s2 have the same length n. A valid solution to the MCSP problem
is obtained by partitioning s1 into a set P1 of non-overlapping substrings, and s2 into a set P2 of non-overlapping
substrings, such that P1 = P2. Moreover, the goal is to find a valid solution such that |P1| = |P2| is minimal. Consider
the following example. Given are DNA sequences s1 = AGACTG and s2 = ACTAGG. As A and G appear twice
in both input strings, and C and T appear once, the two strings are related. A trivial valid solution can be obtained
by partitioning both strings into substrings of length 1, that is, P1 = P2 = {A,A,C,T,G,G}. The objective function
value of this solution is 6. However, the optimal solution, with objective function value 3, is P1 = P2 = {ACT,AG,G}.

The MCSP problem was introduced by Chen et al. [21] due to its relation to genome rearrangement. More
specifically, it has applications in biological questions such as: May a given DNA string possibly be obtained by
rearrangements of another DNA string? The general problem has been shown to be NP-hard even in very restrictive
cases [28]. Approximation algorithms are described, for example, in [29]. Recently, Goldstein and Lewenstein [30]
proposed a greedy algorithm for the MCSP problem that runs in O(n) time. He [31] introduced a greedy algorithm
with the aim of obtaining better average results. To our knowledge, the only metaheuristic approaches that have been
proposed in the related literature for the MCSP problem are (1) theMAX-MIN Ant System by Ferdous and Sohel
Rahman [32, 33] and (2) the probabilistic tree search algorithm by Blum et al. [34]. In these works the proposed
algorithm is applied to a range of artificial and real DNA instances from [32]. Finally, the first ILP model for the

4

http://dx.doi.org/10.1016/j.cor.2015.10.014


This is a pre-print version of the paper: C. Blum, P. Pinacho, M. López-Ibáñez, and J. A. Lozano. Construct, Merge, Solve & Adapt: A New General Algorithm
for Combinatorial Optimization. Computers & Operations Research, 68:75-88, 2015. doi: 10.1016/j.cor.2015.10.014

Algorithm 2 Probabilistic Solution Generation (MCSP problem)

1: input: s1, s2, drate, lsize

2: S := ∅
3: while Ext(S ) , ∅ do
4: Choose a random number δ ∈ [0, 1]
5: if δ ≤ drate then
6: Choose c∗ such that |tc∗ | ≥ |tc| for all c ∈ Ext(S )
7: S := S ∪ {c∗}
8: else
9: Let L ⊆ Ext(S ) contain the (at most) lsize longest common blocks from Ext(S )

10: Choose c∗ uniformly at random from L
11: S := S ∪ {c∗}
12: end if
13: end while
14: output: The complete (valid) solution S

MCSP problem, together with an ILP-based heuristic, was proposed in [35].

The remainder of this section describes the application of the CMSA algorithm presented in the previous section
to the MCSP. For this purpose we define the set C of solution components and the structure of valid subsets of C
as follows. Henceforth, a common block ci of input strings s1 and s2 is denoted as a triple (ti, k1

i , k
2
i ) where ti is a

string which can be found starting at position 1 ≤ k1
i ≤ n in string s1 and starting at position 1 ≤ k2

i ≤ n in string
s2. Moreover, let C = {c1, . . . , cm} be the arbitrarily ordered set of all possible common blocks of s1 and s2, i.e., C is
the set of all solution components. Given the definition of C, a subset S of C is called a valid subset iff the following
conditions hold:

1.
∑

ci∈S |ti| ≤ n, that is, the sum of the length of the strings corresponding to the common blocks in S is smaller or
equal to the length of the input strings.

2. For any two common blocks ci, c j ∈ S it holds that their corresponding strings neither overlap in s1 nor in s2.

Given a valid subset S ⊂ C, set Ext(S ) ⊂ C \ S denotes the set of common blocks that may be used in order to extend
S such that the result is again a valid subset. Note that in case Ext(S ) = ∅ it necessarily holds that

∑
ci∈S |ti| = n. In

this case S is a valid subset which corresponds to a complete (valid) solution to the problem.

3.1. Probabilistic Solution Generation

Next we describe the implementation of function ProbabilisticSolutionGeneration(C) in line 6 of Algorithm 1.
The construction of a complete (valid) solution (see Algorithm 2) starts with the empty subset S := ∅. At each
construction step, a solution component c∗ from Ext(S ) is chosen and added to S . This is done until Ext(S ) = ∅. The
choice of c∗ is done as follows. First, a value δ ∈ [0, 1] is chosen uniformly at random. In case δ ≤ drate, c∗ is chosen
such that |tc∗ | ≥ |tc| for all c ∈ Ext(S ), that is, one of the common blocks whose substring is of maximal size is chosen.
Otherwise, a candidate list L containing the lsize longest common blocks from Ext(S ) is built, and c∗ is chosen from L
uniformly at random (ties are broken randomly). In case the number of remaining blocks in Ext(S ) is lower than lsize,
all the blocks are selected. In other words, the greediness of this procedure depends on the pre-determined values of
drate (determinism rate) and lsize (candidate list size). Both are input parameters of the algorithm.

3.1.1. Solving Reduced Sub-Instances
The last component of Algorithm 1 which remains to be described is the implementation of function ApplyExact-

Solver(C′) in line 12. In the case of the MCSP problem we make use of the ILP model proposed in [35] and the ILP
solver CPLEX for solving it. The model for the complete set C of solution components can be described as follows.
First, two binary m × n matrices M1 and M2 are defined. In both matrices, row 1 ≤ i ≤ m corresponds to common
block ci ∈ C. Moreover, a column 1 ≤ j ≤ n corresponds to position j in input string s1, respectively s2. In general,
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the entries of matrix M1 are set to zero. However, in each row i, the positions that string ti (of common block ci)
occupies in input string s1 are set to one. Correspondingly, the entries of matrix M2 are set to zero, apart from the fact
that in each row i the positions occupied by string ti in input string s2 are set to one. Henceforth, the position (i, j) of
a matrix M is denoted by Mi, j. Finally, we introduce for each common block ci ∈ C a binary variable xi. With these
definitions the MCSP can be expressed in terms of the following ILP model.

min
m∑

i=1

xi

subject to:
m∑

i=1

M1
i, j · xi = 1 for j = 1, . . . , n

m∑
i=1

M2
i, j · xi = 1 for j = 1, . . . , n

xi ∈ {0, 1} for i = 1, . . . ,m

(1)

(2)

(3)

The objective function minimizes the number of selected common blocks. Constraints (2) make sure that the
strings corresponding to the selected common blocks do not overlap in input string s1, while constraints (3) make sure
that the strings corresponding to the selected common blocks do not overlap in input string s2. The condition that the
length of the strings corresponding to the selected common blocks is equal to n is implicitly obtained from these two
constraint sets.

As an example, let us consider the small problem instance that was mentioned at the start of Section 3. The
complete set of common blocks (C), as induced by input strings s1 = AGACTG and s2 = ACTAGG, is as follows:

C =



c1 =(ACT, 3, 1)
c2 =(AG, 1, 4)
c3 =(AC, 3, 1)
c4 =(CT, 4, 2)
c5 =(A, 1, 1)
c6 =(A, 1, 4)
c7 =(A, 3, 1)
c8 =(A, 3, 4)
c9 =(C, 4, 2)
c10 =(T, 5, 3)
c11 =(G, 2, 5)
c12 =(G, 2, 6)
c13 =(G, 6, 5)
c14 =(G, 6, 6)


Given set C, matrices M1 and M2 are the following ones:
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M1 =



0 0 1 1 1 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1



M2 =



1 1 1 0 0 0
0 0 0 1 1 0
1 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1


The optimal solution to this instance is S ∗ = {c1, c2, c14}. It can easily be verified that this solution respects

constraints (2) and (3) of the ILP model.
Note that this ILP model can also be solved for any subset C′ of C. This is achieved by replacing all occurrences

of C with C′, and by replacing m with |C′|. The solution of such an ILP corresponds to a feasible solution to the
original problem instance as long as C′ contains at least one feasible solution to the original problem instance. Due to
the way in which C′ is generated (see Section 3.1) this condition is fulfilled.

4. Application to the MCA Problem

The MCA problem considered in this section belongs to the family of minimum weight rooted arborescence
(MWRA) problems [36]. In this type of problem we are given a directed (acyclic) graph with integer weights on the
arcs. In some of these problems the weight values might be restricted to be positive, while in other problems positive
and negative weights are allowed. Valid solutions to such a problem correspond to subgraphs of the input graph that
are arborescences rooted in the pre-defined root node. In this context, a rooted arborescence is a directed, rooted (not
necessarily spanning) tree in which all arcs point away from the root node (see [37]). The goal is to find, among all
valid solutions, one with minimal weight. Hereby, the weight of an arborescence is defined as the sum of the weights
of its arcs. These type of problems have applications, for example, in computer vision and in multistage production
planning.

The specific problem tackled in this work—henceforth called minimum covering arborescence (MCA) problem—
is an extension of the MWRA problem considered in [20] and the minimum covering arborescence problem described
on page 535 of [38]. The MCA problem is formally defined as follows. Given is a directed acyclic graph (DAG)
denoted by G = (V, A). Hereby, V = {v1, . . . , vn} is the set of n nodes and A ⊆ {(i, j) | i , j ∈ V} is a set of m directed
arcs. Without loss of generality it is assumed that v1 is the designated root node. Each arc a ∈ A has assigned an
integer weight w(a) ∈ Z. Moreover, a pre-defined subset X ⊆ V of the nodes of the input graph must be included in a
valid solution. Any arborescence T = (V(T ), A(T ))—where V(T ) ⊆ V is the node set of T and A(T ) ⊆ A is the arc set
of T—rooted in v1 with X ⊆ V(T ) is a valid solution to the problem. Let A be the set of all such arborescences. The
objective function value (that is, the weight) f (T ) of an arborescence T ∈ A is defined as follows:

f (T ) :=
∑

a∈A(T )

w(a) . (4)

The goal of the MCA problem is to find an arborescence T ∗ ∈ A such that the weight of T ∗ is smaller or equal to
the weight of any arborescence in A. In other words, the goal is to minimize objective function f (·). An example of
the MCA problem is shown in Figure 1. As the problem version in which X = ∅ is already NP-hard [20], the more
general problem in which X , ∅ is also NP-hard. An example for the MCA problem is shown in Figure 1.
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(b) Opt. solution of value -14.

Figure 1: (a) shows an input graph with eight nodes and 15 arcs. The uppermost node is the root node v1. Moreover, the nodes colored in black
form set X, that is, they must be included in any valid solution. (b) shows the optimal solution with value −14.

The remainder of this section describes the application of the CMSA algorithm to the MCA problem. For this
purpose we define the set of solution components and the structure of valid subsets of the complete set of solution
components as follows. First, in the case of the MCA problem, the complete set of solution components corresponds
to the set A of arcs of the input graph, that is, C := A. However, for the sake of maintaing the readability of the
following description of the algorithm components we continue to use notation A instead of C. Second, a subset S of
A is called a valid subset iff T = (V(S ), S ) is an arborescence of the input graph G rooted in v1. Hereby, V(S ) ⊆ V
refers to the subset of nodes that is obtained by joining all the heads and tails of the arcs in S . Given a valid subset
S ⊂ A, Ext(S ) ⊂ A \ S refers to all arcs that can be added to S such that the result is again a valid subset. More
in detail, Ext(S ) := {a = (vi, v j) ∈ A | vi ∈ V(S ), v j ∈ V \ V(S )}. In the special case of S = ∅, Ext(S ) := Out(v1),
where Out(v), given v ∈ V , denotes the set of outgoing arcs of v, that is, the set of arcs that have v as tail. In the same
way, In(v) denotes the set of incoming arcs of v, that is, the set of arcs that have v as head. Finally, a valid subset
corresponds to a (valid) solution to the problem in case X ⊆ V(S ).

4.1. Probabilistic Solution Generation

Next, the implementation of function ProbabilisticSolutionGeneration(C) in line 6 of Algorithm 1 is described.
The pseudo-code of this procedure is outlined in Algorithm 3. Starting from the root node v1, at each step an arc—that
is, a solution component—is chosen from set Â (see lines 3 and 7 of Algorithm 3). For the choice of the first solution
component in line 3, Â is defined as the set of outgoing arcs of the root node v1. For all further construction steps, Â
is defined as Ext(S ). However, instead of considering the whole set of arcs connecting one of the nodes of the current
arborescence with one of the remaininig nodes, function Reduce(Â) is applied before choosing one of the arcs from
Â (see line 8). This function chooses from each set {(v j, vi) | v j ∈ V(S )} ⊆ Â, for all vi ∈ V \ V(S ), the arc with
minimal weight. The chosen arc remains in Â, while the other ones are deleted. In other words, if a node vi ∈ V \V(S )
may be connected via several arcs with the current arborescence T = (V(S ), S ), only the arc with minimal weight is
considered. Finally, the process of constructing a solution finishes when Â = ∅, that is, when all nodes are already
included in the constructed arborescence. In principle, the construction process could already be stopped once all
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Algorithm 3 Probabilistic Solution Generation (MCA problem)

1: input: a DAG G = (V, A) with root node v1, dmin, dmax
2: S := ∅
3: Â := Out(v1)
4: while Â , ∅ do
5: a∗ := Choose(Â, dmin, dmax)
6: S := S ∪ {a∗}
7: Â := Ext(S )
8: Â := Reduce(Â)
9: end while

10: output: valid subset S which induces arborescence T = (V(S ), S )

nodes from X are included in the constructed arborescence. However, experimental tests have shown that generating
spanning arborescences leads, overall, to better results.

The choice of an arc from Â is done in function Choose(Â, dmin, dmax)—see line 5 of the pseudo-code—based
on heuristic information. The heuristic information η(a) of an arc a ∈ Â—which will be used below in Eq. (7)—is
computed as follows. First, let

wmax := max{w(a) | a ∈ A}. (5)

Based on this maximal weight of all arcs in G, the heuristic information is defined as follows:

η(a) := wmax + 1 − w(a) (6)

In this way, the heuristic information of all arcs is a positive integer number. Moreover, the arc with minimal weight
has the highest heuristic value.

Given the current valid subset S —corresponding to arboresence T = (V(S ), S )—and the non-empty set of arcs Â
that may be used for extending S , the probability for choosing arc a ∈ Â is defined as follows:

p(a | S ) :=
η(a)∑

a′∈Â η(a′)
(7)

At the start of each arborescence construction, a so-called determinism rate δ is chosen uniformly at random from
[dmin, dmax], where 0 ≤ dmin ≤ dmax ≤ 1. The chosen value for δ is then used during the arborescence construction as
follows. At each construction step, first, a value r ∈ [0, 1] is chosen uniformly at random. Second, in case r ≤ δ, the
arc a∗ ∈ Â with the maximum probability is deterministically chosen, that is: a∗ := argmaxa∈Â{p(a | S )}. Otherwise,
that is, when r > δ, arc a∗ ∈ Â is chosen probabilistically according to the probability values.

4.1.1. Solving Reduced Sub-Instances
The last component of Algorithm 1 which remains to be described is the implementation of function ApplyExact-

Solver(C′) in line 12. In the case of the MCA problem we make use of the following ILP model, which is a slight
modification of models that can be found in [20, 39, 40] for related problems. The model works on an augmented
graph G+ = (V+ := V ∪ {v0}, A+ := A ∪ {(v0, v1)}), where v0 is an additional dummy node and (v0, v1) is a dummy arc
connecting v0 with the root node v1. The weight w(v0, v1) of arc (v0, v1) is zero. Henceforth, let Pred(a) ∈ A+ denote
for each a ∈ A the set of predecessor arcs, that is, the set of arcs pointing to the tail of arc a. The ILP model works on
a set of binary variables which contains for each arc a ∈ A+ a binary variable xa ∈ {0, 1}. The ILP itself can then be
stated as follows.
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min
∑
a∈A

w(a) · xa

subject to:∑
a∈In(vi)

xa ≤ 1 for vi ∈ V \ (X ∪ {v1})∑
a∈In(vi)

xa = 1 for vi ∈ X

xa −
∑

a′∈Pred(a)

xa′ ≤ 0 for a ∈ A

x(v0,v1) = 1
xa ∈ {0, 1} for a ∈ A+

(8)

(9)

(10)

(11)

(12)

Hereby, constraints (9) ensure that for each node vi ∈ V \ (X ∪ {v1}) (that is, all nodes of the original graph without
the nodes from X and the root node) at most one incoming arc is chosen to form part of the arborescence. For all
nodes in X, constraints (10) make sure that exactly one incoming arc is chosen. Constraints (11) ensure that if an arc
a from the original graph is chosen for the arborescence, then also one predecessor arc of the tail of a must be chosen
for the arborescence. Finally, constraint (12) forces the arborescence to start in dummy arc (v0, v1), which means that
v1 is forced to be the root node of the arborescence in the original graph G.

This ILP model can also be solved for any subgraph G′ of G which is, itself, a DAG with root node v1. Note
that set C′ (see Algorithm 1) in case of the MCA problem induces such a subgraph. The optimal solution to such
a reduced ILP corresponds to a feasible solution to the original problem instance as long as G′ contains at least one
feasible solution to the original problem instance. Due to the way in which C′ is generated (see Section 4.1) this
condition is fulfilled.

5. Experimental Evaluation

The proposed applications of CMSA to the MCSP problem and the MCA problem were implemented in ANSI
C++ using GCC 4.7.3 for compiling the software. Moreover, both the complete ILP models and the reduced ILP
models within CMSA were solved with IBM ILOG CPLEX 12.1. The experimental evaluation was conducted on a
cluster of 32 PCs with Intel(R) Xeon(R) X5660 CPUs with 2 cores at 2.8 GHz and 48 Gigabytes of RAM.

5.1. Experiments Concerning the MCSP Problem

The following algorithms were considered for the comparison: Greedy, the greedy approach from [31]; TreSea,
the probabilistic tree search approach from [34]; Ilpcompl, the application of CPLEX to the complete ILP for each
considered problem instance; HeurIlp, the application of an ILP-based heuristic from [35];1 and Cmsa, our proposed
CMSA approach. Moreover, in the context of the existing benchmark instances from the literature a comparison to
the ant colony optimization approach from [32, 33] (labelled Aco) is also included.

5.1.1. Benchmark Instances
Both existing as well as new benchmark instances were used for the experimental evaluation. As a first benchmark

set we chose the one that was introduced by Ferdous and Sohel Rahman [32] for the experimental evaluation of their
ant colony optimization approach. This set contains, in total, 30 artificial instances and 15 real-life instances consisting
of DNA sequences, that is, the size of the alphabet is four. Remember, in this context, that each problem instance
consists of two related input strings. Moreover, the benchmark set is divided into four subsets of instances. The first
subset (henceforth labelled Group1) consists of 10 artificial instances in which the input strings are maximally of

1HeurIlp has a parameter l that needs to be given a value. In our experiments we chose l = min{5, lmax}, where lmax denotes the length of the
longest common block. This is following a suggestion of the authors of [35].
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length 200. The second set (Group2) consists of 10 artificial instances with input string lengths between 201 and 400.
In the third set (Group3) the input strings of the 10 artificial instances have lengths between 401 and 600. Finally, the
fourth set (Real) consists of 15 real-life instances of various lengths between 200 and 600.

The second benchmark set that we used is new. It consists of 20 randomly generated instances for each combina-
tion of n ∈ {200, 400, . . . , 1800, 2000}, where n is the length of the input strings, and alphabet size |Σ| ∈ {4, 12, 20}. 10
of these instances are generated with an equal probability for each letter of the alphabet. More specifically, the proba-
bility for each letter l ∈ Σ to appear at a certain position of the input strings is 1

|Σ|
. The resulting set of 300 benchmark

instances of this type are labelled Linear. The other 10 instances per combination of n and |Σ| are generated with a
probability for each letter l ∈ Σ to appear at a certain position of the input strings of l

/∑|Σ|
i=1 i. The resulting set of 300

benchmark instances of this second type are labelled Skewed.

5.1.2. Tuning of Cmsa and TreSea
Cmsa has several parameters for which well-working values must be found: (na) the number of solution construc-

tions per iteration, (agemax) the maximum allowed age of solution components, (drate) the determinism rate, (lsize) the
candidate list size, and (tmax) the maximum time in seconds allowed for CPLEX per application to a sub-instance.
The last parameter is necessary, because even when applied to reduced problem instances, CPLEX might still need
too much computation time for solving such sub-instances to optimality. In any case, CPLEX always returns the best
feasible solution found within the given computation time.

We decided to make use of the automatic configuration tool irace [41] for the tuning of the five parameters. In
fact, irace was applied to tune Cmsa separately for each instance size from {200, 400, . . . , 1800, 2000}. For each of
these 10 different instance sizes we generated 12 training instances for tuning: two instances of type Linear and two
instances of type Skewed for each alphabet size from {4, 12, 20}. The tuning process for each instance size was given
a budget of 1000 runs of Cmsa, where each run was given a computation time limit of 3600 CPU seconds. Finally, the
following parameter value ranges were chosen concerning the five parameters of Cmsa:

• na ∈ {10, 30, 50}

• agemax ∈ {1, 5, 10, inf}, where inf means that solution components are never removed from C′.

• drate ∈ {0.0, 0.5, 0.9}, where a value of 0.0 means that the selection of solution component c∗ (see line 6 of Algo-
rithm 2) is always done randomly from the candidate list, while a value of 0.9 means that solution constructions
are nearly deterministic.

• lsize ∈ {3, 5, 10}

• tmax ∈ {60, 120, 240, 480} (in seconds)

The 10 applications of irace produced the 10 configurations of Cmsa shown in Table 1a. The following trends can
be observed. First of all, with growing instance size, more time (tmax) should be given to individual applications of
CPLEX to sub-instances of the original problem instance. Second, irrespective of the instance size, candidate list
sizes (lsize) smaller than five seem to be too restrictive. Third, also irrespective of the instance size, less than 30 so-
lution constructions per iteration (na) seem to be insufficient. Presumably, when only few solution constructions per
iteration are performed, the resulting change in the corresponding sub-instances is not large enough and, therefore,
some applications of CPLEX result in wasted computation time. Finally, considering the obtained values of drate for
instance sizes from 200 to 1600, the trend is that with growing instance size the degree of greediness in the solution
construction should grow. However, the settings of drate for n ∈ {1800, 2000} is not in accordance with this observation.

In addition to tuning experiments for Cmsa, we also performed tuning experiments for TreSea. In fact, TreSea
constructs solutions in the same way in which they are constructed in Cmsa. The parameters involved in TreSea are,
therefore, drate and lsize. For the tuning of TreSea we used the same training instances, the same budget of 1000 runs,
and the same parameter value ranges as for the tuning of Cmsa. The obtained parameter values per instance size are
displayed in Table 1b.
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Table 1: Parameter settings produced by irace for the 10 different instance sizes.

(a) Tuning results for Cmsa

n na agemax drate lsize tmax

200 50 inf 0.0 10 60
400 50 10 0.0 10 60
600 50 10 0.5 10 60
800 50 10 0.5 10 240

1000 50 10 0.9 10 480
1200 50 10 0.9 10 480
1400 50 inf 0.9 5 480
1600 50 5 0.9 10 480
1800 30 10 0.5 5 480
2000 50 10 0.0 10 480

(b) Tuning results for TreSea

n drate lsize

200 0.9 5
400 0.9 3
600 0.9 10
800 0.5 5

1000 0.5 5
1200 0.5 3
1400 0.5 5
1600 0.0 5
1800 0.0 10
2000 0.0 10

5.1.3. Results
In the following we present the experimental results for the two benchmark data sets described in Section 5.1.1,

which are different from the data sets used for tuning the algorithms.
The first benchmark set, as outlined above, consists of four subsets of instances labelled Group1, Group2, Group3,

and Real. The results for these groups of instances are shown in the four Tables 2a–2d. The structure of these four
tables is as follows. The first column provides the instance identifiers. The second column contains the results of
Greedy. The third column provides the value of the best solution found in four independent runs per problem instance
(with a CPU time limit of 7200 seconds per run) by Aco; results are taken from [32, 33]. The fourth column contains
the value of the best solution found in 10 independent runs per problem instance (with a CPU limit of 3600 seconds
per run) by TreSea. The next three table columns are dedicated to the presentation of the results provided by solving
the complete ILP model Ilpcompl. The first one of these columns provides the value of the best solution found within
3600 CPU seconds. The second column provides the computation time (in seconds). In case of having solved the
corresponding problem to optimality, this column only displays one value indicating the time needed by CPLEX to
solve the problem. Otherwise, this column provides two values in the form X/Y, where X corresponds to the time at
which CPLEX was able to find the first valid solution, and Y corresponds to the time at which CPLEX found the best
solution within 3600 CPU seconds. Finally, the third one of the columns dedicated to Ilpcompl shows the optimality
gap, which refers to the gap between the value of the best valid solution and the current lower bound at the time of
stopping a run. The next two columns display the results of the ILP-based, deterministic heuristic HeurIlp. The first
column contains the results, and the second column the computation time. Finally, the last three columns of each
table are dedicated to the presentation of the results obtained by Cmsa. The first column provides the value of the best
solutions found by Cmsa within 3600 CPU seconds. The second column provides the average (mean) results over 10
independent runs per problem instance. The last column indicates the average time needed by Cmsa to find the best
solution of a run. The best result for each problem instance is marked by a grey background and the last row of each
table provides averages over the whole table.

Analyzing the results it can be observed that the results of Cmsa are very similar to the ones of applying CPLEX
to Ilpcompl. In fact, the application of the non-parametric Wilcoxon test for all four instance subsets did not reveal
differences of statistical significance between both techniques (for an α-value of 0.05). In comparison to the other
techniques (Greedy, Aco, TreSea and HeurIlp) both Cmsa and the application of CPLEX to Ilpcompl significantly out-
perform the competitors.

As described in Section 5.1.1, the second benchmark set which was specifically generated for this paper, consists
of 300 instances of type Linear and another 300 instances of type Skewed. The results for instances of type Linear
are presented in the three Tables 3a–3c, in terms of one table per alphabet size. In contrast to the first benchmark
set, for which the probabilistic algorithms such as TreSea and Cmsa were applied for 10 independent runs, results
for instances of type Linear and Skewed are presented in these tables in terms of averages over 10 random instances
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Table 2: Results for the instances of the first benchmark set (consisting of Group1, Group2, Group3 and Real).

(a) Results for Group1.

id Greedy Aco TreSea Ilpcompl HeurIlp Cmsa
value value value value time gap value time best mean time

1 46 42 42 41 1 0.0% 42 < 1 41 41.0 2
2 54 51 48 47 3 0.0% 48 < 1 47 47.0 6
3 60 55 55 52 30 0.0% 54 < 1 52 52.0 298
4 46 43 43 41 2 0.0% 43 < 1 41 41.0 23
5 44 43 41 40 1 0.0% 43 < 1 40 40.0 2
6 48 42 41 40 3 0.0% 41 < 1 40 40.0 2
7 64 60 59 55 38 0.0% 59 < 1 56 56.0 29
8 47 47 45 43 3 0.0% 44 < 1 43 43.0 1027
9 42 45 43 42 2 0.0% 48 < 1 42 42.0 28

10 63 59 58 54 50 0.0% 58 < 1 54 54.0 36
avg. 51.4 48.7 47.5 45.5 13.3 0.0% 48.0 < 1 45.6 45.6 145

(b) Results for Group2.

id Greedy Aco TreSea Ilpcompl HeurIlp Cmsa
value value value value time gap value time best mean time

1 118 113 111 98 66/1969 2.9% 108 3 101 101.2 2045
2 121 118 114 106 129/1032 7.5% 111 2 104 104.6 1677
3 114 111 107 97 55/1216 2.7% 105 3 97 97.1 1883
4 116 115 110 102 63/949 4.9% 111 3 102 102.5 1187
5 132 132 127 116 146/3299 6.7% 125 4 117 117.8 1581
6 107 105 102 93 56/1419 5.6% 101 < 1 94 95.4 1587
7 106 98 95 88 41/2776 6.0% 96 2 88 89.0 2103
8 122 118 114 104 101/2980 5.1% 116 2 103 105.2 1858
9 123 119 113 104 81/1630 5.2% 112 2 104 104.9 2010

10 102 101 97 89 32/1458 3.6% 94 3 89 89.8 1550
avg. 116.1 113.0 109.0 99.7 77/1873 5.0% 107.9 2 99.9 100.8 1748

(c) Results for Group3.

id Greedy Aco TreSea Ilpcompl HeurIlp Cmsa
value value value value time gap value time best mean time

1 181 177 171 155 733/1398 7.5% 173 5 157 157.9 1842
2 173 175 168 155 553/869 7.7% 165 9 156 157.5 1702
3 195 187 185 166 746/2183 8.5% 180 6 166 167.3 1805
4 191 184 179 159 731/1200 6.9% 171 15 160 161.8 2057
5 174 171 162 150 485/886 9.7% 164 4 149 151.1 1224
6 169 160 162 147 399/764 9.1% 155 4 148 149.3 2027
7 171 167 159 149 524/990 9.8% 160 4 146 147.8 2265
8 185 175 170 151 492/3584 6.7% 166 7 153 154.2 1790
9 174 172 169 158 571/1186 10.9% 169 5 154 155.3 2468

10 171 167 160 148 547/1446 9.1% 160 4 148 149.0 1768
avg. 178.4 173.5 168.5 153.8 578/1451 8.6% 166.3 6 153.7 155.1 1895

(d) Results for Real.

id Greedy Aco TreSea Ilpcompl HeurIlp Cmsa
value value value value time gap value time best mean time

1 93 87 86 78 972 0.0% 85 < 1 78 78.9 1192
2 160 155 153 139 432/752 9.2% 150 3 138 140.0 1960
3 119 116 113 104 125/3580 5.6% 112 2 103 104.7 1126
4 171 164 156 144 577/1730 6.5% 158 6 143 143.7 2037
5 172 171 166 150 778/2509 7.9% 161 5 151 152.9 1557
6 153 145 143 128 257/3578 6.5% 139 3 126 127.6 1469
7 135 140 131 121 359/2187 6.9% 132 2 122 122.7 1657
8 133 130 128 116 275/3365 6.8% 123 3 118 118.4 1576
9 149 146 142 131 399/613 8.8% 139 2 130 130.7 1790

10 151 148 143 131 311/1771 7.2% 144 3 131 131.7 1500
11 124 124 120 110 205/3711 4.8% 122 2 111 111.9 1658
12 143 137 138 126 299/793 9.8% 136 2 126 127.5 1903
13 180 180 172 156 784/1130 7.1% 171 5 158 158.6 2066
14 150 147 146 134 370/2456 9.7% 147 6 133 134.0 1789
15 157 160 152 139 560/1762 7.7% 148 3 141 141.7 1424

avg. 146 143.3 139.3 127.1 409/2131 7.0% 137.8 3 127.3 128.3 1647
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Table 3: Results for the instances of set Linear.

(a) Results for instances with Σ = 4.

n Greedy TreSea Ilpcompl HeurIlp Cmsa
mean mean mean time gap mean time mean time

200 75.0 68.7 63.5 4/104 0.0% 69.0 < 1 63.7 608
400 133.4 126.1 115.7 108/2081 6.8% 124.3 3 116.4 1381
600 183.7 177.5 162.2 513/1789 9.4% 174.1 8 162.9 1918
800 241.1 232.7 246.8 1671/1671 23.8% 229.1 17 212.4 2434

1000 287.0 280.4 n/a n/a n/a 277.2 1095 256.9 2623
1200 333.8 330.4 n/a n/a n/a 324.8 1803 303.3 2369
1400 385.5 378.9 n/a n/a n/a 373.1 1807 351.0 2452
1600 432.3 427.1 n/a n/a n/a 416.7 1811 400.6 1973
1800 477.4 474.2 n/a n/a n/a 464.4 1813 445.4 2194
2000 521.6 520.7 n/a n/a n/a 512.7 1820 494.0 1744
avg. 307.1 301.7 n/a n/a n/a 296.5 1018 280.7 1969

(b) Results for instances with Σ = 12.

n Greedy TreSea Ilpcompl HeurIlp Cmsa
mean mean mean time gap mean time mean time

200 127.3 122.1 119.2 1/1 0.0 123.0 < 1 119.2 22
400 228.9 223.5 208.9 7/51 0.0 215.7 6 209.4 892
600 322.2 318.7 291 47/1277 0.9 296.2 691 293.8 1433
800 411.4 408.1 368.7 147/2405 1.6 373.9 1546 373.2 1484

1000 499.2 494.9 453.4 395/2084 3.8 452.0 1802 449.9 2651
1200 586.0 585.6 536.6 784/3188 4.7 542.4 1803 531.0 2318
1400 666.0 664.6 684.1 1667/1667 15.8 653.3 1864 606.9 2467
1600 754.4 754.6 773.5 2648/2648 16.0 749.7 2045 694.8 2392
1800 827.3 833.0 n/a n/a n/a 850.7 3301 773.6 1484
2000 913.5 916.2 n/a n/a n/a 939.6 5052 849.6 2967
avg. 533.6 532.1 n/a n/a n/a 519.7 1811 490.1 1811

(c) Results for instances with Σ = 20.

n Greedy TreSea Ilpcompl HeurIlp Cmsa
mean mean mean time gap mean time mean time

200 149.2 146.6 146.2 1/1 0.0% 146.4 < 1 146.2 2
400 274.5 268.8 261.5 2/2 0.0% 263.8 < 1 261.9 80
600 389.2 383.5 362.3 10/15 0.0% 369.3 4 366.6 364
800 495.8 492.3 456.1 43/700 0.0% 464.7 121 463.1 804

1000 600.6 597.5 547.1 125/1737 0.6% 562.5 205 555.0 529
1200 706.1 707.8 642.2 296/2732 1.3% 658.8 415 648.5 1372
1400 801.1 804.0 737.9 559/2314 3.1% 745.7 812 737.7 2334
1600 899.8 903.1 861.3 966/2885 6.6% 872.6 1015 825.7 2251
1800 996.8 1000.1 1012.9 1559/1845 12.6% 994.4 1336 917.6 2437
2000 1097.8 1102.6 1136.0 2349/2349 14.4% 1120.7 1773 1024.9 2924
avg. 641.1 640.6 616.35 591/1458 3.9% 619.9 568 594.4 1310

of the same characteristics. Each algorithm included in the comparison was applied exactly once to each problem
instance. Note that in addition to different alphabet sizes (|Σ| ∈ {4, 12, 20}) this second benchmark set also contains
much larger instances than the first benchmark set (input strings with a length of up to n = 2000).

The analysis of the results permits to draw the following conclusions:

• Surprisingly, hardly any differences can be observed in the relative performance of the algorithms for instances
of type Linear and instances of type Skewed. Therefore, all the following statements hold both for Linear and
Skewed instances.

• Concerning the application of CPLEX to Ilpcompl, the alphabet size has a strong influence on the problem diffi-
culty. A value of “n/a” denotes that CPLEX was not able to find a feasible solution within 3600 CPU seconds.
For instances with |Σ| = 4, CPLEX is only able to provide feasible solutions for input strings of length up to
800, both in the context of instances Linear and Skewed. When |Σ| = 12, CPLEX can provide feasible solutions
for input strings of length up to 1600 (Linear), respectively 1400 (Skewed). However, starting from n = 1000
CPLEX is not competitive with Cmsa anymore. Finally, even though CPLEX can provide feasible solutions for
all instance sizes concerning the instances with |Σ| = 20, starting from n = 1400 the results are inferior to the
ones of Cmsa.
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Table 4: Results for the instances of set Skewed.

(a) Results for instances with Σ = 4.

n Greedy TreSea Ilpcompl HeurIlp Cmsa
mean mean mean time gap mean time mean time

200 68.7 62.8 57.4 10/217 0.0% 64.6 < 1 57.5 903
400 120.3 115.0 105.3 168/1330 7.6% 116.5 3 105.1 1314
600 170.6 163.8 149.7 938/2193 10.1% 165.2 38 150.4 1500
800 219.8 213.3 224 2600/2600 22.9% 211.7 1334 196.5 2303

1000 268.6 261.7 n/a n/a n/a 260.1 1798 240.2 2692
1200 313.8 309.0 n/a n/a n/a 302.1 1807 285 2785
1400 358.7 352.2 n/a n/a n/a 346.0 1801 327.6 2888
1600 400.9 397.9 n/a n/a n/a 394.4 1807 376.0 2171
1800 440.6 442.1 n/a n/a n/a 431.7 1808 417.7 2162
2000 485.0 481.2 n/a n/a n/a 468.9 1814 470.2 1222
avg. 284.7 279.9 n/a n/a n/a 276.1 1221 262.6 1994

(b) Results for instances with Σ = 12.

n Greedy TreSea Ilpcompl HeurIlp Cmsa
mean mean mean time gap mean time mean time

200 117.9 112.7 108.5 1/1 0.0% 112.7 < 1 108.6 12
400 216.1 208.5 193.4 10/136 0.0% 197.6 32 194.3 1002
600 304.8 301.7 274.5 71/1081 1.2% 277.9 650 277.2 1711
800 389.3 385.4 347.0 248/2725 2.3% 348.8 1533 351.0 2177

1000 471.6 468.9 429.4 650/2582 4.9% 428.7 1805 424.4 2648
1200 551.1 549.9 559.4 1351/1804 14.9% 535.0 1686 500.1 2597
1400 625.7 626.3 645.1 2693/2693 16.7% 638.4 1879 570.0 2962
1600 705.6 706.4 n/a n/a n/a 715.1 2981 643.8 2434
1800 788.4 788.9 n/a n/a n/a 810.1 4689 723.3 2329
2000 857.8 858.0 n/a n/a n/a 879.9 6072 797.3 2805
avg. 502.8 500.7 n/a n/a n/a 494.4 2133 459.0 2068

(c) Results for instances with Σ = 20.

n Greedy TreSea Ilpcompl HeurIlp Cmsa
mean mean mean time gap mean time mean time

200 140.4 135.9 134.7 1/1 0.0% 136.5 < 1 134.7 8
400 255.5 251.3 240.3 3/4 0.0% 246.1 2 240.6 1080
600 366.8 361.2 336.1 19/101 0.0% 344.6 15 341.1 764
800 466.3 462.7 424.4 80/1119 0.2% 429.9 442 429.8 753

1000 567.6 566.6 514.7 202/2253 0.9% 525.0 1130 520.9 1121
1200 661.8 662.4 604.2 469/2064 2.1% 608.2 1633 605.7 1869
1400 762.3 760.7 694.4 719/2511 2.8% 696.1 1837 693.2 1743
1600 851.2 855.2 863.3 1378/1828 12.3% 838.9 1804 780.4 2681
1800 948.7 948.8 969.8 1774/1976 13.9% 964.7 1713 870.2 2815
2000 1034.3 1037.7 1061.6 2589/2589 14.4% 1066.6 2547 967.1 2978
avg. 605.5 604.3 584.4 723/1844 4.7% 585.7 1112 558.4 1581

• For instances smaller than those for which Cmsa outperforms CPLEX, the differences between the results of
Cmsa and the ones of applying CPLEX to Ilpcompl are, again, very small.

In summary, we can state that Cmsa is competitive with the application of CPLEX to the original ILP model when
the size of the input instances is rather small. Moreover, the larger the size of the input instances, and the smaller the
alphabet size, the greater is the advantage of Cmsa over the other algorithms. The validity of these statements can be
conveniently observed in the graphics of Figure 2.

Finally, we also provide information about the average sizes of the sub-instances tackled within Cmsa, in compar-
ison to the sizes of the original problem instances. In particular, the average sizes of the sub-instances are shown in
Figure 3 in percent of the original problem instance sizes. For example, in the case |Σ| = 4, Linear, and input strings of
length n = 200, the considered average size of the tackled sub-instances within Cmsa is approximately 58% of the size
of the original instances. It can be observed that this percentage is getting smaller and smaller with growing size of
the original instances. This is why CPLEX can either solve the sub-instances to optimality or provide nearly-optimal
solutions in little computation time, even in the context of large original problem instances.

5.2. Experiments Concerning the MCA Problem

The following algorithms were considered for the comparison:
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(a) Results for Σ = 4, Linear (left), Skewed (Right)
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(b) Results for Σ = 12, Linear (left), Skewed (right)
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(c) Results for Σ = 20, Linear (left), Skewed (right)

Figure 2: Differences between the results of Cmsa and the ones obtained by applying CPLEX to Ilpcompl concerning the 600 instances of the second
benchmark set. Each box shows these differences for the corresponding 10 instances. Note that negative values indicate that CPLEX obtained a
better result than Cmsa.
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Figure 3: Average sizes of the sub-instances tackled within Cmsa concerning the 600 instances of the second benchmark set. In particular, sub-
instance sizes are shown in percent of the original instances. For example, in the case |Σ| = 4, Linear, and n = 200, the considered average size of
the tackled sub-instances within Cmsa is approx. 58% of the size of the original instances.

1. PGreedy: this is a cut-down version of Cmsa in which solutions are probabilistically generated, while other
algorithmic components such as the ageing mechanism and the application of the ILP solver to reduced instances
are not used. Remember that in the Cmsa implementation for the MCA problem, solutions are generated that
are not extensible, that is, the generated solutions cover all reachable nodes. This implies that, during the
construction process, once all nodes from X are included in the current arborescence, other complete (and
valid) solutions are encountered. For each solution construction, PGreedy returns the best solution encountered
in the process of generating a non-extensible solution.

2. Ilpcompl: the application of CPLEX to the complete ILP for each considered problem instance.
3. Cmsa: the proposed CMSA approach.

5.2.1. Benchmark Instances
A diverse set of benchmark instances was generated in the following way. Each benchmark instance is char-

acterized by three different parameters. First, the size n (number of nodes) of each generated DAG is taken from
{500, 1000, 5000}. In the process of randomly generating a DAG G = (V, A) with n nodes, the arc probability parc is
used to determine for each possible arc a pointing from a node vi ∈ V to another node v j ∈ V \ {vi}—where i < j—if
a is added to A or not. Three different arc probabilities were considered: parc ∈ {0.1, 0.3, 0.5}. Finally, the third pa-
rameter determines the size of set X. For this purpose we used a parameter perc, which refers to the percentage of the
number of nodes of the respective DAG, that is, in case perc = 20%, for example, set X contains 20% of the nodes of
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the respective DAG. Note that the nodes in X are randomly selected from the set of reachable nodes. Values for perc
were chosen from {1%, 10%, 20%}.

Finally, note that the arc weights for all problem instances were chosen in the following way. In 99% of all arcs,
a weight is chosen uniformly at random from {0, . . . , 1000}. In the remaining cases, a negative arc weight is chosen
from {−1000, . . . ,−1}. This was done in this way, because initial experiments indicated that a low percentage of arcs
with negative weights leads to more difficult problem instances. For each possible combination of values for n, parc,
and perc, 10 problem instances were randomly generated. This makes a total of 270 problem instances.

5.2.2. Tuning of Cmsa and PGreedy
Cmsa has several parameters for which well-working values must be found: (na) the number of solution construc-

tions per iteration, (agemax) the maximum allowed age of solution components, and dmin—respectively dmax—which
determine the degree of greediness which is employed during the process of constructing a non-extensible arbores-
cence. Note that, in the case of the MCA problem, parameter tmax—the maximum time in seconds allowed for CPLEX
per application to a sub-instance—was not subject to parameter tuning. This is because, in all cases, applications of
CPLEX to sub-instances used very few CPU seconds. Therefore, we used a problem instance independent value of
50 for tmax

As in the case of the MCSP problem, we make use of the automatic configuration tool irace [41] for the tuning
of the three parameters. More specifically, irace was applied to tune Cmsa separately for each combination of n and
parc. For each of these 9 combinations we randomly generated 12 training instances: four instances for each possible
value of perc. The tuning process for each instance size was given a budget of 1000 runs of Cmsa, where each run
was given a computation time limit of n/2 CPU seconds. Finally, the following parameter value ranges were chosen
concerning the three parameters of Cmsa:

• na ∈ {10, 30, 50}

• agemax ∈ {1, 5, 10, inf}, where inf means that solution components are never removed from the sub-instance.

• (dmin, dmax) ∈ {(0.0, 0.0), (0.5, 0.5), (0.9, 0.9), (0.0, 0.5), (0.5, 0.9), (0.0, 0.9)}

The 9 applications of irace produced the configurations of Cmsa as shown in Table 5a. The following trends can be
observed. First of all, the desired number of solution constructions per iteration seems to decrease with increasing
instance size (in terms of the number of nodes). The same trend can be observed for the values of parameter agemax,
whose desired value tends to decrease with increasing instance size. Concerning the greedyness of the solution con-
structions process, rather low greedyness seems to be indicated. This is with the exception of the instances with
n = 500 and parc = 0.5 for which the obtained values for dmin and dmax are 0.5, respectively 0.9.

In addition to tuning experiments for Cmsa, we also performed tuning experiments for PGreedy. As PGreedy
constructs solutions in the same way in which they are constructed in Cmsa, the parameters involved in PGreedy
are dmin and dmax. For the tuning of PGreedy we used the same training instances and the same parameter value
combinations as for the tuning of Cmsa. The obtained parameter values per combination of n and parc are displayed in
Table 5b.

5.2.3. Results
In the following we present the experimental results for the benchmark set described in Section 5.2.1. The results

are shown in the three Tables 6a–6c. Note that each table row provides average results over 10 problem instances, and
that each considered algorithm was applied exactly once to each problem instance. The layout of the three tables is as
follows. The first column provides the size of the input graphs in terms of the number of nodes, whereas the second
column indicates the graph density in terms of the edge probability used to generate the corresponding graphs. The
third and fourth column provide the results and computation times of PGreedy. The next three table columns are ded-
icated to the presentation of the results provided by solving the complete ILP model Ilpcompl described in Section 4.1.1.
The first one of these columns provides the value of the best solution found within n/2 CPU seconds, where n is the
number of nodes of the respective graphs. The second column provides the computation time (in seconds) needed
to solve the problems to optimality (if possible). Finally, the third one of the columns dedicated to Ilpcompl shows the

18

http://dx.doi.org/10.1016/j.cor.2015.10.014
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Table 5: Parameter settings produced by irace for the 9 different combinations of n and parc.

(a) Tuning results for Cmsa

(n,parc) na agemax (dmin, dmax)
(500, 0.1) 50 10 (0.0, 0.0)
(500, 0.3) 30 10 (0.5, 0.5)
(500, 0.5) 30 5 (0.5, 0.9)

(1000, 0.1) 10 5 (0.5, 0.5)
(1000, 0.3) 30 1 (0.5, 0.5)
(1000, 0.5) 10 1 (0.5, 0.5)
(5000, 0.1) 10 5 (0.0, 0.5)
(5000, 0.3) 10 1 (0.0, 0.5)
(5000, 0.5) 10 5 (0.0, 0.5)

(b) Tuning results for PGreedy

(n,parc) (dmin, dmax)
(500, 0.1) (0.9, 0.9)
(500, 0.3) (0.5, 0.9)
(500, 0.5) (0.9, 0.9)

(1000, 0.1) (0.5, 0.9)
(1000, 0.3) (0.5, 0.9)
(1000, 0.5) (0.0, 0.5)
(5000, 0.1) (0.0, 0.5)
(5000, 0.3) (0.0, 0.5)
(5000, 0.5) (0.0, 0.5)

optimality gap, which refers to the gap between the value of the best valid solution and the current lower bound at the
time of stopping a run. The last two columns display the results obtained by Cmsa. The first one of these columns
provides the results and the second one the average time needed by Cmsa to obtain these results. The best-performing
algorithm for each table row is marked by a grey background.

The analysis of the results permits to draw the following conclusions:

• Concerning the application of CPLEX to Ilpcompl, the size of the input graphs has—as expected—a strong influ-
ence on the problem difficulty. In fact, CPLEX was able to solve all problem instances with n ∈ {500, 1000}
to optimality. In contrast, CPLEX was not even able to come up with a feasible solution within the allowed
computation time in the case of input graphs with n = 5000. The percentage of nodes that must be included in a
solution (perc) apparently has no influence on CPLEX. With growing value of perc, CPLEX seems even faster
in solving the corresponding problem instances.

• For input graphs with n ∈ {500, 1000} Cmsa is nearly always able to provide optimal solutions, and is, therefore,
competitive with Cplex. With growing graph density, Cmsa is considerably faster than Cplex. For instances with
n = 5000, Cmsa outperforms both Cplex, which is not able to provide feasible solutions, and the probabilistic
greedy algorithm PGreedy.

Again, as in the case of the MCSP problem, we also provide in the case of the MCA problem information about the
average sizes of the sub-instances tackled within Cmsa, in comparison to the sizes of the original problem instances.
These average sub-instance sizes are shown in Figure 4 in percent of the original problem instance sizes. More in
detail, the 270 benchmark instances are categorized into nine different subsets concerning the number of nodes and
the density of the graph. A notation X-Y is used, where X refers to the number of nodes of the graphs, that is,
X ∈ {500, 1000, 5000}, and Y refers to low, medium and high density, that is, Y ∈ {L,M,H}. For example, in the case
500-H, that is, graphs with 500 nodes of high density, the considered average size of the tackled sub-instances within
Cmsa is approximately 22% of the size of the original instances. It can be observed that this percentage is getting
smaller and smaller with growing size of the input graphs and growing density. This is why CPLEX can either solve
the sub-instances to optimality or provide nearly-optimal solutions in little computation time, even in the context of
large original problem instances.

6. Conclusions and Future Work

In this paper we introduced a new, generally applicable, algorithm for solving combinatorial optimization prob-
lems. The algorithm is an instantiation of the Generate-and-Solve framework from the literature. It is based on the
general idea of generating solutions in a probabilistic way, solving the sub-instances of the original problem instance
that result from merging the solution components contained in the generated solutions to optimality, and adapting these
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Table 6: Results for the MCA problem instances.

(a) Results for instances with perc = 1%.

n parc PGreedy Ilpcompl Cmsa
mean time mean time gap mean time

0.1 10011.7 95.4 -940.1 0.4 0.0 -940.1 7.6
500 0.3 2429.6 123.9 -13450.8 3.5 0.0 -13450.8 2.6

0.5 -6244.6 151.8 -28030.8 12.8 0.0 -28030.8 4.7
0.1 33128.9 272.4 -15263.9 4.5 0.0 -15251.2 63.0

1000 0.3 -7501.4 235.4 -62414.8 42.3 0.0 -62414.5 86.4
0.5 -42531.7 292.9 -106522.3 152.9 0.0 -106522.3 58.4
0.1 -114469.8 1073.0 n/a n/a n/a -530515.0 1572.8

5000 0.3 -757318.8 1167.1 n/a n/a n/a -1380184.7 938.1
0.5 -1203516.6 1716.8 n/a n/a n/a -1959379.6 365.6

(b) Results for instances with perc = 10%.

n parc PGreedy Ilpcompl Cmsa
mean time mean time gap mean time

0.1 47753.9 100.1 5648.3 0.3 0.0 5653.6 29.8
500 0.3 12247.8 153.9 -11338.3 3.6 0.0 -11338.3 3.3

0.5 6.8 142.9 -26982.4 11.4 0.0 -26982.4 11.2
0.1 62650.5 130.1 -9115.1 3.5 0.0 -9025.9 119.3

1000 0.3 1152.3 248.4 -61065.8 38.5 0.0 -61065.8 51.2
0.5 -39504.9 205.3 -105633.0 145.6 0.0 -105633.0 51.5
0.1 -104899.7 1760.7 n/a n/a n/a -526539.8 1922.3

5000 0.3 -758425.1 853.0 n/a n/a n/a -1379684.4 861.9
0.5 -1203092.2 1239.2 n/a n/a n/a -1959193.4 247.2

(c) Results for instances with perc = 20%.

n parc PGreedy Ilpcompl Cmsa
mean time mean time gap mean time

0.1 51730.7 139.2 10887.8 0.3 0.0 10899.6 41.9
500 0.3 14726.6 126.4 -9801.0 3.2 0.0 -9801.0 3.2

0.5 2258.7 104.4 -25827.6 11.1 0.0 -25827.6 32.0
0.1 66223.5 237.3 -4228.4 2.9 0.0 -4190.0 168.7

1000 0.3 4079.5 258.1 -59319.6 36.4 0.0 -59319.6 73.2
0.5 -39905.1 218.8 -104945.8 136.7 0.0 -104941.1 57.1
0.1 -105791.8 1304.2 n/a n/a n/a -522990.6 1831.9

5000 0.3 -751317.6 1768.9 n/a n/a n/a -1379042.0 754.9
0.5 -1204557.1 967.2 n/a n/a n/a -1959042.5 399.5

sub-instances based on an aging mechanism. The proposed algorithm has been applied to two NP-hard combinato-
rial optimization problems—the minimum common string partition problem and the minimum covering arborescence
problem—as test cases. The results have shown that the proposed algorithm is a state-of-the-art method for these
problems, especially, for what concerns rather large problem instances.

In future work we will consider the following two lines of research. First, we would like to apply the algorithm to
other types of combinatorial optimization problems such as, for example, permutation problems or scheduling prob-
lems. Second, we plan to study alternatives for the aging mechanism applied in this work. This is because the aging
mechanism results in a binary decision whether a solution component is considered or not. It would be interesting to
investigate more fine-grained mechanisms that take into account the quality of the solutions or interactions between
solution components.
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Figure 4: Average sizes of the sub-instances tackled within Cmsa concerning the 270 instances of the benchmark set, categorized into nine different
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