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Abstract- Significant operational cost and energy sav- over a time period, usually 24 hours, we must achieve pe-
ings can be achieved by optimising the schedules of riodicity between supply and demand. Therefore, another
pumps, which pump water from source reservoirs to feasibility constraint is that the volume of water in the tanks
storage tanks, in Water Distribution Networks. Despite at the end of the time period is not lower than the volume at
the fact that Pump Scheduling Problem involves sev- the start of time period.

eral conflictive objectives, few studies have considered  The problem of scheduling the operation of pumps to
multi-objective optimisation in terms of Pareto optimal-  minimise a single objective has been studied using many
ity. Our approach links a well-known multi-objective  approaches. Linear, non-linear, integer, dynanicand
optimiser, SPEA2, with a hydraulic simulator, EPANET, mixed [2] programming are some of these approaches. A
in order to provide a Pareto set of explicit schedules. review of earlier studies was carried out by Ormsbee and
Since only fixed speed pumps and fixed time intervals Lansey B].

are considered, we use a natural binary representation Complex water distribution networks could not be rep-
and simple and straightforward initialisation and re- resented realistically by these methods due to their inher-
combination operators. Unlike earlier studies, feasibil- ent limitations. Therefore, researchers have considered the
ity constraints are handled by a methodology based on application of Genetic Algorithms4[ 5, 6, 7, 8] and other

the dominance relation rather than using penalty func- techniques including Particle Swarm Optimisati®h énd
tions or reparation mechanisms. We test the proposed Simulated Annealing10, 11]. The objective in most of
approach using a network instance and an assessment of these studies was to minimise electricity cost. Other objec-
the results is carried out by means of empirical attain- tives were incorporated as penalties to the objective func-
ment surfaces. The results show that the proposed ap- tion. However, little attention has been given to the multi-
proach is able to obtain better schedules than the state- objective nature of the Pump Scheduling problem.

of-the-art single-objective algorithm for this network in- In this work, we study the multi-objective optimisation
stance and within the same number of function evalua- of pump scheduling with respect to both electricity cost and
tions. number of pump switches. While in single objective opti-
misation the goal is to find the optimal solution, in multi-
1 Introduction objective optimisation defined in terms of Pareto optimality

the goal is to find, or at least approximate to, timal

In Water Distribution Networks, water is pumped fromPareto setthatis, the set of feasible solutions such that none
reservoirs into tanks where it is stored during periods of lowf them is dominated by any other feasible solution. A so-
demand and released during periods of high demand. Cosit§ion dominates another, if the former is not worse than the
incurred for the operation and maintenance of pumps cofater for each objective value and better for at least one ob-
stitute the major part of the budget required for managemejective. When neither of two solutions dominate each other,
of Water Distribution Networks and can amount to as higithey are mutually nondominated. As in single objective op-
as 90% of the operating costs. Therefore, great savingstimisation, given two solutions with equal objective values,
operational costs can be obtained by carefully schedulimgne of them is considered to be dominated by the other.
the operations of pumps. Operational costs include cost of Savic et al. 12] studied a bi-objective problem: minimi-
the electrical energy consumed during a time period (elesation of both the electricity cost and the number of pump
trical consumption charge), cost associated with the maxgwitches. They used a hybrid approach (a genetic algorithm
mum amount of power consumed during any time intervatombined with a local search) based on Goldberg’'s Pareto
(demand charge) and maintenance costs due to the weariggjimal ranking 13]. Roughly, nondominated solutions in
on pumps caused by frequent switching of pumps, that ithe current population are assigned rank one and then re-
changing the state of a pump from off to on. moved from the current population. Then, nondominated

The objective of Pump Scheduling Problem is to minsolutions in the reduced population are given rank two. This
imise the above cost whilst satisfying physical and opergrocedure is repeated until a rank has been assigned to alll
tional constraints. These constraints include supplying reolutions in the current population and the fitness of each
quired volume of water at demand nodes with adequas®lution is calculated according to their rank. In their ap-
pressure and maintaining water levels inside tanks withiproach, constraint violations on tank water levels were in-
maximum and minimum limits. Since pumps are schedulecbrporated into the electricity cost as penalties. This may



result in a Pareto set containing infeasible solutions. To
prevent this, they assigned all infeasible solutions a rank
greater than one.

Sotelo et al. 14] compared the performance of sev-
eral multi-objective evolutionary algorithms (MOEA) for
the pump scheduling problem. They concluded that the
Strength Pareto Evolutionary Algorithm (SPEA) produced
the best overall performance for the minimisation of four
objectives: {) electricity cost, if) demand chargeiii) num-
ber of pump switches, and/f difference between the initial
and final levels of the tank. They incorporated a heuristic
into the algorithms for repairing solutions which violate re-
strictions on the maximum and minimum tank levels. If at
some time interval the tank level is above the maximum,
then the current scheduling is pumping more water than the
amount required, and thus, a number of pumps which were _ o
on in the previous intervals are turned off. A similar method Figure 1: Example of a Water Distribution Network
was adopted to repair solutions which produced tank levels
below the minimum level. 2.2 The Pump Scheduling Problem

A basic difference between the present study and the pre-
vious works which considered multiple objectives is the fadin @ Pump Scheduling Problem, operation6foumps are
that, in the present work, we use a disaggregated or du&cheduled over a time period, usually 24 hours. The main
level methodology, that is, linking an optimisation mode®doal is to minimise the cost of supplying water, while keep-
with a network simulation model. The use of a simuding the physical and the operational constraints within lim-
lation model allows to handle more Comp|ex network injtS [3] There are two classes of costs associated with the
stances, while previous multi-objective approaches tacklédperation of pumps: electrical cost and maintenance costs.
simple networks composed of several pumps in parallel and Pump maintenance costs are mainly due to wear and tear
a single tank. The optimisation model chosen is the se€f pumps caused by frequent switching them on and off. A
ond version of the Strength Pareto Evolutionary AlgorithnrPUmp switchi.e., turning on a pump that was not operat-
(SPEA2) [L5] and the network simulator EPANETL§] is  ing in the previous time periodlP], causes a cost of wear
used to conduct hydraulic analysis and evaluate pump oft the pump which cannot easily be estimated. However, a
eration policies. In addition, we use a method based d¥ffe assumption is that maintenance costs increase with the
dominance criteria to handle infeasible solutiong[ Fi- number of pump switches. Therefore, a surrogate objec-
nally, we assess the quality of the results using attainmetite of number of pump switches is considered to represent
surfaces 18] which provide a more robust measure of the?ump maintenance cost.
quality of multi-objective optimisers than other metrics used Total energy cost is composed of efectrical consump-

in previous studies of multi-objective optimisation for thetion charge(£/kW-h), i.e., the cost of electrical energy con-
Pump Scheduling problem. sumed during a time period, and tthiemand chargée/kw),

i.e., the cost associated with the maximum amount of power
consumed (peak energy) within a time interval. The elec-
tricity consumption charge usually varies depending on the
2.1 Water Distribution Networks time of the day, with peak and off-peak electricity tariffs.
_ o ) The energy consumption rate of pumping depends on sev-
A typical Water Distribution Network, given by Van Zyl erg) factors such as efficiency and power of the pumps, flow
et al. [g], is as shown in Figurd. It consists of a source gf \yater through the pump and the elevation of tanks.
of potable water (reservoir), three pumps, two tanks and a The optimal pump policyis defined as the schedule of
check valve which prevents water flowing backwards. Wesymp operations that will result in the lowest total operat-
ter is pumped from the reservoir into the tanks and it is CONMng cost for a given set of boundary conditions and system
sumed at the demand node. The amount of water which C@Bnstraints 20.
be pumped is higher than the amount of water consumed, |mpjicit system constraints define the hydraulic equilib-
thus pumps do not need to be active all the time. Moreoveiym state of the system, e.g., conservation of mass at each
water can be stored in tanks to be consumed later in a grgfnction node and conservation of energy around each loop
ual way. Water demand varies over time and consumptiq the network. Implicit system constraints are handled by
patterns can be estimated using historical data. Therefokge network simulator EPANET.
the operation of pumps can be scheduled to minimise the |mplicit bound constraints represent system performance
cost of supplying water. criteria. There are two implicit bound constraints that are
usually considered: constraints on tank water levels and
pressures at demand nodes.
Minimum and maximum tank levels are handled by

Demand Node  -----------mmmmmmncfoooees

Reservoir

Pump 1A

2 The Pump Scheduling Problem



EPANET (and in the real world by automatic systems 08.2 Bit/Binary Representation
valves). In order to achieve periodicity between supply anPn this study, only fixed speed pumps are considered. There-
demand, we must ensure that the volume of water in tk}gre as shown in FigR, for each pump during a certain time
tanks at the end of the simulation period is not lower than_, ™’ ' pump 9

the volume at the start of the simulation period. The diflnterval, the operation policy can be represented by one bit

o . f a string. The pump is off during that time interval if the
ference between the initial volume and the final volume of ., . ; : .
. . - it's value is zero, and the pump is operating at fixed speed
water in a tank will be calledolume deficit If the volume

deficit in a tank is higher than a tolerance volume, then th'é the value is one. The number of pump switches is the

operation policy is considerdfeasible number of 0 1] sequences, plus one if the scheduling starts

A solution is considered to biavalid when EPANET With [ 1] and ends with 0. Given N pumps apdr time
generates warnings during the simulation of a particular optervals, the number of possible solutiongi™ and the
erational policy. For example, if during a particular simu-Maximum number of switches per pumpig2.
lation period, the system could not supply required volume
of water with the specified minimum pressure at demand
nodes, then the objectives of this solution cannot be evalu-
ated and it is considered to be invalid.

to tq to t3 tj tp
P, [0/T]O/T]0/T]0/T]...T0/T]

Figure 2: Binary representatiq0/1) for each pump and

. i of fi ime i Ig;.
3 Solution Methodology a numberT of fixed time intervalg ;

The approach followed in this work considers a natural bi- " the present work, we considet fixed time intervals
nary representation for operation policies. Each operatidf 1 hour. Then, forl’ = 24 and N = 3 the number of
policy is a solution to the problem which is evaluated byP0SSible solutions is.72 x 102! and the maximum number
EPANET. For each solution, EPANET calculates two ob®f PUMP switches iS6.

jective values, that is, electricity cost and the total number

of pump switches. The goal is the multi-objective minimi-3.3 SPEA2

sation of these values. This optimisation is performed bype optimiser used in the present work is the second version
SPEA2. Additionally, EPANET calculates the total volumeyt the Sirength Pareto Evolutionary Algorithm (SPEA2)
deficit and pressure deficiency of each solution. These vqlﬁ]_ The main features of SPEA2 arei) (he fitness of
ues are used to establish the feasibility of a solution. 4 solytion depends on the strength of the solutions by which
it is dominated, where the strength of a solution is defined
3.1 Multi-objective Optimisation as the number of other solutions in the current population

In multi-objective optimisationg1, 22] we do not have a that it dominates;ii) the ties of solutions with the same fit-
single objective value, but a vector of objective values, th4teSS are broken by a nearest neighbour density estimation
is, anobjective vectarGiven two objective vectors andv, technique; ifi) the size of the archive of nondominated so-
u # v, we say that: dominates if  is not worse than lutions is a fixed valuey, when the actual number of non-
for each objective value and better for at least one objectivdominated solutions is lower than this value the archive is
When neither: dominates nor vice versa, we say that the filled with dominated solutions and when the actual num-
two objective vectors araondominated Since each solu- P€r of nondominated solutions exceedsome of them are
tion represents an objective vector, we use the same terfijScarded by a truncation operator which preserves bound-
nology among solutions. Therefore, given a set of solution&"y Solutions. . o
we can use the dominance relation among their objective 1N€ algorithm schema of SPEAZ2 as implemented in this
vectors to define a subset of solutions which are not dom{!°k can be summarised as follows. Firstly, an initial pop-
nated by any other solution of that set. This subsetis called42tion Is generated and the archive starts empty. Secondly,
Pareto setand by definition its elements are nondominatedN @lgorithm calculates the fitness of solutions in the cur-
The elements of a Pareto set define implicitly a partition €Nt Population and all nondominated solutions are added to
the objective space between the region dominated by thdff archive. If the size of the archive becomes larger than
and the region not dominated by them. Thus, it is ofteft: the solution which has the minimum distance to another
calledPareto frontieror Pareto surfacen the literature. solution (according to the truncation operator) is discarded

In our multi-objective approach to the pump scheduliné‘m'l archive size is exactly. In case of the number of non-
problem, each operation policy is a solution which repre(jominated solutions is less than the dominated solution
sents an obijective vector formed by the electricity cost an@fith the minimum fitness value is added to the archive until
the number of pump switches of that operation policy. Théhere arex solutions in the arch|v_e. Ne_xt, a number of solu-
goal is to find, or at least approximate to, tygimal Pareto tions are selected as parents using binary tournament selec-
setof operation policies, that is, the set of feasible operatioon With replacement. Finally, recombination is applied to
policies such that any other feasible operation policy hasRf"ents in order to generate a number of offspring solutions,
higher value for the electricity cost or the total number of?hich become a new population that must be evaluated and
pump switches. Therefore, the outcome of our optimisatioff€rged into the archive. More details on SPEAZ can be
procedure will be a Pareto set of feasible operation policief2und in the original publicationfs].



Because the different objective values considered in this known to be feasible. The rationale for the use of this cus-
work, i.e., electricity cost and number of pump switchestom solution is that a real network is already working using
are not comparable, we normalise the distance between ta@deasible operation policy, which is not an optimal solution

solutionss;, s; with respect to objectivg, as: but has more quality than the average quality of a randomly
9 generated solution.

(fi(si) _f’“(fgj» (1) We tested three types of recombination: one-point

(fee = fiim)? crossover, uniform crossover, and a deterministic (turn-

where £ and fi"" are known for each particular ob- Pas€d) uniform crossover. _ _
jective. The maximum electrical cost corresponds to that 1€ One-point crossovecreates one offspring solution
schedule where all pumps are operating during the whopé' joining a part of the f|r_st pgrent solution from the first
simulation period, while the minimum electrical cost isP0Sition to a crossover point with another part of the second
zero. For the total number of pump switches, the maximuM@rent from the crossover point to the last position. The
value whenT’ — 24 hours andV — 3 pumps is36, while ~ CTOSSOVer point can occur with equal probability between

the minimum value is always zero. any two adjacent positions. o
In uniform crossoverthe value of each position in the
3.4 Constraint Handling offspring solution is produced by randomly selecting, with

equal probability, the value at the same position of one of
We handle invalid and infeasible solutions (defined in Se¢he parents. Thus, those positions with the same value in
tion 2.2) following a methodology proposed by Deb andboth parents will keep that value in the offspring solution.
Jain [L7], where solutions are partially ordered depending\s an alternative, we also testeddaterministic uniform
on their feasibility. Concretely, we augment the dominancerossoverwhich keeps the value of those positions with the
criteria with the following rules: same value in both parents, but assigns alternately the value
e Any invalid solution is dominated by any valid (feasi- of each parent for those positions where the values of each
ble or infeasible) solution. For two invalid solutions, parent differ.
the one which has lower number of pressure viola- Our implementation of SPEA2 is based on origial
tions during the simulation dominates the other. source codefrom the PISA project23] but with signifi-
e Given two valid solutions, the one with the lower totalc@nt modifications to serve our purposes. We also modified
volume deficit dominates the other. Since the totdf PANET Toolkit version 2.00.10 but maintaining backward

volume deficit of any feasible solution is always zeroCOMpatibility (under some assumptions).

then any feasible solution dominates any infeasible 1N€ testinstance shown in Figutes used for studying
solution. the various alternatives proposed here. In this instance the

Gi e id soluti ith | total vol demand charge is taken to be zero and the water available at
* d "f’_ef‘t tho vall slodu 1ons Wi e_(tqug bo ?WVO u{Ee_the reservoir is assumed to be infinite. The electricity cost is
etictt, the normal dominance criteria between thelp iqe 4 into two periods with a peak electricity tariff period
objective values is applied. That is, one solution do from 7 am to 12 am and a off-peak tariff from 2 am to 7
Inates Othte;]lf th? tﬁle?”?w cost a”Ot' ;hehnurt?]bert(;am. The demand pattern contains two peak§ ain and
pump Switches ot the first one are not igherthan thg ., “v1ore details about the test instance are provided by
values corresponding to the second solution, and n Zyl et al. B

least one of these values_ 1S lower than the respective The custom solution used to generate the initial popu-
value in the second solution. lation has an electricity cost &70.47, a total number of
. pump switches o, a volume deficit for tank A 0f-0.41%
4 Experiments and for tank B of-0.19%, where the negative deficits mean
that there is more water at the end than at the start of the
The method to generate the initial population and the resimulation.
combination operator are problem dependent and the alter- The volume deficit tolerated per tank wéa$. The
natives studied in this work are described in the followin@rchive size of SPEA2 was = 200. The number of so-
paragraphs. lutions selected as parents, the number of offspring solu-
With regard to the initial population, in this work we con-tions and the number of initial solutions were 50. As in the
sider two simple, straightforward methods: either the initiastate-of-the-art algorithm for this test instan& jwe ran
population is randomly generated or it is generated froreach experiment for 6000 function evaluations, that is, 6000
mutations of a particular solution. The mutation procedurealls to the EPANET simulator. Finally, we performed 30
changes the value of a random numbeflinl8] of posi- repetitions of each configuration.
tions per pump. We have tested three different solutions as Experiments were ran on a Pentium 4 (2.80 GHz) with
the solution which is mutated: theampty solutionwhichis 1 GB RAM using GNU/Linux (Ubuntu).
the solution where all pumps are off during the whole sim
ulation, that is, all positions of the binary string have value !Source code available ahttp://www.tik.ee.ethz.ch/
0; the complete solutionwhich is the solution where all pisa/selectors/spea2/spea2.html
pumps are on during the whole simulation, that is, all posi-
tions of the binary string arg and acustom solutionvhich



http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2.html
http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2.html

5 Results an initial population generated from a custom solution pro-
vides robust results but lacks the diversity in solutions ob-
The attainment functionlfg] represents the probability of tained when using an initial population generated randomly.
obtaining an arbitrary goal in the objective space during fhjs diversity allows us to obtain better results in some of
single run of an arbitrary algorithm. This attainment funcne runs but produces worse results in the worst case.
tion can be estimated using data collected from several runs Finally, Tablel shows the average computation time re-
of the particular algorithm. For example, threedian attain- quired by each run depending on the method used to gen-
ment surfacecontains objective vectors with an empiricalerate the initial population and the recombination operator.
frequency of 50% of being attained. The median attainmeRfince no initialisation method or recombination operator is
surface is a Pareto set because all the objective vectors aigre algorithmically expensive than the others, the differ-
nondominated. Therefore, these objective vectors can Bgces observed in computation time are only caused by the
connected by a line (or a surface when the number of ome required by EPANET for evaluating the solutions. One
jectives is larger than two) which defines the partition of th@|ear result is that quasi-complete solutions (right-most col-
objective space dominated by them. Similarly, Hest at-  mn), where the pumps are active most of the time intervals,
tainment surfaceonnects objective vectors attained by abroduce longer simulation time and thus longer computa-
least one of the runs carried out, and the objective vectofig, time. Nevertheless, the variability in computation time
in theworst attainment surfacerere attained in all the runs for the other configurations indicates that the computation

carried out _ ‘time depends in a high manner on the simulation engine.
We must remark that the best, median and worst attain-

ment surfaces only describe the distribution of the outcomedfRkecombination Initial population

in terms of location. However, they do not address the de- Custom Random Empty Complete

pendence structure within each outcome, and thus, they do ~ One-point 76.2 1076 70.6 1043.0

not show the frequency of two objective vectors being at- Uniform 75.2 2389 1218 945.2

tained in the same rur2fl. Determ. Unif. 68.9 224.6 95.3 1011.0
In our experiments we found that uniform crossover ob-

tained always better results than one-point crossover. Also, ~ Table 1: Average computation time in seconds.

results obtained by the deterministic uniform crossover

based on alternative turns were slightly worse than results

produced by uniform crossover. Therefore, in the followind® Conclusions and Future Work

we restrict to the results obtained when using the uniform o L
CrOSSOVer. This paper shows the viability of a multi-objective approach

Figure 3 shows the best, median and worst attainmerfP" SCIVing the Pump Scheduling problem, which allows the
surfaces of th&0 repetitions ran for each of the four meth-SyStem operator to examine a range of Pareto-optimal solu-
ods of generating the initial population and using uniforn}ions and choose one solution with regard to additional cri-
crossover. For reference, the average solution obtained ffi@- The importance ‘gf this has already been noticed by
the single objective state-of-the-art algorithm for this inOrmsbee and Reddg().

stance §] is denoted by the symbob¢”, and it has an elec- Although thg use of multi-objective algorithms_ for the
tricity cost of 348.58 and a number of pump switches of PUmp Scheduling problem has been studied previodsly |
4.99. 14], recent improvements on algorithm&5 and perfor-

Comparing the top row with the bottom row of Fig, Mance assessment methodologie8 p4] have increased

the attainment surfaces obtained using an initial populatidi€ @pplicability of multi-objective optimisers. We have ap-
generated randomly or from a custom solution are bett&i€d these improvements in this paper.

than the attainment surfaces obtained when the initial pop- MOreover, we have considered a disaggregated or dual-
ulation was generated by mutations from the empty or frori)?\_’el methodology, that is, linking a multi-objective opti-
the complete solution. Particularly, the median attainmefgisation model (SPEA2) with a network simulation model
surfaces corresponding to an initial population generatdfPANET). This methodology, which has not been consid-

randomly or from a custom solution (top row) dominate th&€d in previous multi-objective approaches to the Pump

average solution obtained by the single objective state-opcheduling problem, allows to consider complex network

the-art algorithm. Instances. o _

When the population is generated from mutations of a_Additionally, we have used a feasibility handling tech-
custom solution (top right), the best, median and worst af'9ue designed for multi-objective optimisation and based
tainment surfaces are closer to each other compared to & the dominance criterid f] which replaces penalty func-
attainment surfaces obtained when the initial population #0ns and reparation mechanisms.
generated rar!domly (tOp. left). M.Oreover’ the worst attain- 2 The exact quote is “Indeed, not only is eptimal solution obtained,
ment surface in the top right plot is better than the one COBut all resulting feasible solutions are available for examinations by the
responding to the top left plot. On the other hand, the besjstem operator. As a result, the operator is provided with an increased
attainment surface shows the opposite result, thatis, the b@@t_ibility with regard to selectio_n of alt_erngtive solutions tha_t may not b_e
result of30 trials is obtained with an initial population gen- optimal from a purely cost-savings objective but may provide a superior

solution based on additional more subjective operational considerations.”
erated randomly. From these results we can conclude thgnspee and Reddgq]




The use of a well-known multi-objective algorithm [5] R. Atkinson, J. E. van Zyl, G. A. Walters, and
(SPEA2) and simple and straightforward initialisation and
recombination methods produces solutions of a quality sim-
ilar to results already published in the literature. In particu-
lar, using uniform crossover and an initial population gener-
ated randomly produces state-of-the-art results for this Wa-

ter Distribution Network. If the initial population is gener-

ated from mutations of a feasible solution of a certain qual-[6]
ity, the results are even better in the median and the worst
case, but a randomly generated initial population produces

eventually the best Pareto set of pump schedules.

Nevertheless, our results should encourage the study of
more advanced techniques, as alternative representations to
the binary string and hybridisation with local search meth-[t7]

s

ods. Furthermore, since a complete description of the te
instance used in this work has been already publisBgd [
and the simulation engine is availahl¢he results obtained

by different optimisation algorithms can be compared with

the results provided in this work.

Although the binary representation is a natural represen{8]
tation for fixed speed pumps and fixed time intervals, it im-
poses the restriction that pumps can only start or stop at
fixed time intervals. We are currently studying other repre-
sentations which do not have such limitation, and thus, may

allow more flexible schedules, leading to better results.

Finally, we have noted that computation time depends[g]
greatly on the simulation engine and on the type of solu-
tions evaluated. Therefore, although real-world applications
should take into account computation time, future develop-
ments on the simulation engine may completely change any
conclusions relying on a computation time limit, and thus,
the number of function evaluations is a more robust mea-

sure when comparing algorithms for the Pump Schedulirﬁo]

problem.
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