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Ant colony optimization (ACO) [1–3] is a
metaheuristic for solving hard combinatorial
optimization problems inspired by the
indirect communication of real ants. In ACO
algorithms, (artificial) ants construct candi-
date solutions to the problem being tackled,
making decisions that are stochastically
biased by numerical information based on
(artificial) pheromone trails and available
heuristic information. The pheromone trails
are updated during algorithm execution
to bias the ants search toward promising
decisions previously found. The article titled
Ant Colony Optimization gives a detailed
overview of the main concepts of ACO.

Despite being one of the youngest meta-
heuristics, the number of applications of
ACO algorithms is very large. In principle,
ACO can be applied to any combinatorial
optimization problem for which some iter-
ative solution construction mechanism can
be conceived. Most applications of ACO deal
with NP-hard combinatorial optimization
problems, that is, with problems for which no
polynomial time algorithms are known. ACO
algorithms have also been extended to handle
problems with multiple objectives, stochastic
data, and dynamically changing problem
information. There are extensions of the ACO
metaheuristic for dealing with problems with
continuous decision variables, as well.

This article provides a concise overview
of several noteworthy applications of ACO
algorithms. This overview is necessarily
incomplete because the number of currently
available ACO applications goes into the
hundreds. Our description of the applications
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follows the classification used in the 2004
book on ACO by Dorigo and Stützle [3] but
extending the list there with many recent
examples. Tables 1 and 2 summarize these
applications.

APPLICATIONS TO NP-HARD PROBLEMS

ACO was primarily intended for solving
combinatorial optimization problems, among
which NP-hard problems are the most
challenging ones. In fact, no polynomial-time
algorithms are known for such problems, and
therefore heuristic techniques such as ACO
are often used for generating high-quality
solutions in reasonable computation times.

Routing Problems

Routing problems involve one or more agents
visiting a predefined set of locations, and the
objective function and constraints depend on
the order in which the locations are visited.
Perhaps the best-known example is the trav-
eling salesman problem (TSP) [104,105]. In
fact, the first ACO algorithm, ant system
(AS) [4,5,106,107], was first tested using this
problem. Although AS could not compete with
state-of-the-art algorithms for the TSP, it was
the starting point for the development of var-
ious high performing ACO algorithms. The
application of AS to the TSP also stimulated
the application of ACO to other routing and
combinatorial problems.

For instance, ACO has obtained very
good results for the sequential ordering
problem, an extension of asymmetric TSP
with precedence constraints among nodes. At
the time it was proposed by Gambardella and
Dorigo [18], the algorithm was the best avail-
able algorithm for this problem, improving
upon many best-known solutions. Recently,
stochastic sampling has been integrated into
a Beam-ACO algorithm for the TSP with
time windows [19], which is an extension
of the classical TSP with time window
constraints; Beam-ACO is a combination of
ACO algorithms with beam-search [32].
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Table 1. Applications of ACO Algorithms to NP-hard Problems

Problem Type Problem Name References

Routing Traveling salesman Dorigo et al. [4,5]
Dorigo and Gambardella [6]
Stützle and Hoos [7,8]

Vehicle routing (VRP) Bullnheimer et al. [9]
Reimann et al. [10]
Rizzoli et al. [11]

VRP with time windows Gambardella et al. [12]
VRPMTWMV Favoretto et al. [13]
VRP with loading constraints Doerner et al. [14]

Fuellerer et al. [15,16]
Team orienteering Ke et al. [17]
Sequential ordering Gambardella and Dorigo [18]
TSP with time windows López-Ibáñez and Blum [19]

Scheduling Single machine Den Besten et al. [20]
Merkle and Middendorf [21,22]
Meyer and Ernst [23]
Liao and Juan [24]
Meyer [25]

Flow shop Stützle [26]
Rajendran and Ziegler [27]

Industrial scheduling Gravel et al. [28]
Project scheduling Merkle et al. [29]
Group shop Blum [30]
Job shop Blum [30]

Huang and Liao [31]
Open shop Blum [32]
Car sequencing Khichane et al. [33]

Solnon [34]
Morin et al. [35]

Subset Multiple knapsack Leguizamón and Michalewicz [36]
Ke et al. [37]

Maximum independent set Leguizamón and Michalewicz [36]
Redundancy allocation Liang and Smith [38]
Weight constraint graph tree partitioning Cordone and Maffioli [39]

Bin packing Levine and Ducatelle [40]
Set covering Lessing et al. [41]
Set packing Gandibleux et al. [42]
l-cardinality trees Blum and Blesa [43]
Capacitated minimum spanning tree Reimann and Laumanns [44]
Maximum clique Solnon and Fenet [45]
Multilevel lot-sizing Pitakaso et al. [46,47]

Almeder [48]
Edge-disjoint paths Blesa and Blum [49]
Feature selection Sivagaminathan and Ramakrishnan [50]
Multicasting ad-hoc networks Hernández and Blum [51]

Assignment
and layout

Quadratic assignment Maniezzo et al. [52,53]
Stützle and Hoos [8]

Graph coloring Costa and Hertz [54]
Generalized assignment Lourenço and Serra [55]
Frequency assignment Maniezzo and Carbonaro [56]
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Table 1. (Continued)

Problem Type Problem Name References

Constraint satisfaction Solnon [57,58]
Course timetabling Socha et al. [59,60]
Ambulance location Doerner et al. [61]
MAX-SAT Pinto et al. [62]
Assembly line balancing Bautista and Pereora [63]
Simple assembly line balancing Blum [64]
Supply chain management Silva et al. [65]

Machine
learning

Bayesian networks De Campos et al. [66,67]
Pinto et al. [68]

Classification rules Parpinelli et al. [69]
Martens et al. [70]
Otero et al. [71]

Bioinformatics Shortest common supersequence Michel and Middendorf [72,73]
Protein folding Shmygelska and Hoos [74]
Docking Korb et al. [75,76]
Peak selection in Ressom et al. [77]
biomarker identification
DNA sequencing Blum et al. [78]
Haplotype inference Benedettini et al. [79]

Table 2. Applications of ACO Algorithms to ‘‘Nonstandard’’ Problems

Problem Type Problem Name References

Multiobjective Scheduling Iredi et al. [80]
Portfolio selection Doerner et al. [81,82]
Quadratic assignment López-Ibáñez et al. [83,84]
Knapsack Alaya et al. [85]
Traveling salesman Garcı́a-Martı́nez et al. [86]
Activity crashing Doerner et al. [87]
Orienteering Schilde et al. [88]

Continuous Neural networks Socha and Blum [89]
Test problems Socha and Dorigo [90]

Stochastic Probabilistic TSP Bianchi et al. [91]
Bianchi and Gambardella [92]
Balaprakash et al. [93]

Vehicle routing Bianchi et al. [94]
Screening policies Brailsford et al. [95]

Dynamic Network routing Di Caro and Dorigo [96]
Di Caro et al. [97]

Dynamic TSP Guntsch and Middendorf [98,99]
Eyckelhof and Snoek [100]
Sammound et al. [101]

Vehicle routing Montemanni et al. [102]
Donati et al. [103]

ACO algorithms have been successful
in tackling various variants of the vehicle
routing problem (VRP). The first application
of ACO to the capacitated VRP (CVRP) was

due to Bullnheimer et al. [9]. More recently,
Reimann et al. [10] proposed a particular
ACO algorithm (D-Ants) for the capacitated
VRP. Gambardella et al. [12] introduced
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MACS–VRPTW, an ACO algorithm for
the VRP with time window (VRPTW)
constraints, which reached state-of-the-art
results when it was proposed. Favaretto et al.
[13] proposed an ACS algorithm for a variant
of the VRP with multiple time windows and
multiple visits (VRPMTWMV). Fullerer et al.
[15] used an ACO algorithm for a problem
that combines the two-dimensional packing
and the capacitated vehicle routing problem,
showing that it outperforms a tabu search
(TS) algorithm. In this problem, items of
different sizes and weights are loaded in
vehicles with a limited weight capacity and
limited two-dimensional loading surface, and
then they are distributed to the customers.
Other variants of VRP with different loading
constraints have also been tackled by means
of ACO [14,16].

Ke et al. [17] have recently proposed an
ACO approach to the team orienteering prob-
lem (TOP), where the goal is to find the set
of paths from a starting point to an ending
point that maximizes the reward obtained by
visiting certain locations taking into account
that there are restrictions on the length of
each path.

Scheduling Problems

Scheduling problems concern the assignment
of jobs to one or various machines over time.
Input data for these problems are processing
times but also often additional setup times,
release dates and due dates of jobs, measures
for the jobs’ importance, and precedence
constraints among jobs. Scheduling prob-
lems have been an important application
area of ACO algorithms, and the currently
available ACO applications in scheduling
deal with many different job and machine
characteristics.

The single-machine total weighted tardi-
ness problem (SMTWTP) has been tackled by
both den Besten et al. [20] and Merkle and
Middendorf [21,22] using variants of ACS
(ACS-SMTWTP). In ACS-SMTWTP, a solu-
tion is determined by a sequence of jobs.
The positions of the sequence are filled in
their canonical order, that is, first a job is
assigned to position 1, next a job to position 2,
and so on, until position n. Pheromone trails

are defined as the desirability of schedul-
ing job j at position i, a pheromone trail
definition that is used in many ACO applica-
tions to scheduling problems [20,26,108,109].
Merkle and Middendorf [21] used sophisti-
cated heuristic information and an algorith-
mic technique called pheromone summation
rule, which has proven to be useful in many
applications of ACO to scheduling problems.
On the other hand, den Besten et al. [20] com-
bined ACS-SMTWTP with a powerful local
search algorithm, resulting in one of the
best algorithms available for this problem
in terms of solution quality. Another applica-
tion of ACO to a variant of this problem with
sequence-dependent setup times has recently
been studied by Liao and Juan [24]. Meyer
and Ernst [23] and Meyer [25] studied the
integration of constraint programming tech-
niques into ACO algorithms using a single-
machine problem with sequence-dependent
setup times, release dates, and deadlines for
jobs, as a case study.

ACO algorithms have also been proposed
for the permutation flow-shop problem
(FSP). The first approach is due to Stützle
[26], who proposed a hybrid between MMAS
and ACS. Later, Rajendran and Ziegler [27]
improved its performance by introducing the
pheromone summation rule. For this prob-
lem, however, the results of existing ACO
algorithms are behind the current state-
of-the-art algorithms. This is also the case
for the well-known job-shop problem [30],
although recent results hybridizing ACO
and TS seem promising [31]. Nevertheless,
for various other scheduling problems ACO
algorithms are among the best performing
algorithms available nowadays. Beam-ACO,
the hybrid between beam search and ACO,
is a state-of-the-art algorithm for open shop
scheduling [32]. In addition, a variant of
MMAS obtained excellent results in the
group shop problem [30].

Another scheduling problem where ACO
obtained excellent results is the resource-
constrained project scheduling problem, in
which a set of activities must be scheduled,
subject to resource constraints and prece-
dence constraints among the activities, such
that the last activity is completed as early
as possible. At the time of its publication, the
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ACO algorithm proposed by Merkle et al. [29]
was the best available.

Finally, state-of-the-art results have been
obtained in the car sequencing problem by
the ACO algorithm proposed by Solnon [34],
and these results have been further improved
by Morin et al. [35] by means of a special-
ized pheromone model. The car sequencing
problem has also been used as an example
application by Khichane et al. [33] to explore
the integration of constraint programming
techniques into ACO algorithms.

Subset Problems

The goal in subset problems is, generally
speaking, to find a subset of the available
items that minimizes a cost function defined
over the items and that satisfies a number
of constraints. This is a wide definition that
can include other classes of problems. There
are, however, two characteristic properties of
the solutions to subset problems: The order
of the solution components is irrelevant, and
the number of components of a solution may
differ from solution to solution.

An important subset problem is the set
covering problem (SCP). Lessing et al. [41]
compared the performance of a number
of ACO algorithms for the SCP, with and
without the usage of a local search algorithm
based on 3-flip neighborhoods [110]. The
best performance results were obtained, as
expected, when including local search. For a
large number of instances, the computational
results were competitive with state-of-the-art
algorithms for the SCP.

Leguizamón and Michalewicz [36] pro-
posed the first ACO applications to the
multiple knapsack and to the maximum
independent set problems, which were,
however, not competitive with the state-of-
the-art. Currently, the best performing ACO
algorithm for the multiple knapsack problem
is due to Ke et al. [37]. Levine and Ducatelle
[40] adapted MMAS to the well-known
bin-packing problem and compared its per-
formance with the hybrid grouping genetic
algorithm [111], and with Martello and
Toth’s reduction method [112]. The MMAS
algorithm outperformed both, obtaining bet-
ter solutions in a much shorter time. Solnon
and Fener [45] carried out a comprehensive

study for the maximum clique problem.
Their conclusion was that ACO combined
with appropriate local search can match the
quality of state-of-the-art heuristics. Blesa
and Blum [49] applied ACO to the problem
of finding edge-disjoint paths in networks,
and found the performance of the proposed
ACO superior in terms of both solution
quality and computation time when com-
pared with a multistart greedy algorithm.
Another interesting application is the work
of Sivagaminathan and Ramakrishnan [50],
which discusses how ACO may be hybridized
with neural networks for optimizing feature
selection in multivariate analysis.

Cordone and Maffioli [39] introduced the
weight constrained graph tree partition prob-
lem, and tested different variants of ACS with
and without local search. Blum and Blesa
[43] tackled the edge-weighted k-cardinality
tree problem (or k-minimum spanning tree),
where the goal is to find a tree over a graph
with exactly k edges minimizing the sum of
the weights. They compared a MMAS vari-
ant, TS, and an evolutionary algorithm. Their
results showed that none of the approaches
was superior to the others in all instance
classes tested, and that MMAS was better
suited for instances where the value of k was
much smaller than the number of vertices.

A subset problem closely related to the
CVRP is the capacitated minimum spanning
tree problem, which has been effectively tack-
led by a hybrid ACO algorithm [44] based on
a previous ACO algorithm for the CVRP [10].
More recently, Hernández and Blum [51]
considered the minimization of power con-
sumption when multicasting in static wire-
less ad-hoc networks. This problem can be
stated as an NP-hard combinatorial problem,
where the goal is to find a directed tree over
the network of nodes. Their proposed ACO
algorithm outperforms existing algorithms
for several variants of this problem.

Finally, a class of problems for which ACO
has recently shown competitive results is
that of multilevel lot-sizing with [46,48] and
without capacity constraints [47]. In these
problems, a subset of items is scheduled for
production at each time interval, and the goal
is to minimize the cost of producing the items,
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taking into account several constraints and
relations between the items.

Assignment and Layout Problems

In assignment problems, a set of items has to
be assigned to a given number of resources
subject to some constraints. Probably,
the most widely studied example is the
quadratic assignment problem (QAP), which
was among the first problems tackled by
ACO algorithms [5,52,53]. Various high-
performing ACO algorithms for the QAP
have followed this initial work. Among them
is the approximate nondeterministic tree
search (ANTS) algorithm by Maniezzo [113]
a combination of ACO with tree search tech-
niques involving the usage of lower bounds
to rate solution components and to prune
extensions of partial solutions. The computa-
tional results of ANTS on the QAP were very
promising. Another high-performing ACO
algorithm is the MAX–MIN ant system
(MMAS) proposed by Stützle and Hoos [8],
which is among the best algorithms available
for large, structured instances of the QAP.

The ANTS algorithm has also been
applied to the frequency assignment problem
(FAP), in which frequencies have to be
assigned to links and there are constraints
on the minimum distance between the
frequencies assigned to each pair of links.
ANTS showed good performance on some
classes of FAP instances in comparison with
other approaches [56]. Other applications of
ACO to assignment problems include uni-
versity course timetabling [59,60] and graph
coloring [54]. The work of Solnon [57,58]
applies ACO algorithms to the general class
of constraint satisfaction problems (CSPs);
in fact, decision variants of problems such
as graph coloring and frequency assignment
can be seen as cases of CSPs. Within this
class, Pinto et al. [62] studied the application
of ACO to regular and dynamic MAX-SAT
problems.

Another notable example is the gener-
alized assignment problem, where a set of
tasks have to be assigned to a set of agents
with a limited total capacity, minimizing the
total assignment cost of tasks to agents. The
MMAS algorithm proposed by Lourenço and

Serra [55] was, at the time of its publica-
tion, close to the state-of-the-art algorithm
for this problem. More recently, Doerner et al.
[61] tackled a real-world problem related to
ambulance locations in Austria by means of
an ACO algorithm; and Blum [64] has shown
that the hybrid between beam search and
ACO, Beam-ACO, is a state-of-the-art algo-
rithm for simple assembly line balancing. In
the section titled ‘‘Industrial Applications,’’
we mention an industrial application of ACO
to assembly line balancing. Finally, Silva
et al. [65] have used ACO for a complex
supply chain management problem that com-
bines aspects of the generalized assignment,
scheduling, and vehicle routing problems.

Machine Learning Problems

Diverse problems in the field of machine
learning have been tackled by means of ACO
algorithms. Notable examples are the work of
Parpinelli et al. [69] and Martens et al. [70]
on applying ACO to the problem of learn-
ing classification rules. This work was later
extended by Otero et al. [71] in order to han-
dle continuous attributes. De Campos et al.
[66,67] adapted Ant Colony System for the
problem of learning the structure of Bayesian
networks, and Pinto et al. [68] have recently
extended this work. Finally, the work of
Socha and Blum [89] for training neural net-
works by means of ACO is also an example of
the application of ACO algorithms to contin-
uous problems.

Bioinformatics Problems

Computer applications to molecular biology
(bioinformatics) have originated many NP-
hard combinatorial optimization problems.
We include in this section general problems
that have attracted considerable interest due
to their applications to bioinformatics. This
is the case of the shortest common super-
sequence problem (SCSP), which is a well-
known NP-hard problem with applications
in DNA analysis. Michel and Middendorf
[72,73] proposed an ACO algorithm for the
SCSP, obtaining state-of-the-art results, in
particular, for structured instances that are
typically found in real-world applications.
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An important problem in bioinformatics
is protein folding, that is, the prediction of
a protein’s structure based on its sequence
of amino acids. A simplified model for
protein folding is the two-dimensional
hydrophobic-polar protein folding problem
[114]. Shmygelska and Hoos [74] have
successfully applied ACO to this problem
and its three-dimensional variant. The
performance of the resulting ACO algorithm
is comparable to the best existing specialized
algorithms for these problems.

Interesting is also the work of Blum
et al. [78], where they propose a multilevel
framework based on ACO for the problem of
DNA sequencing by hybridization. An earlier
proposal of multilevel ACO frameworks
is due to Korošec et al. [115]. Multilevel
techniques [116,117] solve a hierarchy of
successively smaller versions of the original
problem instance. The solutions obtained at
the lowest level of the hierarchy are trans-
formed into solutions for the next higher
level, and improved by an optimization
algorithm, such as an ACO algorithm.

Other problems in bioinformatics have
been successfully tackled by means of ACO
algorithms: Korb et al. [75,76] considered the
flexible protein–ligand docking problem, for
which the proposed ACO algorithm reaches
state-of-the-art performance, and Benedet-
tini et al. [79] recently studied the problem of
haplotype inference under pure parsimony.
ACO algorithms are sometimes hybridized
with Machine Learning techniques. An
example is the recent work of Ressom et al.
[77] on a selection problem in biomarker
identification, which combines ACO with
support vector machines.

APPLICATIONS TO PROBLEMS WITH
NONSTANDARD FEATURES

We review in this section applications
of ACO algorithms to problems having
additional characteristics such as multiple
objective functions, time-varying data, and
stochastic information about objective values
or constraints. In addition, we mention
applications of ACO to network routing and
continuous optimization problems.

Multiobjective Optimization

In many real-world problems, candidate
solutions are evaluated according to multi-
ple, often conflicting objectives. Sometimes
the importance of each objective can be
exactly weighted, and hence objectives can
be combined into a single scalar value by
using, for example, a weighted sum. This
is the approach used by Doerner et al. [118]
for a biobjective transportation problem. In
other cases, objectives can be ordered by
their relative importance in a lexicographical
manner. Gambardella et al. [12] proposed
a two-colony ACS algorithm for the vehicle
routing problem with time windows, where
the first colony improves the primary objec-
tive and the second colony tries to improve
the secondary objective while not worsening
the primary one.

When there is no a priori knowledge
about the relative importance of objectives,
the goal usually becomes to approximate the
set of Pareto-optimal solutions—a solution is
Pareto optimal if no other solution is better
or equal for all objectives and strictly better
in at least one objective. Iredi et al. [80] were
among the first to discuss various alterna-
tives for extending ACO to multiobjective
problems in terms of Pareto-optimality. They
also tested a few of the proposed variants on
a biobjective scheduling problem. Another
early work is the application of ACO to
multiobjective portfolio problems by Doerner
et al. [81,82]. Later studies have proposed
and tested various combinations of alter-
native ACO algorithms for multiobjective
variants of the QAP [83,84], the knapsack
problem [85], activity crashing [87], and
the biobjective orienteering problem [88].
Garcı́a-Martı́nez et al. [86] reviewed existing
multiobjective ACO algorithms and carried
out an experimental evaluation of several
ACO variants using the bicriteria TSP as
a case study. Angus and Woodward [119]
give another detailed overview of available
multiobjective ACO algorithms.

Stochastic Optimization Problems

In stochastic optimization problems, data
are not known exactly before generating
a solution. Rather, because of uncertainty,
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noise, approximation, or other factors,
what is available is stochastic information
on the objective function value(s), on the
decision variable values, or on the constraint
boundaries.

The first application of ACO algorithms
to stochastic problems was to the proba-
bilistic TSP (PTSP). In the PTSP, each city
has associated a probability of requiring a
visit, and the goal is to find an a priori
tour of minimal expected length over all
cities. Bianchi et al. [91] and Bianchi and
Gambardella [92] proposed an adaptation of
ACS for the PTSP. Very recently, this algo-
rithm was improved by Balaprakash et al.
[93], resulting in a state-of-the-art algorithm
for the PTSP. Other applications of ACO to
stochastic problems include vehicle routing
problems with uncertain demands [94], and
the selection of optimal screening policies for
diabetic retinopathy [95]. The latter approach
builds on the S-ACO algorithm proposed ear-
lier by Gutjahr [120].

Dynamic Optimization Problems

Dynamic optimization problems are those
whose characteristics change while being
solved. ACO algorithms have been applied
to such versions of classical NP-hard prob-
lems. Notable examples are applications to
dynamic versions of the TSP, where the dis-
tances between cities may change or where
cities may appear or disappear [98–101].
More recently, Montemanni et al. [102] and
Donati et al. [103] discuss applications of ACS
to dynamic vehicle routing problems, report-
ing good results on both artificial and real-
world instances of the problem. Other notable
examples of dynamic problems are routing
problems in communication networks, which
are discussed in the following section.

Communication Network Problems

Some system properties in telecommunica-
tion networks, such as the availability of
links or the cost of traversing links, are
time-varying. The application of ACO algo-
rithms to routing problems in such networks
is among the main success stories in ACO.
One of the first applications by Schoonder-
woerd et al. [121] concerned routing in

circuit-switched networks, such as classical
telephone networks. The proposed algorithm,
called ABC, was demonstrated on a simulated
version of the British Telecom network.

A very successful application of ACO
to dynamic network routing is the AntNet
algorithm, proposed by Di Caro and Dorigo
[96,122]. AntNet was applied to routing in
packet-switched networks, such as the Inter-
net. Experimental studies compared AntNet
with many state-of-the-art algorithms on
a large set of benchmark problems under
a variety of traffic conditions [96]. AntNet
proved to be very robust against varying traf-
fic conditions and parameter settings, and it
always outperformed competing approaches.

Several other routing algorithms based
on ACO have been proposed for a variety
of wired network scenarios [123,124]. More
recent applications of these strategies deal
with the challenging class of mobile ad
hoc networks (MANETs). Because of the
specific characteristics of MANETs (very
high dynamics and link asymmetry), the
straightforward application of the ACO
algorithms developed for wired networks
has proven unsuccessful [125]. Nonetheless,
an extension of AntNet that is competitive
with state-of-the-art routing algorithms for
MANETs has been proposed by Ducatelle
et al. 97, [126]. For recent, in-depth reviews of
applications of ACO to dynamic network rout-
ing problems, we refer to Refs 127 and 128.

Continuous Optimization Problems

Continuous optimization problems arise in
a large number of engineering applications.
Their main difference from combinatorial
problems, which were the exclusive appli-
cation field of ACO in the early research
efforts, is that decision variables in such
problems have a continuous, real-valued
domain. Recently, various proposals have
been made on how to handle continu-
ous decision variables within the ACO
framework [129–131]. In the continuous
ACO algorithm proposed by Socha and
Dorigo [90], probability density functions,
explicitly represented by Gaussian kernel
functions, correspond to the pheromone
models. Extensions of this approach
also exist for mixed-variable—continuous
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and discrete—problems [132]. A notable
application of ACO algorithms for continuous
optimization is the training of feed-forward
neural networks [89]. Interestingly, there
exist also successful applications of ACO
to continuous problems that discretize the
real-valued domain of the variables. An
example is the PLANTS algorithm for the
protein–ligand docking problem [76], which
combines a discrete ACO algorithm with a
local search that works on the continuous
domain of the variables.

Industrial Applications

While most research is done on academic
applications, commercial companies have
started to use ACO algorithms for real-world
applications [11]. The company AntOptima
(www.antoptima.com) develops and markets
ACO-based solution methods for tackling
industrial vehicle routing problems. Fea-
tures common to real-world applications are
time-varying data, multiple objectives, or
the availability of stochastic information
about events or data. Moreover, engineering
problems often do not have a mathematical
formulation in the traditional sense. Rather,
algorithms have to rely on an external
simulator to evaluate the quality and fea-
sibility of candidate solutions. Examples of
applications of ACO relying on simulation
are the design [133] and operation [134] of
water distribution networks. Other inter-
esting real-world applications are those of
Gravel, Price and Gagné [28], who applied
ACO to an industrial scheduling problem
in an aluminum casting center, and those
of Bautista and Pereira [63,135,136], who
successfully applied ACO to solve an assem-
bly line balancing problem for a bike line
assembly.

CONCLUSIONS

Nowadays, ACO is a well-established
metaheuristic applied to a wide range of
optimization problems and with hundreds of
successful implementations. Several of these
implementations have shown to be, at least
at the time of their publication, the state-of-
the-art for the respective problems tackled,

including problems such as vehicle routing,
sequential ordering, quadratic assignment,
assembly line balancing, open-shop schedul-
ing, and various others. Applications of ACO
to dynamic routing problems in telecommu-
nication networks have been particularly
successful, probably because several algo-
rithm characteristics match well with the
features of the applications.

By analyzing the many available ACO
implementations, one can identify ingredi-
ents necessary for the successful application
of ACO. Firstly, an effective mechanism for
iteratively constructing solutions must be
available. Ideally, this construction mech-
anism exploits problem-specific knowledge
by using appropriate heuristic information.
Secondly, the best performing ACO algo-
rithms have specialized features that allow
to carefully control the balance between the
exploration of new solutions and the intensi-
fication of the search around the best solu-
tions. Such control mechanisms are offered
by advanced ACO algorithms such as ACS
or MMAS. In fact, the original AC has been
abandoned by now in favor of better per-
forming variants. Thirdly, the usage of local
search algorithms for improving the solutions
constructed by the ants is very successful
in practice. Finally, the integration of other
techniques such as constraint programming,
tree search techniques, or multilevel frame-
works often yields a further improvement in
performance or increases the robustness of
the algorithms.

Further information on ACO and related
topics can be obtained by subscribing to
the moderated mailing list aco-list, and
by visiting the ACO web page (www.aco-
metaheuristic.org).
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ing continuous casting of aluminum using
a multiple objective ant colony optimization
metaheuristic. Eur J Oper Res 2002;143:
218–229.

29. Merkle D, Middendorf M, Schmeck H. Ant
colony optimization for resource-constrained
project scheduling. IEEE Trans Evol Comput
2002;6(4):333–346.

30. Blum C. Theoretical and practical aspects of
ant colony optimization [PhD Thesis]. Brus-
sels, Belgium: IRIDIA, Université Libre de
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