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My research is about . . .
Benchmarking and Empirical Analysis of Optimization Algorithms

☞ Reproducibility in Evolutionary Computation [López-Ibáñez, Branke & Paquete, 2021]

Multi-objective optimization ☞ EAF package ☞ moocore package
Interactive optimization (human-in-the-loop)

☞ Machine Decision Makers [López-Ibáñez & Knowles, 2015]

Automatic configuration, selection and design of algorithms ☞ irace
Expensive optimization . . . , Asteroid Routing Problem ☞

Applications, applications, applications!
Optimization in steel manufacturing

School bus routing for SEND students

Supply chain design for Personalised Medicine
Bayesian Optimisation with dynamic constraints

Intervowen Optimisation
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Mario’s Pizza Delivery Problem [Birattari, 2004]

Mario collects phone orders for 30 minutes.
Mario wants to schedule deliveries to get back to the pizzeria as fast as possible.

Scheduling deliveries is an optimization problem

A different problem instance arises every 30 minutes

Limited time for solving, say one minute (online)

Limited time to implement an optimization algorithm, say one week (offline)
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Traditional design of optimization algorithms

Problem
Instances

?
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Traditional design of optimization algorithms

Human expert + intuition + trial-and-error/statistics

Benchmark
Problems

Solver

?

Problem
Instances

?
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Design choices and parameters everywhere

Modern high-performance optimizers involve a large
number of design choices and (hyper)-parameter settings

Exact solvers
Design choices: alternative models, pre-processing, variable selection, value selection,
branching rules . . .
+ numerical parameters
IBM CPLEX: 63 parameters that control the optimization

(Meta)-heuristic solvers
Design choices: solution representation, operators, neighborhoods, pre-processing,
strategies, . . . + numerical parameters
Many are hidden

6 / 65



Design choices and parameters everywhere

Modern high-performance optimizers involve a large
number of design choices and (hyper)-parameter settings

Exact solvers
Design choices: alternative models, pre-processing, variable selection, value selection,
branching rules . . .
+ numerical parameters
IBM CPLEX: 63 parameters that control the optimization

(Meta)-heuristic solvers
Design choices: solution representation, operators, neighborhoods, pre-processing,
strategies, . . . + numerical parameters
Many are hidden

6 / 65



Design choices and parameters everywhere

Modern high-performance optimizers software involve a large
number of design choices and (hyper)-parameter settings

Domain Software Parameters

ML WEKA 768 [Kotthoff et al., 2016]
Auto-sklearn 110 [Feurer et al., 2015]

Code optimization GCC 172 flags [Pérez Cáceres et al., 2017b]
+ 195 numerical

Databases Cassandra 23 [Silva-Muñoz et al., 2021]
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Design choices and parameters everywhere

Categorical parameters
localsearch ∈ { tabu search, SA, ILS }

Ordinal parameters
neighborhoods ∈ { small, medium, large }

Numerical parameters (integer and real-valued)
population sizes, acceptance temperature, hidden constants, . . .

Conditional parameters are only active for specific values of other parameters:

temperature only enabled if localsearch == "SA"

Configuring an algorithm means
setting its categorical, ordinal and numerical parameters
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Algorithm configuration and design is hard

Challenges

✘ Many alternative design choices and parameter settings

✘ Nonlinear interactions among algorithm components
and/or parameters

✘ Algorithms are stochastic

✘ Problem instances used for design (benchmark instances)
are not identical to the ones found in the real-world

✘ Performance assessment is difficult (statistical analysis)
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Traditional algorithm design and configuration

Traditional approaches

Trial–and–error design guided by expertise/intuition
✘ prone to over-generalizations,
✘ limited exploration of design alternatives,
✘ human biases

Guided by theoretical studies
✘ often based on over-simplifications,
✘ specific assumptions,
✘ few parameters

Can we make this approach more principled and automatic?
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The algorithm configuration problem

1 Find the best algorithm configuration
given a set of training problem instances

2 Repeatedly use this algorithm configuration to solve
unseen problem instances

A problem with many names:
offline parameter tuning,
automatic algorithm configuration,
hyper-parameter optimization,
hyper-heuristics, genetic programming,
meta-optimisation, programming by optimisation [Hoos, 2012], . . .
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Offline configuration vs. Online control

Offline tuning / Algorithm configuration
Learn best configuration before solving the real problem instance
Configuration done on training problem instances
Performance measured over test ( ̸= training) instances

Online tuning / Parameter control / Reactive search
Learn best configuration while solving each instance
No training phase but more expensive while solving
Very popular in continuous optimization
Ultimate goal: parameter-free algorithms

All online methods have parameters that are configured offline
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AC is a mixed-integer stochastic black-box optimization problem
Mixed-decision variables

discrete (categorical, ordinal and integer) and real-valued
conditional parameters, box-constraints and other constraints

Stochasticity
of the target algorithm
of the problem instances

Black-box
evaluation requires running a configuration on an instance

Typical tuning goals
maximize solution quality within given time
minimize run-time to decision / optimal solution

AC requires specialized methods !
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(Offline) Automatic Algorithm Configuration
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The racing approach [Maron & Moore, 1997; Birattari et al., 2002]

Racing is a method for the selection of the best
among a given set of algorithm configurations

✔ Reduce effort evaluating low performance configurations

✔ Focus effort on selecting the best configurations
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The racing approach [Maron & Moore, 1997; Birattari et al., 2002]
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Racing is a method for the selection of the best
among a given set of algorithm configurations

start with a set of initial candidates
consider a stream of instances
sequentially evaluate candidates
discard inferior candidates

as sufficient evidence is gathered against them

. . . repeat until a winner is selected

or until computation time expires
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The racing approach [Maron & Moore, 1997; Birattari et al., 2002]

How to discard?

Statistical tests!

Paired t-test with/without p-value correction
(against the best)

[Maron & Moore, 1997]

F-Race: Friedman two-way analysis of
variance by ranks
+ Friedman post-hoc test

[Conover, 1999]

Bayesian: Bayesian nonparametric statistics
[Benavoli et al., 2015]

Taken from Maron & Moore [1997]
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Sampling configurations

Racing (F-race, t-race, . . . ) is a method for the
selection of the best among a given set of algorithm configurations

How to define this set of configurations?

Full factorial
Random sampling
Iterative update of a probabilistic sampling model

(≈ Estimation of Distribution Algorithm)
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]
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Iterated Racing
1 Sampling new configurations according to a probability distribution

2 Selecting the best configurations from the newly sampled ones
by means of racing

3 Updating the probability distribution in order to bias the sampling
towards the best configurations

I/F-race: Balaprakash, Birattari & Stützle [2007],
Birattari, Yuan, Balaprakash & Stützle [2010]

irace (v1): López-Ibáñez, Dubois-Lacoste, Stützle & Birattari [2011]
elitist irace (v2): López-Ibáñez, Dubois-Lacoste, Pérez Cáceres, Stützle & Birattari

[2016]
elitist irace + adaptive capping (v3):

Pérez Cáceres, López-Ibáñez, Hoos & Stützle [2017a]
19 / 65



Iterated Racing
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Elitist Iterated Racing [López-Ibáñez et al., 2016]

✘ Each new iteration (race) forgets the results of the previous one
⇒ Iterated F-race may “lose” the best-so-far configuration

✔ Protect the best configurations (elites) from being discarded
unless all their results are considered
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Adaptive capping (irace 3.0) [Pérez Cáceres, López-Ibáñez, Hoos & Stützle, 2017a]

Extension of irace to better handle run-time minimization

Configuration θ1 evaluated on I1 dominates θ2 evaluated on I2 if
I2 ⊂ I1 and ∑

i∈I2
m(θ1, i) ≤ ∑

i∈I2
m(θ2, i)

Adaptive bound: κnew
i = ∑i

k=1 m(θbest, k)− ∑i−1
k=1 m(θnew, k)

Dominance elimination and adaptive capping:

5

3

3

Instance 1

Instance 2

Instance 3

Best
Configura�on

New
Configura�on

inc. bound: 5
4 bound: 5
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An overview of applications of irace
Parameter tuning

Exact MIP solvers (CPLEX, SCIP [López-Ibáñez & Stützle, 2014])
single-objective optimization metaheuristics
multi-objective optimization metaheuristics [López-Ibáñez & Stützle, 2012; Bezerra et al., 2016]

semi-interactive tuning [Diaz & López-Ibáñez, 2021]

anytime optimization (improve time-quality trade-offs) [López-Ibáñez & Stützle, 2014]

command-line flags of GCC compiler [Pérez Cáceres et al., 2017b]

Automatic algorithm design
From a design grammar [Mascia et al., 2014; Mart́ın-Santamaŕıa et al., 2024]

Machine learning [Lang et al., 2014; Miranda et al., 2014]

mlr and mlr3tuning R packages [Bischl et al., 2013, 2016]

Design of control software for robots [Francesca et al., 2015]

Theoretical research [Friedrich et al., 2018; Dang & Doerr, 2019; Hall et al., 2019]

2 098 citations in Google Scholar, 201 000 downloads
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The irace Package
Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Thomas Stützle, and Mauro Birattari.
The irace package: Iterated Racing for Automatic Algorithm Configuration.
Operations Research Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002
https://mlopez-ibanez.github.io/irace/

Implementation of Iterated Racing in R
Goal 1: Flexible

Goal 2: Easy to use

R package available at CRAN (GNU/Linux, Windows, OSX)
http://cran.r-project.org/package=irace

Use it through the command-line: (see irace --help)
irace --max-experiments 1000 --param-file parameters.txt

✔ No knowledge of R needed

24 / 65
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The irace Package

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace
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The irace Package: Instances

TSP instances
$ dir Instances/
3000-01.tsp 3000-02.tsp 3000-03.tsp ...

Continuous functions
$ cat instances.txt
function=1 dimension=100
function=2 dimension=100
...

Parameters for an instance generator
$ cat instances.txt
I1 --size 100 --num-clusters 10 --sym yes --seed 1
I2 --size 100 --num-clusters 5 --sym no --seed 1
...

Script / R function that generates instances
☞ if you need this, tell us!
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The irace Package: Parameter space

Categorical (c), ordinal (o), integer (i) and real (r)

Subordinate parameters (| condition)

Logarithmic scale (,log) (irace 3.0)

$ cat parameters.txt

# Name Label/switch Type Domain Condition
LS "--localsearch " c (SA, TS, II)
rate "--rate=" o (low, med, high)
population "--pop " i,log (1, 100)
temp "--temp " r (0.5, 1) | LS == "SA"

For real parameters, number of decimal places is controlled by option digits
(--digits)
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The irace Package: Options

maxExperiments (maxTime): maximum number of runs
(or overall time) of the target algorithm (tuning budget)

testType: either F-test or t-test
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The irace Package: target-runner

A script/program that calls the software to be tuned:

./target-runner configID instanceID seed instance configuration

e.g. :
./target-runner 2 1 1234567 3000-01.tsp --localsearch SA ...

An R function

Flexibility: If there is something you cannot tune, let us know!
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The irace Package: Other features

1 Initial configurations (e.g., default configuration)

2 Parallel evaluation:
multiple CPUs, MPI, batch job clusters (SGE, PBS, Torque, Slurm)

3 Forbidden configurations (+ rejection):

popsize < 5 & LS == "SA"

4 Recovery file: allows resuming an interrupted irace run

5 Test instances

6 Repair configurations before being evaluated

7 Adaptive capping (for runtime minimization)
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The irace Package

Last version 3.5 (23/10/2022) ☞ 4.0 very soon !

A detailed user-guide / tutorial:
https://cran.r-project.org/web/packages/irace/vignettes/irace-package.pdf

GitHub: https://github.com/MLopez-Ibanez/irace

Google group
https://groups.google.com/d/forum/irace-package
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iraceplot: Opening the black-box

https://auto-optimization.github.io/iraceplot/

Interactive HTML post-configuration report

Summary statistics per instance /
per configuration / per iteration

Interactive visualizations

Ablation report
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Example #1

Automatically Improving the Anytime Behavior of Optimization Algorithms with irace

Manuel López-Ibáñez and Thomas Stützle.
Automatically improving the anytime behaviour of optimisation algorithms.
European Journal of Operational Research, 2014. doi: 10.1016/j.ejor.2013.10.043.
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Automatically Improving the Anytime Behavior

Anytime Algorithm [Dean & Boddy, 1988]

May be interrupted at any moment and returns a solution

Keeps improving its solution until interrupted

Eventually finds the optimal solution

Good Anytime Behavior [Zilberstein, 1996]

Algorithms with good “anytime” behavior produce as high
quality result as possible at any moment of their execution.
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Automatically Improving the Anytime Behavior
Max-Min Ant System w/o LS

Solution-quality vs. time (SQT) curve / Performance profile
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Automatically Improving the Anytime Behavior

Algorithms with good “anytime” behaviour produce as high quality
result as possible at any moment of their execution [Zilberstein, 1996]
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Improving Anytime Behaviour

How to improve the anytime behaviour of MMAS?

☞ Online parameter variation:

Start with 1 ant, add 1 ant every iteration until 400 ants
Start with β = 10, switch to β = 2 after 100 iterations
. . .

✘ More parameters!

✘ How to compare SQT curves?
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Automatically Improving the Anytime Behavior

Online parameter control
✘ Which parameters to adapt? How? ⇒ More parameters!
✔ Use irace (offline) to select the best parameter control strategies

Improve Anytime Behavior
✔ More robust to different termination criteria
✘ How can irace compare SQT curves?
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Automatically Improving the Anytime Behavior
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Automatically Improving the Anytime Behavior
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Automatically Improving the Anytime Behavior
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Automatically Improving the Anytime Behavior

irace + hypervolume = automatically improving the anytime behavior of
optimization algorithms

1 Run configuration until large stopping time
2 Compute hypervolume of SQT curve
3 Evaluate anytime behavior according to hypervolume

Hypervolume (multi-objective) optimization
✔ Objectively defined comparison
✔ Well-known performance measure

Automatic configuration using irace
✔ Most effort done by the computer
✔ Best configurations selected by the computer: Unbiased
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Scenario #1: Experimental comparison
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Scenario #2: SCIP [López-Ibáñez & Stützle, 2014]

SCIP: an open-source mixed integer programming (MIP) solver
[Achterberg, 2009]

200 parameters controlling search, heuristics, thresholds, . . .

Benchmark set: Winner determination problem for
combinatorial auctions [Leyton-Brown et al., 2000]
1 000 training + 1 000 testing instances

Single run timeout: 300 seconds

irace budget (maxExperiments): 5 000 runs
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Scenario #2: SCIP [López-Ibáñez & Stützle, 2014]
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Example #2

Capping methods for the automatic configuration of optimization algorithms

Marcelo De Souza, Marcus Ritt, and Manuel López-Ibáñez.
Capping methods for the automatic configuration of optimization algorithms.
Computers & Operations Research,2022. doi: 10.016/j.cor.2021.105615.
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Capping methods for automatic algorithm configuration [De Souza et al., 2022]

Adaptive capping only useful for decision algorithms (time-to-target)
In many scenarios, we optimize cost over time until maximum termination time
✘ Running bad configurations until maximum time is wasteful
✔ Terminate (cap) bad configurations as soon as possible
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Capping methods for automatic algorithm configuration [De Souza et al., 2022]
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Capping methods for automatic algorithm configuration [De Souza et al., 2022]

Best and Worst Profile-based Aggregation Methods:
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Capping methods for automatic algorithm configuration [De Souza et al., 2022]

P = profile-based
A = area-based
E = elitist
D = adaptive
B = best
W = worst
M = model
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Capping methods for automatic algorithm configuration [De Souza et al., 2022]

Category Capping
method

Relative
effort [%]

Quality loss [%]

ACOTSP HEACOL TSBPP HHBQP LKH SCIP

Conservative AD.4 76.1 0.02 0.02 −0.05 −12.24 0.00 0.02

Aggressive PEMB.1 53.0 −0.01 −0.03 −0.09 17.47 0.00 0.08

AEBB for scenarios where the configuration budget is time

Python add-on for irace: https://github.com/souzamarcelo/capopt
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Why automatic algorithm configuration and design?

1 More scientific, more principled

2 The end of the up-the-wall game

3 Computing power is exponentially cheaper

4 AC tools are becoming better

5 More interesting, fun and useful
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Reason #1: More scientific, more principled

✔ Reproducible results

✔ Fairer comparisons (best-effort)

✔ Avoid / reduce human biases

✔ Codify good practices

“For procedures that require parameter tuning, the available data must be partitioned into a
training and a test set. Tuning should be performed in the training set only. ”[Journal of Heuristics: Policies on Heuristic Search Research]

“The performance of swarm intelligence algorithms [. . .] is often strongly dependent on the
value of the algorithm parameters. Such values should be set using either sound statistical
procedures [. . .] or automatic parameter tuning procedures. ”[Swarm Intelligence Journal (Springer)]
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Over-tuning

(Taken from Birattari [2009]) 54 / 65



Reason #2: The End of the Game

“The Journal of Heuristics does not endorse the up-the-wall game. ”[Journal of Heuristics: Policies on Heuristic Search Research]

“True innovation in metaheuristics research therefore does not come from yet
another method that performs better than its competitors, certainly if it is
not well understood why exactly this method performs well. [Sörensen, 2015] ”

Finding a state-of-the-art algorithm is “easy”:

problem modeling + algorithmic components + computing power

What novel components? Why they work? When they work?
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Reason #3: Computing power is exponentially cheaper

Algorithm Configuration in the Cloud [Geschwender et al., 2014]

Amazon EC2, 8 cores, 7GB memory, $ 0.58/hour
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Reason #4: AC tools are becoming better

Complex parameter spaces: numerical, categorical, ordinal, subordinate
(conditional), constraints

Large parameter spaces (hundreds of parameters)

Heterogeneous problem instances

Medium to large configuration budgets
(few hundred to many thousands of runs)

Individual runs may require from seconds to hours

Multi-core CPUs, MPI, distributed computation clusters

☞ Modern automatic configuration tools (irace, SMAC, . . . )
are general, flexible, powerful and easy to use
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Reason #5: More interesting, fun, and useful
✘ Classical optimization research:

1 Human-driven design to outperform other algorithmic designs
2 Analysis of the human-designed algorithm

✔ Paradigm shift in optimisation research:

From monolithic algorithms
to flexible frameworks of algorithmic components

1 Humans devise novel algorithmic components

2 Data-driven CPU-intensive automatic design

3 Analysis of generated data

4 Human-driven improvement of components
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Tianjun Liao, Marie-Eléonore Marmion, Franco Mascia, Marco Montes de Oca, Federico Pagnozzi,
Zhi Yuan, Marcus Ritt, Marcelo De Souza

61 / 65



References I
T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1):1–41, July 2009.
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