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ABSTRACT

Improvements to the design of interactive Evolutionary Multiob-

jective Algorithms (iEMOAs) are unlikely without quantitative as-

sessment of their behaviour in realistic settings. Experiments with

human decision-makers (DMs) are of limited scope due to the diffi-

culty of isolating individual biases and replicating the experiment

with enough subjects, and enough times, to obtain confidence in

the results. Simulation studies may help to overcome these issues,

but they require the use of realistic simulations of decision-makers.

Machine decision-makers (MDMs) provide a way to carry out such

simulation studies, however, studies so far have relied on simple

utility functions. In this paper, we analyse and compare two state-

of-the-art iEMOAs by means of a MDM that uses a sigmoid-shaped

utility function. This sigmoid utility function is based on psycholog-

ically realistic models from behavioural economics, and replicates

several realistic human behaviours. Our findings are that, on a vari-

ety of well-known benchmarks with two and three objectives, the

two iEMOAs do not consistently recover the most-preferred points.

We hope that these findings provide an impetus for more directed

design and analysis of future iEMOAs.
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plied computing→Multi-criterion optimization anddecision-
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1 INTRODUCTION

“The grandest discoveries of science have been but the

rewards of accurate measurement . . . ” (Lord Kelvin)

Evolutionary algorithms are an attractive approach for multi-ob-

jective optimization problems due to their heuristic nature, making

them generally applicable, and their use of a population allowing the

Pareto front (PF) to be approximated straightforwardly in a single

run. InteractiveMulti-Objective Evolutionary Algorithms (iEMOAs)

can also exploit information provided by a Decision Maker (DM)

to generate only those parts of the PF that are interesting to the

DM. These perceived advantages have led to the introduction of

many alternative interactive EMOAs in recent years [1, 4, 9, 19].

However, the science of analysing and comparing different iEMOAs

still remains problematic due to the influence of the DM’s decisions

on final results, which makes experiments’ conclusions biased, un-

reliable and unreplicable. When it comes to iEMOAs, few statistical

analyses of such algorithms have been published, and they have

mostly used a trivial and unrealistic utility function to stand in for

a real DM in the experiments. Here, we propose using a realistic

sigmoid utility function (UF) inspired by psychological studies. Fur-

thermore, to the best of our knowledge, there has been no direct

head-to-head comparison of different iEMOAs in the literature. Our

systematic study aims to fill this gap in the literature, paving the

way for much deeper experimental analyses of iEMOAs, and for

data-driven improvements in the field.

2 BACKGROUND

Many real-life optimization problems have several conflicting ob-

jectives to be optimized simultaneously. Given𝑚 objective func-

tions that map each decision vector x in solution space 𝑋 ⊆ R𝑛
to z = f (x) in objective space, 𝑍 ⊆ R𝑚 , the resulting optimization

problem has the following general form:
1

min

z∈𝑍
z = f (x) = (𝑓1 (x), . . . , 𝑓𝑚 (x)) subject to x ∈ 𝑋 . (1)

Often the ultimate goal is to find the feasible solution most pre-

ferred by the DM. Interactive methods search for this solution using

information that is elicited from the DM during the optimization

phase. Interactive EMOAs (iEMOAs) differ in interaction pattern,

the preference information, the preference modeland the search en-

gine [21]. Broadly speaking, interactive methods can be categorized

into ad hoc and non-ad hoc methods [12]. Non ad hoc methods as-

sume the existence of an underlying utility function (UF) that drives

1
Assuming minimisation of all objectives without loss of generality.

https://doi.org/10.1145/3449639.3459373
https://doi.org/10.1145/3449639.3459373
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the decisions of the DM [16].
2
Here, we focus on ranking-based

non ad hoc methods, where the DM is asked to provide a (partial)

ranking of a number of solutions at each interaction. BC-EMOA [1],

NEMO [3] and iTDEA [9] fall in this category.

Interactive methods should, if well-designed, facilitate fast con-

vergence to the interesting parts of the Pareto front. However,

analysis of such algorithms, to measure progress and direct future

development, would ideally be based on studies involving human

DMs. This yields a challenging problem as human DMs differ from

one another significantly [5]. Zujevs and Eiduks [22] claim that

studies using real DMs need more than 65 DMs to perform exper-

iments on iEMOAs. They propose a MDM framework based on

minimizing the distance of solutions to an ideal point. However,

they do not attempt to simulate any realistic biases or behaviours.

As an alternative to human DMs, most works use simple or un-

realistic utility functions (UF), mostly devised by the algorithm’s

authors, to simulate the behaviour of a DM. In this regard, compari-

son of different interactive multi-objective optimization algorithms

have been performed using linear [9, 15], non-linear (typically

quadratic or polynomial functions) [1, 9, 13, 15] and Tchebycheff

UFs [9]. Most studies on evolutionary algorithms are over-simplified

with the use of arbitrary UFs and assume ideal conditions without

biases and non-idealities, whereas Stewart [17] suggests biases exist

in human decision making.

The studies by Stewart [17, 18] provide perhaps the most compre-

hensive simulations of DMs in the context of multi-criteria decision-

making. Different psychological biases and realistic behaviours

gathered from the literature are simulated by modifying a given

UF that represents the idealized true preferences of the DM, and

these are used to evaluate the ability of MCDM methods to recover

true preferred points. Much later, López-Ibáñez and Knowles [10]

adapted the Stewart [17] study in proposing a Machine-Decision-

Maker (MDM) framework to serve as a laboratory for analysing the

performance of interactive algorithms, and analysed BC-EMOA [1]

as a proof of concept. However, the MDM used in the analysis [10]

relied on the linear and polynomial UFs proposed in the original

BC-EMOA to simulate the DM’s true preferences.

Inspired by Kahneman and Tversky [8] and Stewart [17, 18], we

adopt a non-trivial realistic sigmoid UF. The parameters of this

sigmoid UF allow the simulation of various well-known psycholog-

ical behaviours, such as non-linear utility, asymmetric attitudes to-

wards gains and losses, and high or low compensatory preferences.

Compensatory preferences determine how much detriments in one

objective value may be compensated by gains in other objectives.

The sigmoid UF function also satisfies the accepted requirement of

UFs being quasi-concave in the economics literature [11] and it has

been used in recent studies to simulate a realistic DM [7, 18].

We aim to perform a comprehensive comparison and analysis

of the performance of two well-known iEMOAs, iTDEA and BC-

EMOA, using the sigmoid UF. We selected these two particular

algorithms due to their similar style of interaction with the DM and

yet different internal mechanisms, which makes their comparison

of interest.

2
In practice, it may be impossible to determine whether a DM is driven by an UF

unknown to them (as assumed by the MDM framework) or not.

Brain-Computer EMOA (BC-EMOA) [1] is based on NSGA-II and

uses Support Vector Machine (SVM) to learn the underlying pref-

erence model of the DM. In each interaction, a small subset of

non-dominated solutions are presented to the DM for pairwise

comparison and consequently the solutions are ranked based on

these comparisons. Solutions along with their ranks are used for

training the SVM. The learned UF replaces the crowding distance of

NSGA-II in subsequent generations to break ties between mutually

non-dominated solutions. In their paper (ibid.), the DM is simulated

as a (linear or quadratic) UF in order to investigate how well the

algorithm would approximate the preferred solution.

Interactive Territory Defining Evolutionary Algorithm (iTDEA) [9]
maintains two populations, a fixed-size regular population that

contains both dominated and non-dominated individuals, and a

variable-size archive that only contains non-dominated solutions.

In each generation, a single offspring is generated. If it is dominated

by the members of the regular population it is discarded, otherwise

it replaces a dominated individual or a random one if the new

solution does not dominate any other solution. The offspring enters

the archive if it is non-dominated and also does not violate the

territory of existing individuals. Territory is defined as a region

occupied by each individual in the objective space and it controls the

density of each region. Solutions in interesting parts of the PF are

assigned smaller territory size. As the result, number of solutions

in those parts increases, making them more dense. For the territory

violation check, the offspring is compared to its closest individual in

the archive. In iTDEA, the DM is asked to select the most preferred

solution (zmps) among several filtered solutions at each interaction.

The solutions in the proximity of the best, classified as superior

solutions, are given smaller territory, making regions of interest

more crowded. The original paper [9] evaluated iTDEA using only

linear, quadratic and Tchebycheff UFs.

3 A REALISTIC UTILITY FUNCTION

Most studies on non-ad hoc iEMOAs simulate the behaviour of a

human DM by means of a utility function𝑈 (z) : R𝑚 → [0, 1] that
represents the DM’s true preference [1, 9, 14, 20]. To be consistent

with typical multi-objective optimization benchmark problems, we

assume here that𝑈 (z) should be minimized.

Psychological studies by Kahneman and Tversky [8] have estab-

lished that human DMs often evaluate objective values as gains

or losses relative to internal reference levels and their preferences

follow an S-shaped curve that is concave for gains and convex for

losses. Inspired by such studies, Stewart [17] proposed the sigmoid

UF shown in Eq. (2) as a more realistic alternative to other UFs used

in the simulation of DMs,

𝑈 (z) =
𝑚∑
𝑖=1

𝑤𝑖𝑢𝑖 (𝑧𝑖 )

𝑢𝑖 (𝑧𝑖 ) =


𝜆𝑖 · (𝑒𝛼𝑖𝑧𝑖 − 1)

𝑒𝛼𝑖𝜏𝑖 − 1

if 0 ≤ 𝑧𝑖 ≤ 𝜏𝑖

𝜆𝑖 +
(1 − 𝜆𝑖 ) (1 − 𝑒−𝛽𝑖 (𝑧𝑖−𝜏𝑖 ) )

1 − 𝑒−𝛽𝑖 (1−𝜏𝑖 )
if 𝜏𝑖 < 𝑧𝑖 ≤ 1 ,

(2)

where 𝑤𝑖 ∈ [0, 1] is the relative weight of the 𝑖th objective func-

tion (

∑𝑚
𝑖=1

𝑤𝑖 = 1) and 𝑢𝑖 (𝑧𝑖 ) is its marginal value function, 𝜆𝑖 is

the value of 𝑢𝑖 (𝑧𝑖 ) at the reference level 𝜏𝑖 , which is the value of
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objective 𝑖 where the function changes from concave to convex,

i.e., the threshold that separates the values perceived as “gains” or

“losses” by the DM.

Different decision making behaviours can be simulated by dif-

ferent combinations of 𝜏𝑖 and 𝜆𝑖 values as described in Table 1.

In addition, parameters 𝛼𝑖 and 𝛽𝑖 control the non-linearity of the

function for the 𝑖th objective. Figure 1 illustrates the effect of these

parameters on the shape of the marginal utility function.

Table 1: Description of different types of DM behaviours si-

mulated by combinations of 𝜏𝑖 and 𝜆𝑖 adapted from [17].

Type 𝜏𝑖 𝜆𝑖 Description

1 [0.1, 0.4] [0.1, 0.4] Limited range of compensation; plus

sharp preference threshold

2 [0.1, 0.4] [0.6, 0.9] Limited range of compensation.

3 [0.6, 0.9] [0.1, 0.4] Mainly compensatory preferences, but

with sharp preference threshold.

4 [0.6, 0.9] [0.6, 0.9] Mainly compensatory preferences.
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Figure 1: Shape of sigmoid UF with different parameters. In

“Default” 𝜏 = 0.5, 𝜆 = 0.5, 𝛼 = 16, 𝛽 = 7. The effects of changing

each parameter from the default value on the shape of the

function is illustrated in other curves.

As far as we know, the above UF has never been used as part of

a machine decision-maker to evaluate iEMOAs in the literature and

we expect it to be significantly harder than linear UFs and produce

different behaviours than quadratic UFs, even without simulating

any other known DM biases such as noise [10, 17].

For some combinations of sigmoid UF parameters, the utility

value of all the PF solutions is squeezed into a narrow interval,

which means there is not much difference in utility value between

different PF solutions, thus, making it difficult for the algorithms

to converge towards the zmps. On the other hand, having the zmps

on the corners or in the middle of the PF would make it impossible

to distinguish between undesired bias towards those particular

regions of the objective space and proper convergence to the zmps.
To address these issues, we also propose a simple method to find

the appropriate parameters (𝛼 , 𝛽 , 𝜏 , 𝜆) of the sigmoid UF.

α1 … αm ϐ1 … ϐm τ1 … τm λ1 … λm ω1 … ωm

Length=5m

alpha values beta values tau values lambda values weights

Integer variables continuous variables

Figure 2: Solution representation (chromosome) used by the

EA to find the sigmoid UF parameters that optimize the sin-

gle objective problem in Eq. (3).

The algorithmworks as follows. First, given the PF of a particular

problem, or a very good approximation thereof, a point of interest

on the approximated PF is chosen as the desired preferred point

z̆. In our experiments, z̆ was set to (znadir − zideal)/3 , where znadir

and zideal are defined with respect to the approximated PF. As this

point may be infeasible, the following single-objective optimization

problem is solved to find the parameters of the sigmoid UF (Eq. 2)

for all objectives 𝑖 (𝛼𝑖 , 𝛽𝑖 , 𝜏𝑖 , 𝜆𝑖 and𝑤𝑖 ) in a way to make the zmps

as close as possible to z̆:3

min 𝛿 =

𝑚∑
𝑖=1

|z̆𝑖 − zmps𝑖 |

subject to:

zmps = arg min

z∈𝑃𝐹
𝑈 (z;𝛼, 𝛽, 𝜏, 𝜆,w)

𝛼𝑖 > 𝛽𝑖 ∀𝑖 = 1, . . . ,𝑚∑𝑚
𝑖=1

𝑤𝑖 = 1

𝛼𝑖 , 𝛽𝑖 ∈ Z+;𝜏𝑖 , 𝜆𝑖 ,𝑤𝑖 ∈ [0, 1] ∀𝑖 = 1, . . . ,𝑚

(3)

By further restricting the ranges for these decision variables,

one can simulate various DM behaviors as laid out in Table 1. The

decision vector of this problem has a length of 5𝑚 as depicted in

Figure 2. 𝜏 , 𝜆 andw are defined as continuous variables, while 𝛼 and

𝛽 values are integers. To calculate the fitness of each decision vector,

the resulting sigmoid UF is applied to all objective vectors in the PF.

Then the Manhattan distance (for speed) between the point on the

PF having the minimum UF (zmps) and z̆ is considered as the fitness
of the solution. The problem of minimizing the distance between

zmps and z̆ can be optimized by any single-objective optimizer. For

simplicity, here we use the Simple Genetic Algorithm implemented

by the Pygmo library [2].

4 STATISTICAL STUDY OF TWO IEMOAS

USING REALISTIC UFS

4.1 Experimental setup

4.1.1 Benchmark problems. We use benchmark problems DTLZ1,

DTLZ2 and DTLZ7 [6] with 2 and 3 objectives, which were the

problems used in both original works [1, 9].
4
Having few objectives

would help us to better understand and investigate the problem and

also enables the visualization of UFs. As suggested [6], the solution

3
Here we deviate from the original formulation of Stewart, which assumes non-

compensatory preferences for substantially poor values of 𝑧𝑖 . An equivalent for-

mulation would use 𝛼𝑖 < 𝛽𝑖 due to the minimization of𝑈 .

4
It is not always obvious how the parameters of these algorithms should be set for new

problems, as some parameter values in iTDEA are set specifically for each problem.
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space dimension (𝑛) is𝑚 +4 for DTLZ1,𝑚 +9 for DTLZ2 and𝑚 +19

for DTLZ7,𝑚 being the number of objectives.

4.1.2 Machine DM parameter settings. We adopt the machine DM

(MDM) proposed in [10], replacing the linear and quadratic UFs

used there by the sigmoid UF explained above (Eq. 2). Since the

sigmoid UF already has several parameters that simulate various

human behaviours, we do not enable any additional biases in the

MDM to simplify the analysis here.

For the ranges of the UF parameter, we consider first the four

possible combinations of intervals for 𝜏𝑖 and 𝜆𝑖 shown in Table 1.

Together with the 5 benchmark problems, this results in 20 config-

urations of UF parameters. In addition, we consider two levels of

non-linearity, namely, a low level of 𝛼𝑖 ∈ [10, 16] and 𝛽𝑖 ∈ [1, 7] and
a high level with 𝛼𝑖 ∈ [16, 22] and 𝛽𝑖 ∈ [8, 14]. We also constrain

𝛼𝑖 and 𝛽𝑖 to be integers. The resulting values of the UF parameters

are shown in Tables 2 and 3.

4.1.3 BC-EMOA and iTDEA parameter settings. All parameters of

BC-EMOA and iTDEA are set as suggested in the original papers [1,

9]. The initial and final territory for iTDEA are set to 0.1 and 0.00001,

respectively, which was one of the alternatives suggested by its

original authors. For the number of solutions presented to the

DM in each interaction, the authors of iTDEA suggest 2𝑚, while

the authors of BC-EMOA performed tests with 3 to 50 solutions.

Considering the number of pairwise comparisons that a DM is

asked to perform at each interaction, values larger than 5 would

impose a high burden on the DM. Thus, we set this number to 5.

BCEMOA asks the DM to make pairwise comparisons, which are

then translated into a ranking. iTDEA ask the DM to select the best

solution, which also needs to compare solutions pairwise. Thus

the preference elicitation in both algorithms boils down to ranking.

Population size in all experiments is 100. For the purposes of a

fair comparison, the number of fitness evaluations is set to 80 000

for both algorithms. Since iTDEA evaluates only one solution per

generation, and BC-EMOA creates a completely new population,

80 000 evaluations correspond to 80 000 generations in iTDEA and

800 generations in BC-EMOA. Finally, we perform experiments

with 2, 4 and 6 interactions.

Each experiment is repeated 40 times with different random

seeds. The algorithms and the Machine DM are implemented in

Python 3.7.6, using the NSGA-II and benchmarks implementation

provided by the Pygmo library 2.16.0 [2] and the SVM module

provided by scikit-learn 0.23.1 (http://scikit-learn.org/). For our

implementation of iTDEA in Python, we studied the C++ imple-

mentation provided by its original authors at https://bitbucket.org/

ibrahimkarahan/itdea.

4.2 Results and Discussion

As a first step, we plot the solutions obtained by the iEMOAs on the

bi-objective benchmark problems, together with the underlying UFs.

For reasons of space, we focus on the results after 6 interactions.

Each row in Figures 3 and 4 shows results for one benchmark

problem, while each column corresponds to one of the DM types

(Table 1). A first observation is that the different UF parameters

lead to very different UF landscapes. Another general observation

is that iTDEA very often fails to get close to the zmps, especially for

DTLZ7 (bottom row). BC-EMOA, on the other hand, is sometimes

able to return solutions close to the most-preferred one, however,

in many runs it returns solutions that are very far away from it,

often in the opposite extreme of the PF, as can be seen in Tests 1, 3,

8 and 15 (Figure 3). These results seem to concur with our intuition

that iEMOAs may struggle with the sigmoid UF.

We further evaluate the performance of the iEMOAs in two dif-

ferent ways. First, we plot the utility value of the final solution

returned by each of the 40 independent repetitions of each experi-

ment. These values are shown in Figures 5 and 6. In these figures,

each row corresponds to one DM type (as defined in Table 1) and

each column relates to one benchmark problem.

Second, following the original studies [1, 9], we measure the

approximation error of the utility of the solution returned by the al-

gorithms𝑈 (z) to the utility of the most-preferred solution𝑈 (zmps),
calculated as

(𝑈 (z) −𝑈 (zmps))/(𝑈 (zw) −𝑈 (zmps)) , (4)

where 𝑈 (zw) is the utility of the worst PF solution. Thus, lower

approximation error is desired. An approximation error greater

than one indicates the returned solution is not on the PF. Mean and

standard deviation of the approximation errors are shown in Table 4.

For conciseness, we only show results for 2 and 6 interactions.

Looking at overall performance, the results with 6 interactions

(Table 4) show that iTDEA performs best in tests 11 and 16 (DTLZ1

with two objectives, DM types 3 and 4), whereas BC-EMOA per-

forms best (with both 2 and 6 interactions) in tests 4, 9, and 19

(DTLZ2 with 3 objectives), for high non-linearity, and tests 5, 10,

20 (DTLZ7 with two objectives) and 18, for low non-linearity. Thus,

it seems the performance of BC-EMOA is acceptable on problem

DTLZ2 with 3 objectives and DTLZ7 in all cases except DM type 3.

Overall, BC-EMOA produces the worse results on DTLZ1 with 3

objectives in all tests, while tests on DTLZ2 and DTLZ7 with 2 and 3

objectives seem easy for this algorithm, except for DTLZ7 with DM

type 3. The boxplots (Figs. 5 and 6) corroborate these observations

and also clearly show that the variance of the results produced

by iTDEA is much larger, while the results of BC-EMOA are more

consistent, even though they are not always better. In particular, the

results of iTDEA are less consistent in DTLZ2 and DTLZ7, whereas

BC-EMOA is more consistent on those two problems.

Looking at the effect of the number of interactions, we can confi-

dently say that BC-EMOA does not perform better when increasing

the number of interactions from 2 to 6 as can be verified by compar-

ing the respective columns in Table 4. The improvements that are

observed (e.g., tests 13, 14, and 19, for high non-linearity and tests

4, 13 and 14, for low non-linearity) can be attributed to extreme

outliers (very poor runs) that happen more frequently with few

interactions, as shown in the corresponding boxplots of those tests

(Figures 5 and 6). The lack of improvement with higher number of

interactions and the frequency of such extreme outliers suggests

that BC-EMOA sometimes gets stuck in regions with poor utility

values and it is not able to escape from them.

The performance of iTDEA typically gets better with more inter-

actions, which can be seen by comparing columns 2 and 6 for iTDEA

(Table 4), with a few exceptions (tests 5 and 14 for high non-linearity

and 10 and 14, for low non-linearity), where the performance of

iTDEA is anyway very poor.

http://scikit-learn.org/
https://bitbucket.org/ibrahimkarahan/itdea
https://bitbucket.org/ibrahimkarahan/itdea
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Table 2: Parameter values of the sigmoid UF for tests with low values of 𝛼 and 𝛽 . Type correspond to the DM types in Table 1. 𝑛:

dimension of the problem.𝑚: dimension of the objective space.𝑈 (zmps): utility of zmps,𝑈 (zw): utility of the worst PF solution.

𝛼, 𝛽, 𝜏, 𝜆 and𝑤 are the parameters of UF as laid out in Equation 2.

Test Prob 𝑛 𝑚 Type 𝑈 (zmps) 𝑈 (zw) 𝜏 𝛼 𝛽 𝜆 𝑤

1 DTLZ1 6 2 1 0.33 0.49 0.33, 0.36 11, 15 1, 1 0.18, 0.11 0.48, 0.52

2 DTLZ1 7 3 1 0.09 0.38 0.38, 0.34, 0.37 13, 16, 16 1, 1, 1 0.21, 0.13, 0.22 0.4, 0.3, 0.29

3 DTLZ2 11 2 1 0.47 0.70 0.39, 0.4 15, 16 1, 5 0.12, 0.1 0.52, 0.48

4 DTLZ2 12 3 1 0.30 0.54 0.4, 0.39, 0.38 16, 16, 12 7, 3, 1 0.11, 0.1, 0.12 0.32, 0.33, 0.35

5 DTLZ7 21 2 1 0.12 0.91 0.38, 0.28 16, 16 5, 4 0.12, 0.33 0.12, 0.88

6 DTLZ1 6 2 2 0.46 0.73 0.4, 0.4 11, 16 1, 7 0.6, 0.6 0.53, 0.47

7 DTLZ1 7 3 2 0.27 0.54 0.39, 0.38, 0.38 16, 14, 15 1, 3, 1 0.78, 0.66, 0.67 0.33, 0.34, 0.33

8 DTLZ2 11 2 2 0.39 0.89 0.4, 0.37 11, 16 2, 1 0.62, 0.81 0.39, 0.61

9 DTLZ2 12 3 2 0.13 0.93 0.22, 0.28, 0.15 12, 15, 15 4, 2, 4 0.73, 0.77, 0.66 0.58, 0.29, 0.13

10 DTLZ7 21 2 2 0.48 0.91 0.21, 0.37 12, 14 4, 1 0.68, 0.65 0.49, 0.51

11 DTLZ1 6 2 3 0.01 0.55 0.83, 0.65 15, 12 5, 4 0.16, 0.29 0.42, 0.58

12 DTLZ1 7 3 3 0.00 0.34 0.89, 0.69, 0.85 11, 12, 11 7, 5, 2 0.36, 0.17, 0.25 0.44, 0.14, 0.41

13 DTLZ2 11 2 3 0.26 0.69 0.62, 0.6 16, 11 5, 3 0.1, 0.37 0.27, 0.73

14 DTLZ2 12 3 3 0.01 0.56 0.65, 0.67, 0.84 10, 12, 15 4, 5, 4 0.28, 0.38, 0.11 0.35, 0.59, 0.06

15 DTLZ7 21 2 3 0.01 0.81 0.89, 0.61 14, 10 7, 1 0.11, 0.38 0.13, 0.87

16 DTLZ1 6 2 4 0.00 0.76 0.88, 0.82 16, 11 4, 3 0.6, 0.69 0.19, 0.81

17 DTLZ1 7 3 4 0.02 0.45 0.63, 0.61, 0.61 13, 12, 13 7, 1, 1 0.75, 0.82, 0.89 0.45, 0.25, 0.3

18 DTLZ2 11 2 4 0.35 0.88 0.6, 0.66 12, 15 2, 2 0.8, 0.9 0.36, 0.64

19 DTLZ2 12 3 4 0.06 0.72 0.65, 0.63, 0.87 10, 10, 12 3, 2, 2 0.78, 0.71, 0.65 0.48, 0.45, 0.07

20 DTLZ7 21 2 4 0.13 0.88 0.61, 0.61 16, 10 5, 3 0.85, 0.79 0.13, 0.87

Table 3: Parameter values of the UF for tests with large 𝛼 and 𝛽 . For the meaning of the columns see the caption of Table 2.

Test Prob 𝑛 𝑚 Type 𝑈 (zmps) 𝑈 (zw) 𝜏 𝛼 𝛽 𝜆 𝑤

1 DTLZ1 6 2 1 0.48 0.69 0.38, 0.4 19, 19 10, 13 0.21, 0.14 0.5, 0.5

2 DTLZ1 7 3 1 0.09 0.51 0.33, 0.38, 0.37 16, 16, 22 8, 8, 10 0.11, 0.33, 0.22 0.35, 0.3, 0.35

3 DTLZ2 11 2 1 0.46 0.99 0.34, 0.37 19, 17 12, 14 0.11, 0.13 0.46, 0.54

4 DTLZ2 12 3 1 0.07 0.99 0.23, 0.18, 0.19 19, 19, 20 13, 14, 11 0.21, 0.25, 0.15 0.64, 0.29, 0.07

5 DTLZ7 21 2 1 0.49 0.99 0.3, 0.31 16, 18 9, 14 0.31, 0.37 0.49, 0.51

6 DTLZ1 6 2 2 0.50 0.81 0.4, 0.4 18, 22 8, 12 0.6, 0.6 0.5, 0.5

7 DTLZ1 7 3 2 0.17 0.60 0.4, 0.39, 0.39 17, 22, 19 11, 12, 8 0.71, 0.86, 0.64 0.34, 0.3, 0.36

8 DTLZ2 11 2 2 0.45 1.00 0.13, 0.18 16, 16 13, 14 0.64, 0.74 0.45, 0.55

9 DTLZ2 12 3 2 0.21 0.99 0.36, 0.14, 0.16 17, 21, 22 8, 14, 8 0.9, 0.86, 0.7 0.32, 0.47, 0.21

10 DTLZ7 21 2 2 0.35 0.99 0.39, 0.4 16, 21 11, 10 0.71, 0.87 0.35, 0.65

11 DTLZ1 6 2 3 0.00 0.55 0.89, 0.63 17, 16 14, 8 0.36, 0.35 0.44, 0.56

12 DTLZ1 7 3 3 0.00 0.45 0.85, 0.74, 0.69 16, 19, 21 13, 8, 11 0.26, 0.23, 0.32 0.51, 0.34, 0.15

13 DTLZ2 11 2 3 0.41 0.67 0.6, 0.63 20, 16 14, 11 0.25, 0.39 0.41, 0.59

14 DTLZ2 12 3 3 0.00 0.62 0.61, 0.61, 0.9 16, 16, 19 9, 8, 11 0.36, 0.17, 0.12 0.31, 0.63, 0.06

15 DTLZ7 21 2 3 0.01 0.88 0.9, 0.6 20, 16 14, 13 0.12, 0.38 0.12, 0.88

16 DTLZ1 6 2 4 0.01 0.84 0.79, 0.62 18, 17 12, 14 0.72, 0.87 0.16, 0.84

17 DTLZ1 7 3 4 0.00 0.49 0.65, 0.63, 0.68 20, 17, 19 10, 12, 14 0.61, 0.77, 0.73 0.4, 0.12, 0.49

18 DTLZ2 11 2 4 0.27 0.87 0.62, 0.67 16, 21 11, 13 0.85, 0.76 0.27, 0.73

19 DTLZ2 12 3 4 0.02 0.90 0.61, 0.61, 0.9 16, 16, 21 8, 12, 14 0.89, 0.85, 0.66 0.47, 0.48, 0.04

20 DTLZ7 21 2 4 0.10 0.95 0.61, 0.61 22, 16 14, 12 0.88, 0.82 0.1, 0.9

Somewhat surprisingly, there is no clear effect of the non-linearity

of the UF on the performance of the algorithms. In particular, non-

linearity seems to have little effect for BC-EMOA, as can be seen by

comparing the two sides of Table 4 or the boxplots in Fig. 5 versus

Fig. 6. The only clear exceptions are tests 1 (top-left plot in Figs. 5

and 6), 4 and 6, where BC-EMOA performs clearly worse with low

non-linearity, which is rather unexpected. As for iTDEA, its results

sometimes get better and sometimes worse when comparing the
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Figure 3: Distribution of final solutions returned by 40 runs of both algorithms with 6 interactions on 2-objective benchmark

problems. The contour lines show the value of sigmoid UFs (with low values of 𝛼 and 𝛽). The PF approximation is shown as

white points. The solutions with worst and best utility values on the PF are depicted by red and green markers, respectively.
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Figure 4: Distribution of final results for tests with high values of 𝛼 and 𝛽 . See caption of Figure 3 above for details.
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Figure 5: Comparison of the performance of the two algorithms for different tests with low 𝛼 and 𝛽 values of the sigmoid

UF. The utility values are averaged over 40 runs. The plots include results for 2, 4 and 6 interactions. Red and blue dash-lines

indicate the worst and best utility values for PF solutions.
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Figure 6: Comparison of the performance of the two algorithms for different tests with high values of 𝛼 and 𝛽 . See caption of

Figure 5 above for details.
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Table 4: Approximation error (Eq. 4) statistics for BC-EMOA and iTDEA. The mean (and standard deviation in parenthesis)

over 40 independent runs is shown for each test. Minimummean errors in each row are highlighted in bold font. Differences

in performance of the algorithms are significant (Wilcoxon test, p-value < 0.05) unless indicated by an asterisk (*).

High values of 𝛼 and 𝛽 Low values of 𝛼 and 𝛽

DM 2 interactions 6 interactions 2 interactions 6 interactions

Test Problem 𝑚 type BC-EMOA iTDEA BC-EMOA iTDEA BC-EMOA iTDEA BC-EMOA iTDEA

1 DTLZ1 2 1 0.079(0.01)* 0.173(0.255)* 0.086(0.071) 0.057(0.186) 0.69(0.276) 0.167(0.15) 0.56(0.361) 0.115(0.211)

2 DTLZ1 3 1 0.531(0.043)* 0.537(0.17)* 0.555(0.067) 0.433(0.184) 0.669(0.12)* 0.44(0.147)* 0.658(0.138) 0.361(0.205)

3 DTLZ2 2 1 0.006(0.03) 0.495(0.404) 0.036(0.17) 0.087(0.257) 0.069(0.13) 0.394(0.357) 0.057(0.049) 0.104(0.191)

4 DTLZ2 3 1 0.0(0.0) 0.709(0.295) 0.0(0.0) 0.629(0.313) 0.175(0.242) 0.302(0.235) 0.074(0.018) 0.35(0.261)

5 DTLZ7 2 1 0.0(0.0) 0.275(0.391) 0.006(0.023) 0.328(0.384) 0.006(0.031) 0.699(0.392) 0.005(0.021) 0.647(0.411)

6 DTLZ1 2 2 0.004(0.006) 0.187(0.334) 0.006(0.008)* 0.064(0.193)* 0.047(0.049)* 0.267(0.356)* 0.057(0.06) 0.086(0.237)

7 DTLZ1 3 2 0.364(0.14)* 0.424(0.19)* 0.341(0.163) 0.397(0.164) 0.212(0.001)* 0.309(0.233)* 0.215(0.013)* 0.281(0.181)*

8 DTLZ2 2 2 0.013(0.049) 0.793(0.344) 0.013(0.049) 0.43(0.402) 0.047(0.128)* 0.585(0.429)* 0.046(0.128) 0.065(0.188)

9 DTLZ2 3 2 0.0(0.0) 0.786(0.198) 0.0(0.0) 0.71(0.235) 0.0(0.0) 0.706(0.305) 0.0(0.0) 0.657(0.295)

10 DTLZ7 2 2 0.0(0.0) 0.467(0.345) 0.001(0.006) 0.449(0.361) 0.001(0.0) 0.277(0.325) 0.004(0.023) 0.426(0.369)

11 DTLZ1 2 3 0.53(0.258)* 0.383(0.379)* 0.5(0.293) 0.007(0.024) 0.511(0.255) 0.057(0.104) 0.455(0.271) 0.009(0.021)

12 DTLZ1 3 3 0.41(0.192) 0.102(0.176) 0.382(0.2) 0.039(0.102) 0.451(0.207) 0.09(0.186) 0.488(0.299) 0.027(0.046)

13 DTLZ2 2 3 0.02(0.083) 0.403(0.318) 0.005(0.002)* 0.153(0.298)* 0.027(0.074) 0.129(0.2) 0.015(0.007) 0.031(0.086)

14 DTLZ2 3 3 0.161(0.252) 0.416(0.326) 0.067(0.005) 0.505(0.351) 0.149(0.207) 0.399(0.309) 0.07(0.003) 0.469(0.331)

15 DTLZ7 2 3 0.085(0.014) 0.647(0.418) 0.126(0.202) 0.6(0.406) 0.091(0.024) 0.447(0.371) 0.063(0.04) 0.381(0.337)

16 DTLZ1 2 4 0.161(0.043)* 0.402(0.432)* 0.18(0.164) 0.011(0.031) 0.161(0.085) 0.025(0.046) 0.206(0.233) 0.001(0.002)

17 DTLZ1 3 4 0.367(0.254)* 0.339(0.35)* 0.42(0.285) 0.177(0.272) 0.534(0.087) 0.416(0.287) 0.571(0.145)* 0.276(0.287)*

18 DTLZ2 2 4 0.009(0.045) 0.465(0.387) 0.002(0.005) 0.03(0.161) 0.01(0.003)* 0.142(0.25)* 0.01(0.003) 0.141(0.306)

19 DTLZ2 3 4 0.092(0.246) 0.433(0.26) 0.027(0.001) 0.437(0.259) 0.015(0.002) 0.438(0.26) 0.015(0.001) 0.396(0.237)

20 DTLZ7 2 4 0.0(0.0) 0.538(0.432) 0.0(0.0) 0.5(0.445) 0.001(0.003) 0.637(0.42) 0.001(0.002) 0.537(0.438)

same test with low versus high non-linearity. Hence, no general

pattern can be observed.

Lastly, the layout of Figures 5 and 6 allows us to observe that the

behaviour of the iEMOAs changes across DM types for the same

problem (i.e., across rows for the same column), thus the type of DM

does have an impact on the behaviour of the algorithms. However,

it is not possible to see a clear pattern of the DM type that repeats

across problems (i.e., across columns for the same row), thus each

DM type seems to have a different effect for each problem.

5 CONCLUSION

The quantitative assessment of iEMOAs is challenging because

of the dual problems that EMOAs are stochastic, necessitating re-

peated experiments, and that human DMs add further variability

which needs careful controlling. More importantly, human DMs

are very difficult to work with in large studies because they suffer

from fatigue, making them behave differently to how they might

behave in a realistic single-shot environment. These challenges

have motivated researchers to simulate the interaction with the

human DM by replacing them with a utility function. The Machine

DM framework introduced in [10] goes further, enabling various

realistic behaviours of DMs to be simulated. However, to the best

of our knowledge, a systematic statistical comparison of different

iEMOAs has not been attempted until this paper. While all the

previous statistical studies on the performance of iEMOAs have

used linear or arbitrary non-linear UFs to simulate a real DM in

their experiments, we propose here to use a sigmoidal UF that can

be easily tuned to mimic different decision-making attitudes and

behaviours. The sigmoidal UF has been widely accepted as realistic

in the MCDM [17] and behavioural economics literature [8].

The experiment detailed here strongly suggests that at least

some state-of-the-art iEMOAs do not perform as expected or de-

sired under this more realistic UF. In particular, each of the iEMOAs

evaluated show different but similarly underwhelming behaviors:

iTDEA results lack consistency, whereas BC-EMOA sometimes

gets stuck in poor utility regions. The various types of DM be-

haviour that can be expressed by this UF do have an influence on

the results, yet no clear pattern has emerged from our experiments.

On the other hand, and somewhat surprisingly, the two levels of

non-linearity tested did not seem to have a clear effect.

Although the experiments performed here may appear particu-

larly challenging, this study is just a first step towards the statisti-

cal analysis of iEMOAs under realistic DM interaction scenarios.

Real DMs are even more complex and manifest additional biases

and other non-idealities [17]. By adopting the machine DM frame-

work [10], we plan to extend our comparison to assess the impact

of such non-idealities. This study opens the door to further compar-

isons of iEMOAs under such realistic (and challenging) conditions,

hopefully motivating the proposal of new algorithms able to over-

come these challenges. To motivate further research, we make our

code publicly available at doi:10.5281/zenodo.4501313 .

ACKNOWLEDGMENTS

M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished Researcher

(BEAGAL 18/00053) funded by the Ministry of Science and Innovation of

the Spanish Government.

https://doi.org/10.5281/zenodo.4501313


Realistic Utility Functions Prove Difficult for State-of-the-Art iEMOAs GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES

[1] R. Battiti and A. Passerini. 2010. Brain-Computer Evolutionary Multiobjective

Optimization: A Genetic Algorithm Adapting to the Decision Maker. IEEE Trans-
actions on Evolutionary Computation 14, 5 (2010), 671–687. https://doi.org/10.

1109/TEVC.2010.2058118

[2] F. Biscani, D. Izzo, and C. H. Yam. 2010. A Global Optimisation Toolbox for

Massively Parallel Engineering Optimisation. Arxiv preprint arXiv:1004.3824
(2010). http://arxiv.org/abs/1004.3824

[3] J. Branke, S. Corrente, S. Greco, R. Słowiński, and P. Zielniewicz. 2016. Using

Choquet integral as preference model in interactive evolutionary multiobjective

optimization. European Journal of Operational Research 250, 3 (2016), 884–901.

https://doi.org/10.1016/j.ejor.2015.10.027

[4] J. Branke, S. Greco, R. Słowiński, and P. Zielniewicz. 2010. Interactive evolutionary

multiobjective optimization driven by robust ordinal regression. Bulletin of
the Polish Academy of Sciences: Technical Sciences 58, 3 (2010), 347–358. https:
//doi.org/10.2478/v10175-010-0033-3

[5] J. T. Buchanan. 1994. An experimental evaluation of interactive MCDM methods

and the decision making process. Journal of the Operational Research Society 45,

9 (1994), 1050–1059.

[6] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2005. Scalable Test Problems

for Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective
Optimization, A. Abraham et al. (Eds.). Springer, London, UK, 105–145.

[7] Z. Gong, N. Zhang, and F. Chiclana. 2018. The optimization ordering model for

intuitionistic fuzzy preference relations with utility functions. Knowledge Based
Systems 162 (2018), 174–184. https://doi.org/10.1016/j.knosys.2018.07.012

[8] D. Kahneman and A. Tversky. 1979. Prospect theory: An analysis of decision

under risk. Econometrica 47, 2 (1979), 263–291. https://doi.org/10.2307/1914185
[9] M. Köksalan and İ. Karahan. 2010. An Interactive Territory Defining Evolutionary

Algorithm: iTDEA. IEEE Transactions on Evolutionary Computation 14, 5 (Oct.

2010), 702–722. https://doi.org/10.1109/TEVC.2010.2070070

[10] M. López-Ibáñez and J. D. Knowles. 2015. Machine Decision Makers as a Labo-

ratory for Interactive EMO. In Evolutionary Multi-criterion Optimization, EMO
2015 Part II, A. Gaspar-Cunha et al. (Eds.). Lecture Notes in Computer Science,

Vol. 9019. Springer, Heidelberg, Germany, 295–309. https://doi.org/10.1007/

978-3-319-15892-1_20

[11] A. Mas-Colell, M. D. Whinston, and J. R. Green. 1995. Microeconomic theory.
Vol. 1. Oxford university press, New York, New York.

[12] K. Miettinen. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic

Publishers. 298 pages.

[13] J. Mote, D. L. Olson, and M. A. Venkataramanan. 1988. A comparative multiob-

jective programming study. Mathematical and Computer Modelling 10, 10 (1988),

719–729. https://doi.org/10.1016/0895-7177(88)90085-4

[14] V. Ojalehto, D. Podkopaev, and K. Miettinen. 2016. Towards Automatic Test-

ing of Reference Point Based Interactive Methods. In Proceedings of PPSN XIV,
14th International Conference on Parallel Problem Solving from Nature, J. Handl
et al. (Eds.). Lecture Notes in Computer Science, Vol. 9921. Springer, Heidelberg,

Germany, 483–492. https://doi.org/10.1007/978-3-319-45823-6_45

[15] G. R. Reeves and J. J. Gonzalez. 1989. A comparison of two interactive MCDM

procedures. European Journal of Operational Research 41, 2 (1989), 203–209.

https://doi.org/10.1016/0377-2217(89)90385-8

[16] R. E. Steuer and L. Gardiner. 1991. On the Computational Testing of Procedures

for Interactive Multiple Objective Linear Programming. In Operations Research,
G. Fandel and H. Gehring (Eds.). Springer, Berlin, Heidelberg, 121–131. https:

//doi.org/10.1007/978-3-642-76537-7_8

[17] T. J. Stewart. 1996. Robustness of Additive Value Function Methods in MCDM.

Journal of Multi-Criteria Decision Analysis 5, 4 (1996), 301–309.
[18] T. J. Stewart. 2005. Goal programming and cognitive biases in decision-making.

Journal of the Operational Research Society 56, 10 (2005), 1166–1175. https://doi.

org/10.1057/palgrave.jors.2601948

[19] M. K. Tomczyk and M. Kadzinski. 2019. Decomposition-based interactive evo-

lutionary algorithm for multiple objective optimization. IEEE Transactions on
Evolutionary Computation 24, 2 (2019), 320–334. https://doi.org/10.1109/TEVC.

2019.2915767

[20] M. K. Tomczyk and M. Kadziński. 2021. Decomposition-based co-evolutionary

algorithm for interactive multiple objective optimization. Information Sciences
549 (2021), 178–199. https://doi.org/10.1016/j.ins.2020.11.030

[21] B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu. 2018. Interactive

Multiobjective Optimization: A Review of the State-of-the-Art. IEEE Access 6
(2018), 41256–41279. https://doi.org/10.1109/ACCESS.2018.2856832

[22] A. Zujevs and J. Eiduks. 2011. New decision maker model for multiobjective

optimization interactive methods. In 17th International Conference on Information
and Software Technologies, Kaunas, Lithuania. 51–58.

https://doi.org/10.1109/TEVC.2010.2058118
https://doi.org/10.1109/TEVC.2010.2058118
http://arxiv.org/abs/1004.3824
https://doi.org/10.1016/j.ejor.2015.10.027
https://doi.org/10.2478/v10175-010-0033-3
https://doi.org/10.2478/v10175-010-0033-3
https://doi.org/10.1016/j.knosys.2018.07.012
https://doi.org/10.2307/1914185
https://doi.org/10.1109/TEVC.2010.2070070
https://doi.org/10.1007/978-3-319-15892-1_20
https://doi.org/10.1007/978-3-319-15892-1_20
https://doi.org/10.1016/0895-7177(88)90085-4
https://doi.org/10.1007/978-3-319-45823-6_45
https://doi.org/10.1016/0377-2217(89)90385-8
https://doi.org/10.1007/978-3-642-76537-7_8
https://doi.org/10.1007/978-3-642-76537-7_8
https://doi.org/10.1057/palgrave.jors.2601948
https://doi.org/10.1057/palgrave.jors.2601948
https://doi.org/10.1109/TEVC.2019.2915767
https://doi.org/10.1109/TEVC.2019.2915767
https://doi.org/10.1016/j.ins.2020.11.030
https://doi.org/10.1109/ACCESS.2018.2856832

	Abstract
	1 Introduction
	2 Background
	3 A Realistic Utility Function
	4 Statistical Study of Two iEMOAs using Realistic UFs
	4.1 Experimental setup
	4.2 Results and Discussion

	5 Conclusion
	Acknowledgments
	References

