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Ant Colony Optimization (ACO) [1, 2, 3] is a metaheuristic for solving hard com-
binatorial optimization problems inspired by the indirect communication of real ants.
In ACO algorithms, (artificial) ants construct candidate solutions to the problem be-
ing tackled, making decisions that are stochastically biased by numerical information
based on (artificial) pheromone trails and available heuristic information. The pher-
omone trails are updated during algorithm execution to bias the ants search towards
promising decisions previously found. Chapter [Chapter “Ant Colony Optimiza-
tion”, this encyclopedia] gives a detailed overview of the main concepts of ACO.

Despite being one of the youngest metaheuristics, the number of applications of
ACO algorithms is very large. In principle, ACO can be applied to any combinatorial
optimization problem for which some iterative solution construction mechanism can be
conceived. Most applications of ACO deal with NP-hard combinatorial optimization
problems, that is, with problems for which no polynomial time algorithms are known.
ACO algorithms have also been extended to handle problems with multiple objectives,
stochastic data and dynamically changing problem information. There are, as well, ex-
tensions of the ACO metaheuristic for dealing with problems with continuous decision
variables.

This chapter provides a concise overview of several noteworthy applications of
ACO algorithms. This overview is necessarily incomplete because the number of
currently available ACO applications goes into the hundreds. Our description of the
applications follows the classification used in the 2004 book on ACO by Dorigo &
Stützle [3] but extending the list there with many recent examples. Tables 1 and 2
summarize those applications.

1 Applications to NP-hard problems
ACO was primarily intended for solving combinatorial optimization problems, among
which NP-hard problems are the most challenging ones. In fact, no polynomial-time
algorithms are known for such problems, and therefore heuristic techniques such as
ACO are often used for generating high-quality solutions in reasonable computation
times.
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Table 1: Applications of ACO algorithms to NP-hard problems.
Problem type Problem name Authors Year References

Routing Traveling salesman Dorigo et al. 1991, 1996 [4, 5]
Dorigo & Gambardella 1997 [6]
Stützle & Hoos 1997, 2000 [7, 8]

Vehicle routing (VRP) Bullnheimer et al. 1999 [9]
Reimann et al. 2004 [10]
Rizzoli et al. 2007 [11]

VRP with time windows Gambardella et al. 1999 [12]
VRPMTWMV Favoretto et al. 2007 [13]
VRP with loading constraints Doerner et al. 2006 [14]

Fuellerer et al. 2009 [15, 16]
Team orienteering Ke et al. 2008 [17]
Sequential ordering Gambardella & Dorigo 2000 [18]
TSP with time windows López-Ibáñez & Blum 2010 [19]

Scheduling Single machine Den Besten et al. 2000 [20]
Merkle & Middendorf 2000, 2002 [21, 22]
Meyer & Ernst 2004 [23]
Liao & Juan 2007 [24]
Meyer 2008 [25]

Flow shop Stützle 1998 [26]
Rajendran & Ziegler 2004 [27]

Industrial scheduling Gravel et al. 2002 [28]
Project scheduling Merkle et al. 2002 [29]
Group shop Blum 2004 [30]
Job shop Blum 2004 [30]

Huang & Liao 2008 [31]
Open shop Blum 2005 [32]
Car sequencing Khichane et al. 2008 [33]

Solnon 2008 [34]
Morin et al. 2009 [35]

Subset Multiple knapsack Leguizamón & Michalewicz 1999 [36]
Ke et al. To appear [37]

Maximum independent set Leguizamón & Michalewicz 1999 [36]
Redundancy allocation Liang & Smith 1999 [38]
Weight constraint Cordone & Maffioli 2001 [39]
graph tree partitioning
Bin packing Levine & Ducatelle 2002 [40]
Set covering Lessing et al. 2004 [41]
Set packing Gandibleux et al. 2004 [42]
l-cardinality trees Blum & Blesa 2005 [43]
Capacitated minimum Reimann & Laumanns 2006 [44]
spanning tree
Maximum clique Solnon & Fenet 2006 [45]
Multi-level lot-sizing Pitakaso et al. 2006, 2007 [46, 47]

Almeder 2010 [48]
Edge-disjoint paths Blesa & Blum 2007 [49]
Feature Selection Sivagaminathan & Ramakrishnan 2007 [50]
Multicasting ad-hoc networks Hernández & Blum 2009 [51]

(continues . . . )
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Table 1: Applications of ACO algorithms to NP-hard problems (continued).
Problem type Problem name Authors Year References

Assignment Quadratic assignment Maniezzo et al. 1994, 1999 [52, 53]
& layout Stützle & Hoos 2000 [8]

Graph coloring Costa & Hertz 1997 [54]
Generalized assignment Lourenço & Serra 1998 [55]
Frequency assignment Maniezzo & Carbonaro 2000 [56]
Constraint satisfaction Solnon 2000, 2002 [57, 58]
Course timetabling Socha et al. 2002, 2003 [59, 60]
Ambulance location Doerner et al. 2005 [61]
MAX-SAT Pinto et al. 2007 [62]
Assembly line balancing Bautista & Pereira 2007 [63]
Simple assembly line balancing Blum 2008 [64]
Supply chain management Silva et al. 2009 [65]

Machine Bayesian networks De Campos et al. 2002 [66, 67]
learning Pinto et al. 2009 [68]

Classification rules Parpinelli et al. 2002 [69]
Martens et al. 2007 [70]
Otero et al. 2008 [71]

Bioinformatics Shortest common Michel & Middendorf 1998, 1999 [72, 73]
supersequence
Protein folding Shmygelska & Hoos 2005 [74]
Docking Korb et al. 2006, 2007 [75, 76]
Peak selection in Ressom et al. 2007 [77]
biomarker identification
DNA sequencing Blum et al. 2008 [78]
Haplotype inference Benedettini et al. 2008 [79]

Table 2: Applications of ACO algorithms to “non-standard” problems.
Problem type Problem name Authors Year References

Multi-objective Scheduling Iredi et al. 2001 [80]
Portfolio Selection Doerner et al. 2001, 2004 [81, 82]
Quadratic assignment López-Ibáñez et al. 2004, 2006 [83, 84]
Knapsack Alaya et al. 2007 [85]
Traveling salesman Garcı́a-Martı́nez et al. 2007 [86]
Activity Crashing Doerner et al. 2008 [87]
Orienteering Schilde et al. 2009 [88]

Continuous Neural networks Socha & Blum 2007 [89]
Test problems Socha & Dorigo 2008 [90]

Stochastic Probabilistic TSP Bianchi et al. 2002 [91]
Bianchi & Gambardella 2007 [92]
Balaprakash et al. 2009 [93]

Vehicle routing Bianchi et al. 2006 [94]
Screening policies Brailsford et al. 2006 [95]

Dynamic Network routing Di Caro & Dorigo 1998 [96]
Di Caro et al. 2005 [97]

Dynamic TSP Guntsch & Middendorf 2001, 2002 [98, 99]
Eyckelhof & Snoek 2002 [100]
Sammoud et al. To appear [101]

Vehicle routing Montemanni et al. 2005 [102]
Donati et al. 2008 [103]
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1.1 Routing problems
Routing problems involve one or more agents visiting a predefined set of locations,
and the objective function and constraints depend on the order in which the locations
are visited. Perhaps the best-known example is the traveling salesman problem (TSP)
[104, 105]. In fact, the first ACO algorithm, Ant System (AS) [4, 5, 106, 107], was
first tested using this problem. Although AS could not compete with state-of-the-art
algorithms for the TSP, it was the starting point for the development of various high
performing ACO algorithms. The application of AS to the TSP also stimulated the
application of ACO to other routing and combinatorial problems.

For instance, ACO has obtained very good results in the sequential ordering prob-
lem, an extension of asymmetric TSP with precedence constraints among nodes. At
the time it was proposed, the algorithm by Gambardella & Dorigo [18] was the best
available algorithm for this problem, improving upon many best-known solutions. Re-
cently, stochastic sampling has been integrated into a Beam-ACO algorithm for the
TSP with time windows (TSPTW) [19], which is an extension of the classical TSP
with time window constraints; Beam-ACO is a combination of ACO algorithms with
beam-search [32].

ACO algorithms have been successful in tackling various variants of the vehicle
routing problem (VRP). The first application of ACO to the capacitated VRP was due
to Bullnheimer et al. [9]. More recently, Reimann et al. [10] proposed a particular ACO
algorithm (D-Ants) for the capacitated VRP. Gambardella et al. [12] introduced MACS-
VRPTW, an ACO algorithm for the VRP with time window constraints (VRPTW),
which reached state-of-the-art results when it was proposed. Favaretto et al. [13] pro-
posed an ACS algorithm for a variant of the VRP with multiple time windows and mul-
tiple visits (VRPMTWMV). Fuellerer et al. [15] used an ACO algorithm for a problem
that combines the two-dimensional packing and the capacitated vehicle routing prob-
lem (2L-CVRP), showing that it outperforms a tabu search algorithm. In this problem,
items of different sizes and weights are loaded in vehicles with a limited weight ca-
pacity and limited two-dimensional loading surface, and then they are distributed to
the customers. Other variants of VRP with different loading constraints have also been
tackled by means of ACO [14, 16].

Ke et al. [17] have recently proposed an ACO approach to the team orienteering
problem (TOP), where the goal is to find the set of paths from a starting point to an
ending point that maximizes the reward obtained by visiting certain locations taking
into account that there are restrictions on the length of each path.

1.2 Scheduling problems
Scheduling problems concern the assignment of jobs to one or various machines over
time. Input data for these problems are processing times but also often additional
setup times, release dates and due dates of jobs, measures for the jobs’ importance
and precedence constraints among jobs. Scheduling problems have been an important
application area of ACO algorithms, and the currently available ACO applications in
scheduling deal with many different job and machine characteristics.

The single-machine total weighted tardiness problem (SMTWTP) has been tackled
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by both den Besten et al. [20] and Merkle & Middendorf [21, 22] using variants of
ACS (ACS-SMTWTP). In ACS-SMTWTP, a solution is determined by a sequence of
jobs. The positions of the sequence are filled in their canonical order, that is, first a
job is assigned to position one, next a job to position two, and so on, until position
n. Pheromone trails are defined as the desirability of scheduling job j at position i, a
pheromone trail definition that is used in many ACO applications to scheduling prob-
lems [20, 26, 108, 109]. Merkle & Middendorf [21] used sophisticated heuristic in-
formation and an algorithmic technique called pheromone summation rule, which has
proven to be useful in many applications of ACO to scheduling problems. On the
other hand, den Besten et al. [20] combined ACS-SMTWTP with a powerful local
search algorithm, resulting in one of the best algorithms available for this problem in
terms of solution quality. Another application of ACO to a variant of this problem
with sequence-dependent setup times has recently been studied by Liao & Juan [24].
Meyer & Ernst [23] and Meyer [25] studied the integration of constraint programming
techniques into ACO algorithms using as a case study a single-machine problem with
sequence-dependent setup times, release dates and deadlines for jobs.

ACO algorithms have also been proposed for the permutation flow-shop problem.
The first approach is due to Stützle [26], who proposed a hybrid betweenMMAS and
ACS. Later, Rajendran & Ziegler [27] improved its performance by introducing the
pheromone summation rule. For this problem, however, the results of existing ACO
algorithms are behind the current state-of-the-art algorithms. This is also the case for
the well-known job-shop problem [30], although recent results hybridizing ACO and
tabu search seem promising [31]. Nevertheless, for various other scheduling problems
ACO algorithms are nowadays among the best performing algorithms available. Beam-
ACO, the hybrid between beam search and ACO, is a state-of-the-art algorithm for open
shop scheduling [32]. In addition, a variant of MMAS obtained excellent results in
the group shop problem [30].

Another scheduling problem where ACO obtained excellent results is the resource-
constrained project scheduling problem, in which a set of activities must be scheduled,
subject to resource constraints and precedence constraints among the activities, such
that the completion of the last activity is as early as possible. At the time of its publi-
cation, the ACO algorithm proposed by Merkle et al. [29] was the best available.

Finally, state-of-the-art results have been obtained in the car sequencing problem
by the ACO algorithm proposed by Solnon [34], and these results have been further
improved by Morin et al. [35] by means of a specialized pheromone model. The car
sequencing problem has also been used as an example application by Khichane et al.
[33] to explore the integration of constraint programming techniques into ACO algo-
rithms.

1.3 Subset problems
The goal in subset problems is, generally speaking, to find a subset of the available
items that minimizes a cost function defined over the items and that satisfies a number
of constraints. This is a wide definition that can include other classes of problems.
There are, however, two characteristic properties of the solutions to subset problems:
The order of the solution components is irrelevant, and the number of components of a
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solution may differ from solution to solution.
An important subset problem is the set covering problem (SCP). Lessing et al. [41]

compared the performance of a number of ACO algorithms for the (SCP), with and
without the usage of a local search algorithm based on 3-flip neighborhoods [110].
The best performance results were obtained, as expected, when including local search.
For a large number of instances the computational results were competitive with state-
of-the-art algorithms for the SCP.

Leguizamón & Michalewicz [36] proposed the first ACO applications to the mul-
tiple knapsack and to the maximum independent set problems, which were, however,
not competitive with the state of the art. Currently, the best performing ACO algorithm
for the multiple knapsack problem is due to Ke et al. [37]. Levine & Ducatelle [40]
adapted MMAS to the well-known bin packing problem and compared its perfor-
mance with the hybrid grouping genetic algorithm [111], and with Martello & Toth’s
reduction method [112]. The MMAS algorithm outperformed both, obtaining better
solutions in much shorter time. Solnon & Fenet [45] carried out a comprehensive study
for the maximum clique problem. Their conclusion was that ACO combined with ap-
propriate local search can match the quality of state-of-the-art heuristics. Blesa & Blum
[49] applied ACO to the problem of finding edge-disjoint paths in networks, and found
the performance of the proposed ACO superior in terms of both solution quality and
computation time when compared with a multi-start greedy algorithm. Another inter-
esting application is the work of Sivagaminathan & Ramakrishnan [50], which shows
how ACO may be hybridized with neural networks for optimizing feature selection in
multivariate analysis.

Cordone & Maffioli [39] introduced the weight constrained graph tree partition
problem, and tested different variants of ACS with and without local search. Blum &
Blesa [43] tackled the edge-weighted k-cardinality tree problem (or k-minimum span-
ning tree), where the goal is to find a tree over a graph with exactly k edges minimizing
the sum of the weights. They compared a MMAS variant, tabu search and an evolu-
tionary algorithm. Their results showed that none of the approaches was superior to the
others in all instance classes tested, andMMAS was better suited for instances where
the value of k was much smaller than the number of vertices.

A subset problem closely related to the capacitated VRP (CVRP) is the capacitated
minimum spanning tree problem (CMST), which has been effectively tackled by a hy-
brid ACO algorithm [44] based on a previous ACO algorithm for the CVRP [10]. More
recently, Hernández & Blum [51] considered the minimization of power consumption
when multicasting in static wireless ad-hoc networks. This problem can be stated as
an NP-hard combinatorial problem, where the goal is to find a directed tree over the
network of nodes. Their proposed ACO algorithm outperforms existing algorithms for
several variants of this problem.

Finally, a class of problems for which ACO has recently shown competitive results
is that of multi-level lot-sizing with [46, 48] and without capacity constraints [47]. In
these problems, a subset of items is scheduled for production at each time interval, and
the goal is to minimize the cost of producing the items, taking into account several
constraints and relations between the items.

6



1.4 Assignment and layout problems
In assignment problems, a set of items has to be assigned to a given number of re-
sources subject to some constraints. Probably, the most widely studied example is the
quadratic assignment problem (QAP), which was among the first problems tackled by
ACO algorithms [5, 52, 53]. Various high-performing ACO algorithms for the QAP
have followed this initial work. Among them is the approximate nondeterministic tree
search (ANTS) algorithm by Maniezzo [113] a combination of ACO with tree search
techniques involving the usage of lower bounds to rate solution components and to
prune extensions of partial solutions. The computational results of ANTS on the QAP
were very promising. Another high-performing ACO algorithm is the MAX–MIN
Ant System (MMAS) proposed by Stützle & Hoos [8], which is among the best algo-
rithms available for large, structured instances of the QAP.

The ANTS algorithm has also been applied to the frequency assignment problem
(FAP), in which frequencies have to be assigned to links and there are constraints on
the minimum distance between the frequencies assigned to each pair of links. ANTS
showed good performance on some classes of FAP instances in comparison with other
approaches [56]. Other applications of ACO to assignment problems include university
course timetabling [59, 60] and graph coloring [54]. The work of Solnon [57, 58]
applies ACO algorithms to the general class of constraint satisfaction problems (CSPs);
in fact, decision variants of problems such as graph coloring and frequency assignment
can be seen as cases of CSPs. Within this class, Pinto et al. [62] studied the application
of ACO to regular and dynamic MAX-SAT problems.

Another notable example is the generalized assignment problem, where a set of
tasks have to be assigned to a set of agents with a limited total capacity, minimizing the
total assignment cost of tasks to agents. TheMMAS algorithm proposed by Lourenço
& Serra [55] was, at the time of its publication, close to the state-of-the-art for this
problem. More recently, Doerner et al. [61] tackled a real-world problem related to
ambulance locations in Austria by means of an ACO algorithm; and Blum [64] has
shown that the hybrid between beam search and ACO, Beam-ACO, is a state-of-the-art
algorithm for simple assembly line balancing (SALB-1). In Section 2.6, we mention
an industrial application of ACO to assembly line balancing. Finally, Silva et al. [65]
have used ACO for a complex supply chain management that combines aspects of the
generalized assignment, scheduling, and vehicle routing problems.

1.5 Machine learning problems
Diverse problems in the field of Machine Learning have been tackled by means of ACO
algorithms. Notable examples are the work of Parpinelli et al. [69] and Martens et al.
[70] on applying ACO to the problem of learning classification rules. This work was
later extended by Otero et al. [71] in order to handle continuous attributes. De Campos
et al. [66, 67] adapted Ant Colony System for the problem of learning the structure of
Bayesian networks, and Pinto et al. [68] have recently extended this work. Finally, the
work of Socha & Blum [89] for training neural networks by means of ACO is also an
example of the application of ACO algorithms for continuous problems.

7



1.6 Bioinformatics problems
Computer applications to molecular biology (bioinformatics) have originated many
NP-hard combinatorial optimization problems. We include in this section general
problems that have attracted considerable interest due to their applications to bioinfor-
matics. This is the case of the shortest common supersequence problem (SCSP), which
is a well-knownNP-hard problem with applications in DNA analysis. Michel & Mid-
dendorf [72, 73] proposed an ACO algorithm for the SCSP, obtaining state-of-the-art
results, in particular, for structured instances that are typically found in real-world ap-
plications.

An important problem in bioinformatics is protein folding, that is, the prediction of
a protein’s structure based on its sequence of amino acids. A simplified model for pro-
tein folding is the two-dimensional hydrophobic-polar protein folding problem [114].
Shmygelska & Hoos [74] have successfully applied ACO to this problem and its three-
dimensional variant. The performance of the resulting ACO algorithm is comparable
to the best existing specialized algorithms for these problems.

Interesting is also the work of Blum et al. [78], where they propose a multilevel
framework based on ACO for the problem of DNA sequencing by hybridization. An
earlier proposal of multilevel ACO frameworks is due to Korošec et al. [115]. Multi-
level techniques [116, 117] solve a hierarchy of successively smaller versions of the
original problem instance. The solutions obtained at the lowest level of the hierarchy
are transformed into solutions for the next higher level, and improved by an optimiza-
tion algorithm, such as an ACO algorithm.

Other problems in bioinformatics have been successfully tackled by means of ACO
algorithms: Korb et al. [75, 76] considered the flexible protein-ligand docking prob-
lem, for which the proposed ACO algorithm reaches state-of-the-art performance, and
Benedettini et al. [79] recently studied the problem of haplotype inference under pure
parsimony. ACO algorithms are sometimes hybridized with Machine Learning tech-
niques. An example is the recent work of Ressom et al. [77] on a selection problem in
biomarker identification, which combines ACO with support vector machines (SVM).

2 Applications to problems with non-standard features
We review in this section applications of ACO algorithms to problems having addi-
tional characteristics such as multiple objective functions, time-varying data and sto-
chastic information about objective values or constraints. In addition, we mention ap-
plications of ACO to network routing and continuous optimization problems.

2.1 Multi-objective optimization
In many real-world problems, candidate solutions are evaluated according to multiple,
often conflicting objectives. Sometimes the importance of each objective can be exactly
weighted, and hence objectives can be combined into a single scalar value by using,
for example, a weighted sum. This is the approach used by Doerner et al. [118] for a
bi-objective transportation problem. In other cases, objectives can be ordered by their
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relative importance in a lexicographical manner. Gambardella et al. [12] proposed a
two-colony ACS algorithm for the vehicle routing problem with time windows, where
the first colony improves the primary objective and the second colony tries to improve
the secondary objective while not worsening the primary one.

When there is no a priori knowledge about the relative importance of objectives, the
goal usually becomes to approximate the set of Pareto-optimal solutions—a solution is
Pareto optimal if no other solution is better or equal for all objectives and strictly better
in at least one objective. Iredi et al. [80] were among the first to discuss various alter-
natives for extending ACO to multi-objective problems in terms of Pareto-optimality.
They also tested a few of the proposed variants on a bi-objective scheduling problem.
Another early work is the application of ACO to multi-objective portfolio problems
by Doerner et al. [81, 82]. Later studies have proposed and tested various combina-
tions of alternative ACO algorithms for multi-objective variants of the quadratic as-
signment problem [83, 84], the knapsack problem [85], activity crashing [87] and the
bi-objective orienteering problem [88]. Garcı́a-Martı́nez et al. [86] reviewed existing
multi-objective ACO algorithms and carried out an experimental evaluation of several
ACO variants using the bi-criteria TSP as a case study. Angus & Woodward [119] give
another detailed overview of available multi-objective ACO algorithms.

2.2 Stochastic optimization problems
In stochastic optimization problems, data are not known exactly before generating a
solution. Rather, because of uncertainty, noise, approximation or other factors, what is
available is stochastic information on the objective function value(s), on the decision
variable values, or on the constraint boundaries.

The first application of ACO algorithms to stochastic problems was to the proba-
bilistic TSP (PTSP). In the PTSP, each city has associated a probability of requiring
a visit, and the goal is to find an a priori tour of minimal expected length over all
cities. Bianchi et al. [91] and Bianchi & Gambardella [92] proposed an adaptation of
ACS for the PTSP. Very recently, this algorithm was improved by Balaprakash et al.
[93], resulting in a state-of-the-art algorithm for the PTSP. Other applications of ACO
to stochastic problems include vehicle routing problems with uncertain demands [94],
and the selection of optimal screening policies for diabetic retinopathy [95]. The latter
approach builds on the S-ACO algorithm proposed earlier by Gutjahr [120].

2.3 Dynamic optimization problems
Dynamic optimization problems are those whose characteristics change while being
solved. ACO algorithms have been applied to such versions of classical NP-hard
problems. Notable examples are applications to dynamic versions of the TSP, where
the distances between cities may change or where cities may appear or disappear
[98, 99, 100, 101]. More recently, Montemanni et al. [102] and Donati et al. [103]
discuss applications of ACS to dynamic vehicle routing problems, reporting good re-
sults on both artificial and real-world instances of the problem. Other notable examples
of dynamic problems are routing problems in communication networks, which are dis-
cussed in the following section.
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2.4 Communication network problems
Some system properties in telecommunication networks, such as the availability of
links or the cost of traversing links, are time-varying. The application of ACO al-
gorithms to routing problems in such networks is among the main success stories in
ACO. One of the first applications by Schoonderwoerd et al. [121] concerned routing
in circuit-switched networks, such as classical telephone networks. The proposed al-
gorithm, called ABC, was demonstrated on a simulated version of the British Telecom
network.

A very successful application of ACO to dynamic network routing is the AntNet
algorithm, proposed by Di Caro & Dorigo [96, 122]. AntNet was applied to rout-
ing in packet-switched networks, such as the Internet. Experimental studies compared
AntNet with many state-of-the-art algorithms on a large set of benchmark problems
under a variety of traffic conditions [96]. AntNet proved to be very robust against vary-
ing traffic conditions and parameter settings, and it always outperformed competing
approaches.

Several other routing algorithms based on ACO have been proposed for a variety of
wired network scenarios [123, 124]. More recent applications of these strategies deal
with the challenging class of mobile ad hoc networks (MANETs). Due to the specific
characteristics of MANETs (very high dynamics, link asymmetry), the straightforward
application of the ACO algorithms developed for wired networks has proven unsuc-
cessful [125]. Nonetheless, an extension of AntNet that is competitive with state-of-
the-art routing algorithms for MANETs has been proposed by Ducatelle et al. [97, 126].
For recent, in-depth reviews of applications of ACO to dynamic network routing prob-
lems, we refer to Farooq & Di Caro [127] and Ducatelle et al. [128].

2.5 Continuous optimization problems
Continuous optimization problems arise in a large number of engineering applications.
Their crucial difference from combinatorial problems, which were the exclusive ap-
plication field of ACO in the early research efforts, is that decision variables in such
problems have a continuous, real-valued domain. Recently, various proposals have
been made of how to handle continuous decision variables within the ACO frame-
work [129, 130, 131]. In the continuous ACO algorithm proposed by Socha & Dorigo
[132], probability density functions, explicitly represented by Gaussian kernel func-
tions, correspond to the pheromone models. Extensions of this approach also exist
for mixed-variable—continuous and discrete–problems [133]. A notable application
of ACO algorithms for continuous optimization is the training of feed-forward neural
networks [89]. Interestingly, there exist also successful applications of ACO to contin-
uous problems that discretize the real-valued domain of the variables. An example is
the PLANTS algorithm for the protein–ligand docking problem [76], which combines
a discrete ACO algorithm with a local search that works on the continuous domain of
the variables.
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2.6 Industrial applications
While most research is done on academic applications, commercial companies have
started to use ACO algorithms for real-world applications [11]. The company AntOp-
tima (www.antoptima.com) develops and markets ACO-based solution methods
for tackling industrial vehicle routing problems. Features common to real-world ap-
plications are time-varying data, multiple objectives or the availability of stochastic
information about events or data. Moreover, engineering problems often do not have
a mathematical formulation in the traditional sense. Rather, algorithms have to rely
on an external simulator to evaluate the quality and feasibility of candidate solutions.
Examples of applications of ACO relying on simulation are the design [134] and op-
eration [135] of water distribution networks. Other interesting real-world applications
are those of Gravel, Price & Gagné [28], who applied ACO to an industrial scheduling
problem in an aluminium casting center, and by Bautista & Pereira [63, 136, 137], who
successfully applied ACO to solve an assembly line balancing problem for a bike line
assembly.

3 Conclusions
Nowadays, ACO is a well established metaheuristic with hundreds of successful im-
plementations applied to a wide range of optimization problems. Several of these im-
plementations have shown to be, at least at the time of their publication, the state of
the art for the respective problems tackled, including problems such as vehicle rout-
ing, sequential ordering, quadratic assignment, assembly line balancing, open-shop
scheduling, and various others. Applications of ACO to dynamic routing problems
in telecommunication networks have been particularly successful, probably because
several algorithm characteristics match well the features of the applications.

By analysing the many available ACO implementations, one can identify ingredi-
ents necessary for the successful application of ACO. Firstly, an effective mechanism
for iteratively constructing solutions must be available. Ideally, this construction mech-
anism exploits problem-specific knowledge by using appropriate heuristic information.
Secondly, the best performing ACO algorithms have specialized features that allow to
carefully control the balance between the exploration of new solutions and the intensifi-
cation of the search around the best solutions. Such control mechanisms are offered by
advanced ACO algorithms such as ACS or MMAS. In fact, the original Ant System
has been abandoned by now in favor of better performing variants. Thirdly, the usage
of local search algorithms for improving the solutions constructed by the ants is very
successful in practice. Finally, the integration of other techniques such as constraint
programming, tree search techniques or multi-level frameworks often yields a further
improvement in performance or increases the robustness of the algorithms.

Further information on ACO and related topics can be obtained by subscribing to
the moderated mailing list aco-list, and by visiting the Ant Colony Optimization
web page (www.aco-metaheuristic.org).
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[78] Blum C, Yábar Vallès M, Blesa MJ. An ant colony optimization algorithm
for DNA sequencing by hybridization. Computers & Operations Research.
2008;35(11):3620–3635.

[79] Benedettini S, Roli A, Di Gaspero L. Two-level ACO for haplotype inference
under pure parsimony. In: Dorigo M, et al., editors. Ant Colony Optimization
and Swarm Intelligence: 6th International Conference, ANTS 2008. vol. 5217
of Lecture Notes in Computer Science. Heidelberg: Springer; 2008. p. 179–190.

[80] Iredi S, Merkle D, Middendorf M. Bi-criterion optimization with multi colony
ant algorithms. In: Zitzler E, Deb K, Thiele L, Coello CAC, Corne D, edi-
tors. First International Conference on Evolutionary Multi-Criterion Optimiza-
tion, (EMO’01). vol. 1993 of Lecture Notes in Computer Science. Heidelberg:
Springer; 2001. p. 359–372.

[81] Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C. Ant colony opti-
mization in multiobjective portfolio selection. In: Proceedings of the Fourth
Metaheuristics International Conference; 2001. p. 243–248.

[82] Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C. Pareto ant colony
optimization: A metaheuristic approach to multiobjective portfolio selection.
Annals of Operations Research. 2004;131:79–99.
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