
An experimental study of adaptive capping in irace

Leslie Pérez Cáceres?1, Manuel López-Ibáñez2, Holger Hoos3, and Thomas Stützle1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{leslie.perez.caceres,stuetzle}@ulb.ac.be

2 Alliance Manchester Business School, University of Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

3 Computer Science Department, University of British Columbia, Vancouver, Canada
hoos@cs.ubc.cs

Abstract. The irace package is a widely used for automatic algorithm
configuration and implements various iterated racing procedures. The
original irace was designed for the optimisation of the solution quality
reached within a given running time, a situation frequently arising when
configuring algorithms such as stochastic local search procedures. How-
ever, when applied to configuration scenarios that involve minimising the
running time of a given target algorithm, irace falls short of reaching the
performance of other general-purpose configuration approaches, since it
tends to spend too much time evaluating poor configurations. In this
article, we improve the efficacy of irace in running time minimisation by
integrating an adaptive capping mechanism into irace, inspired by the one
used by ParamILS. We demonstrate that the resulting iracecap reaches
performance levels competitive with those of state-of-the-art algorithm
configurators that have been designed to perform well on running time
minimisation scenarios. We also investigate the behaviour of iracecap in
detail and contrast different ways of integrating adaptive capping.

1 Introduction

Algorithm configuration is the task of finding parameter settings (a configura-
tion) of a target algorithm that achieve high performance for a given class of
problem instances [6,8]. The appropriate choice of parameter settings is often
crucial for obtaining good performance, particularly when dealing with compu-
tationally challenging (e.g., NP-hard) problems. This choice usually depends
on the set or distribution of problem instances to be solved as well as on the
execution environment. Therefore, using appropriately chosen parameter values
is not only essential for reaching peak performance, but also for conducting fair
performance comparisons between different algorithms for the same problem.

Traditionally, algorithm configuration has been performed manually, relying
on experience and intuition about the behaviour of a given algorithm. How-
ever, typical manual configuration processes are time-consuming and tedious;
furthermore, they often leave the performance potential of a given target al-
gorithm unrealised. In light of this, several automated algorithm configuration
? Corresponding author.

2 L. Pérez Cáceres et al.

approaches have been developed and are now used increasingly widely. Promi-
nent examples of general-purpose algorithm configuration procedures include
ParamILS [13], SMAC [12], GGA++ [1] and irace [4,18,17]. The key idea behind
these and other configuration procedures is to view algorithm configuration as a
stochastic optimisation problem that can be solved by effectively searching the
space of configurations of a given target algorithm A. The performance metrics
most commonly optimised in this context are the solution quality reached by A
within a certain time budget and the running time of A for finding a solution
(of a certain quality) to a given problem instance.

The irace software is an automatic configurator based on the iterated F-race
procedure [4,7] and recent improvements [18,17]. It was initially developed for
configuring metaheuristic algorithms that optimise solution quality. In contrast,
minimisation of the running time of a given target algorithm was a major focus in
the development of ParamILS and SMAC, and both of them include an adaptive
capping [13] mechanism that is specifically designed to improve efficiency when
dealing with this performance objective. The key idea behind adaptive capping is
to reduce the time wasted in the evaluation of poorly performing configurations
by bounding the maximum running time permitted for each such evaluation. This
bound is calculated based on the best-performing configuration found so far. The
use of adaptive capping allows the configurator to prune poorly performing target
algorithm configurations early and to quickly focus the configuration budget on
promising areas of the space of configurations being searched.

In this work, we improve the efficacy of irace on algorithm configuration sce-
narios involving running time minimisation. We adapt the ideas of the adaptive
capping mechanism into the underlying iterated racing procedure and define an
additional dominance criterion based on the performance of the elite configura-
tions obtained by irace. As a first step, we show that by extending irace with
adaptive capping, resulting in our new iracecap method, we can significantly in-
crease its performance on well-known and difficult configuration scenarios. An
additional analysis of various parameters of iracecap gives further insights into the
importance of the statistical testing procedures and other aspects of irace. A fi-
nal comparison with other state-of-the-art configuration procedures for running
time minimisation, namely ParamILS and SMAC, shows that iracecap reaches
highly competitive performance and, thus, broadens the range of configuration
scenarios for which irace can be considered a possible method of choice.

The remainder of this article is structured as follows. First, we describe irace
and the adaptive capping mechanism used by ParamILS (Sections 2 and 3).
Next, in Section 4, we describe how we integrated adaptive capping into irace,
and we experimentally analyse the resulting iracecap in Section 5. In Section 6, we
compare iracecap to state-of-the-art configurators for minimising running time,
and we conclude in Section 7.

2 Elitist iterated racing in irace

irace is an iterated racing procedure [7] for automatic algorithm configuration.
It explores the parameter space of a target algorithm by iteratively sampling
parameter configurations and applying a racing procedure to select the best-
performing configurations. The racing procedure considers a sequence of problem

An experimental study of adaptive capping in irace 3

Fig. 1: Illustration of the 1st and 2nd iteration of a run of irace using T first = 3,
T each = 1 and T new = 1.

instances on which the candidate configurations are evaluated. At each stage of
the race, all candidate configurations are run on a specific problem instance; at
the end of the stage, configurations that perform statistically worse than others
are eliminated from the race, while all others proceed to the next stage. Once a
race is terminated, the best configurations, called elite, are used to update the
sampling model from which new configurations are generated. The elite configu-
rations are carried over to the next iteration to continue their evaluation within a
new race together with the newly generated configurations. One iteration of irace
comprises the process of (i) generation of candidate configurations, (ii) execution
of the racing procedure, and (iii) update of the probabilistic model.

The irace package [18,17] is an implementation of irace that is publicly avail-
able as an R package. Recently, version 2.0 of the software was released, which
implements an elitist racing procedure [17]. Differently from the non-elitist rac-
ing procedure on which the first version of irace is based, elitist irace evaluates
configurations on a set of problem instances that increases in size in every it-
eration of irace. In particular, in elitist irace, an elite configuration carried over
from the previous iteration cannot be eliminated until a better configuration is
evaluated on the same instances as the elite one, including all instances on which
the elite configuration was previously evaluated and at least one new instance.

In more detail, elitist irace works as follows (see Figure 1). In the first iter-
ation, configurations are sampled uniformly at random from the given configu-
ration space. These configurations are evaluated on T first instances, after which
the first statistical test is applied, and the configurations that are significantly
worse performing than the best ones are eliminated. This elimination test is per-
formed every T each instances until the termination criterion of the iteration is
met. The surviving configurations at the end of the iteration (elite configura-
tions) are used to update a probabilistic model from which new configurations
are sampled. The set of configurations evaluated in the next iteration is com-
posed of the elite configurations and newly sampled configurations (non-elite
ones). Algorithm 1 shows the pseudo-code of the race performed at each itera-
tion of irace. Instances are evaluated following an execution order that is built
interleaving new and old instances (procedure generateInstancesList in line 1).

4 L. Pérez Cáceres et al.

Algorithm 1: Racing procedure in elitist irace
Inputs are a set of newly generated configurations (Θnew), a user-provided maximum execution
time (bmax), the number of new initial instances (Tnew), the list of unseen instances (Inew),
a set of elite configurations (Θelite), the list of instances on which Θelite were previously
evaluated (Iold), and a Boolean predicate isElite(θ, I) that returns true if configuration θ ∈
Θelite was previously evaluated on instance I ∈ Iold. In the first iteration of irace, Θelite and
Iold are empty and all entries of isElite(·, ·) are set to false.

Input: Θelite, Θnew, bmax, Tnew, Iold, Inew, isElite(·, ·)
Output: Best configurations found in the race.
begin

1 I ← generateInstancesList (Tnew, Iold, Inew)
2 i← 1

3 Θi ← Θnew ∪Θelite

4 while ¬ termination() do
execute elites only when needed; I[i] is the ith entry of instance list I

5 Θexe ← Θi \ {θ ∈ Θelite | isElite(θ, I[i])}
6 execute (Θexe, bmax, I[i])
7 isElite(θ, I[i])← false ∀θ ∈ Θelite

8 if mustTest(i) then
9 Θi+1 ← eliminationTest(Θi, {I[1], . . . , I[i]})

keep configurations that are still elite
10 Θi+1 ← Θi+1 ∪ {θ ∈ Θelite |

∨
I∈Iold isElite(θ, I)}

11 else
12 Θi+1 ← Θi

13 i← i+ 1

14 return Θi

More precisely, the instance list includes T new previously unseen instances, fol-
lowed by the list of previously evaluated instances (Iold), and finally, enough
new instances to complete the race. Iold is randomly shuffled to avoid a bias
that could result from always using the same instance order. A race may termi-
nate even before evaluating all instances in Iold (e.g. when a minimum number
of configurations is reached), and, as a result, each elite configuration may be
evaluated on some instances in Iold. When the race finishes, irace therefore mem-
orises which configuration has been evaluated on which instance. (Line 7 updates
the elite status, and line 10 tests this condition.) In line 6, the configurations
are evaluated on instance I[i] with a maximum execution time of bmax. If an
elite configuration was already previously evaluated on I[i] (i.e., I[i] ∈ Iold), its
result on that instance is read from memory. When the statistical elimination
test is applied, only non-elite configurations (Θnew) may be eliminated and elite
ones are kept until they become non-elite. A configuration becomes non-elite if
all instances in Iold on which it has previously been evaluated have been seen in
a race. Finally, the race returns the best configurations found, which will become
elite in the next iteration. For more details about irace, see [17].

3 ParamILS and adaptive capping

ParamILS [13] is an iterated local search [19] procedure that searches in a pa-
rameter space defined by categorical parameters only; for configuring numer-
ical parameters with ParamILS, these need to be discretised. ParamILS uses

An experimental study of adaptive capping in irace 5

a first-improvement local search algorithm that explores, in random order, the
one-exchange neighbourhood of the current configuration.

There are two versions of ParamILS, BasicILS and FocusedILS, which differ
in the number of instances evaluated when comparing two configurations [13].
BasicILS compares configurations by evaluating them on a fixed number N of
instances, while FocusedILS varies the number of instances according to the
quality of the configurations to be tested. The number of instances used in
the comparison is adjusted based on the dominance criterion, by which a
configuration θj is dominated by a configuration θi if (1) θi has been evaluated
in at least as many instances as θj and (2) the aggregated performance of θi is
better or equal than the one of θj on the Nj instances on which θj has been
evaluated. When no dominance can be established between two configurations,
the number of instances seen by the configuration with less instances evaluated
is increased until both configurations have seen the same number of evaluations.
The execution of a configuration on each instance is always bounded by a defined
maximum execution time (cut-off time).

The adaptive capping technique further bounds the execution of a config-
uration by using the running time of good configurations as a bound in running
time that is often less than the user-specified cut-off time. Using this technique
can significantly reduce the time wasted in the evaluation of poor performing
configurations. Adaptive capping adjusts the bound on running time according
to the number of instances to be used in the comparison, and for this reason, it
can be sensitive to the ordering of the given instances. There are two types of
adaptive capping: trajectory preserving and aggressive capping [13]. The first of
these bounds the running time of new configurations using the performance of
the currently best configuration of each ParamILS iteration as reference, while
the second additionally uses the performance of the overall best configuration
multiplied by a factor, set to two by default, for bounding. This factor controls
the aggressiveness of the capping strategy. Further details on adaptive capping
can be found in [13].

4 Adaptive capping in irace

In this section, we describe a new version of irace that adopts the ideas underlying
adaptive capping in the racing procedure. This new version, iracecap, introduces
two new components to the algorithm: (1) the adaptive running time bound,
used to limit the running time of new configurations on previously seen and
initial instances, and (2) dominance elimination, a procedure that discards
poorly performing configurations. Algorithm 2 shows the outline of the racing
procedure implemented in iracecap; it follows the same structure as elitist irace,
described in Section 2. The elite configurations are first run on the set of initial
instances before the start of the race (Line 2). Line 6 calculates an initial running
time bound based on the running times of the elite configurations. Let pji be
the average computation time of a configuration θj up to instance I[i] in the
current iteration. Then, the bound bi for running new configurations on instance
I[i] is equal to medianθj∈Θelite{pji}. (Median is chosen to be consistent with the
elimination based on dominance described next.) The bound bi can be computed

6 L. Pérez Cáceres et al.

Algorithm 2: Racing procedure in iracecap

For the description of the inputs, see Algorithm 1.

Input: Θelite, Θnew, bmax, Tnew, Iold, Inew, isElite(·, ·)
Output: Best configuration set found in the race.
begin

1 I ← generateInstancesList (Tnew, Iold, Inew)
2 execute (Θelite, bmax, {I[1], . . . , I[Tnew]})
3 i← 1

4 Θi ← Θnew ∪Θelite

5 while ¬ termination() do
6 bi ← calculateEliteBound (Θelite, {I[1], . . . , I[i]})
7 Θexe ← Θi \ {θ ∈ Θelite | isElite(θ, I[i])}
8 execute (Θexe, bi, I[i])
9 isElite(θ, I[i])← false ∀θ ∈ Θelite

dominance criterion elimination
10 Θi+1 ← eliminationDominance (Θi, {I1, . . . , I[i]})

statistical test elimination
11 if mustTest (i) then
12 Θi+1 ← eliminationTest (Θi+1, {I1, . . . , I[i]})

keep configurations that are still elite
13 Θi+1 ← Θi+1 ∪ {θ ∈ Θelite |

∨
I∈Iold isElite(θ, I)}

14 i ← i+ 1

15 return Θi

only for previously evaluated instances (including the initial instances); for any
other instance, we set the bound to the cut-off time, bmax. This running time
bound provides a reference of the minimum performance new configurations
should obtain in order to compete with the current elite configurations.

The maximum running time kji for each configuration θj on instance I[i] is
computed by procedure execute in line 8 using the value of bi as follows:

k
′j
i = bi · i+ bmin − pji−1 · (i− 1) (1)

kji =


bmax if k

′j
i > bmax,

min{bi, bmax} if k
′j
i ≤ 0,

k
′j
i otherwise;

(2)

where bmin is a constant that represents a minimally measurable running time
different from zero (set to a default value of 0.01). Intuitively, kji is the time
remaining for a configuration θj to improve over the median elite configuration.

We implemented a dominance-based elimination procedure inspired by the
domination criterion described in Section 3. We compare the median performance
of the elite configurations set (Θelite) on the list of instances {I[1], . . . , I[i]}
considered so far with the performance of the new configurations as follows:

Medianθs∈Θelite{psi} + bmin < pji (3)

where psi is the mean running time of configuration θs on instances {I[1], . . . , I[i]},
and bmin is the constant defined in Eq. (2). Other choices than the median are
possible and may be considered in future work. We eliminate configurations as

An experimental study of adaptive capping in irace 7

soon as they become dominated, that is, the dominance-based elimination is
applied after every instance seen within an iteration of irace.

5 Experiments

In this section, we study the impact of introducing the previously described cap-
ping procedure into irace. We compare the performance of the final configurations
obtained by elitist irace and iracecap using different settings.

5.1 Experimental setup

In our performance assessments of iracecap, we use five configuration scenarios
taken from previous experimental studies of other automatic algorithm con-
figuration methods, in particular, ParamILS and SMAC. These scenarios use
CPLEX [16], Lingeling [5] and Spear [3] as target algorithms, and involve pa-
rameter spaces with 74, 137 and 26 parameters, respectively. Their principal
characteristics are as follows:

CPLEX - Regions100 [13,12]. 5 seconds cut-off time, 18 000 seconds total
configuration budget, and a training and testing set of 1000 mixed integer
programming (MIP) instances each. The instances encode a combinatorial
auction winner determination problem with 100 goods and 500 bids.

CPLEX - Regions200 [13,11]. 300 seconds cut-off time, 172 800 seconds total
configuration budget, and a training and testing set of 1000 MIP instances
each. These instances are encodings of a combinatorial auction winner de-
termination problem with 200 goods and 1000 bids.

CPLEX - Corlat [11]. 300 seconds cut-off time, 172 800 seconds total config-
uration budget, and a training and testing set of 1000 MIP instances each.

Lingeling [14]. 300 seconds cut-off time, 172 800 seconds total configuration
budget, and a training and testing set of 299 and 302 SAT instances, re-
spectively. These instances were obtained from the 2014 Configurable SAT
Solver Competition (CSSC) [14].

Spear [13]. 300 seconds cut-off time, 172 800 seconds total configuration bud-
get, and a training and testing set of 302 SAT-encoded software verification
instances each.

The instance files for these scenarios are also available from the Algorithm
Configuration Library (AClib) [15]. AClib specifies a cut-off time of 10 000 sec-
onds for the CPLEX scenarios, which stems from their initial use in conjunction
with the CPLEX auto-tuning tool. Following the experiments in [11, Section 5]),
we use a cut-off time of 300 seconds.4 Another minor difference is that we used
4 A higher cut-off time, as used in AClib, would be detrimental for configuration pro-
cedures such as iracecap, as time-outs would very strongly impact the number of con-
figurations that can be evaluated. On the other hand, there are various techniques,
such as early termination of ongoing runs or the initial use of smaller maximum
cut-off times, to address this problem. In the literature, the use of smaller cut-off
times has been suggested as a possible remedy [12, footnote 9].

8 L. Pérez Cáceres et al.

version 12.4 of CPLEX, which was installed on our system, while AClib proposes
to use version 12.6. However, there is no obvious reason to suspect that the par-
ticular version of CPLEX should affect our conclusions on the effect of capping
inside irace, and we do not directly compare to results for the original AClib sce-
narios. Moreover, although both irace and SMAC are able to handle non-discrete
parameter spaces, for ParamILS, all parameters have to be discretised, with all
possible values specified explicitly in the scenario definition. There is some ev-
idence that the use of non-discrete parameter spaces, where possible, leads to
improved results [12], thus giving an advantage to both irace and SMAC over
ParamILS, unrelated to the capping mechanism, which is the focus of our com-
parison presented in Section 6. To avoid this bias, we only consider the variants
of the scenarios where all parameters are discretised and explicitly specified.

In all our experiments, we used the t-test to eliminate configurations within
irace, as previously recommended for running time minimisation [21]. The com-
parisons presented in the following are based on 20 independent runs of all
configuration procedures; multiple independent configurator runs are performed
due to the inherent randomness of the configuration procedures and the con-
figuration scenarios. The experiments were run on one core of a dual-processor
2.1GHz AMD Opteron system with 16 cores per CPU, 16MB cache and 64GB
RAM, running Cluster Rocks 6.2, which is based on CentOS 6.2.

In our empirical analysis of iracecap, we use mean running time as the perfor-
mance criterion to be optimised by irace. Runs that time out due to reaching the
cut-off time are then counted at this maximum cut-off time. In the literature,
unsuccessful runs are often more strongly penalised, computing effectively the
number of timed out runs multiplied by a penalty factor pf plus the mean com-
putation time of the successfully terminated runs. In fact, the penalty factor pf
converts the bi-objective problem of minimising the number of timed-out runs
and mean time of successful runs into a single-objective problem. In this section,
runs of irace attempt to minimise mean running time (with pf = 1), and we there-
fore assessed the performance of the resulting target algorithm configurations
using this performance metric. In the supplementary material, we additionally
present results for evaluating configurations using pf = 10 and pf = 100. In the
literature, pf = 10 is commonly used and referred to as PAR10; consequently, in
Section 6, all configurator runs and target algorithm evaluations are performed
using PAR10 scores.

5.2 Experimental results

We first compare the results obtained by elitist irace and iracecap, using their
respective default settings. Table 1 presents performance statistics over the 20
runs of both irace versions. The implementation of the proposed capping proce-
dure proves to be beneficial for the scenarios used in these experiments. For the
Regions 100, Regions 200, Corlat, and Spear scenarios, the results obtained by
iracecap are significantly better than those of elitist irace, while for the Lingeling
scenario, the results are not significantly different (however, iracecap still achieves
a better mean than irace).

The elimination criterion of the capping procedure in iracecap only considers
aggregated running time rather than its statistical distribution, and it is not ob-

An experimental study of adaptive capping in irace 9

Table 1: Summary statistics of the distribution of observed mean running time
and percentage of timed out evaluations of 20 runs of iracecap and elitist irace
(irace) on test sets for the various configuration scenarios. We show the first and
second quartile (q25 and q75, respectively), the median, the mean, the standard
deviation (sd) and the variation coefficient (sd/mean). Wilcoxon test p-values
are reported in the last line. Statistically significantly better results (at α = 0.05)
are indicated in bold-face and lowest mean running times in italics.

Regions 100 Regions 200 Corlat Lingeling Spear
iracecap irace iracecap irace iracecap irace iracecap irace iracecap irace

%timeout 0.08 0.085 0.01 0.015 0.695 1.205 8.377 8.659 0.397 3.328
q25 0.327 0.374 9.487 10.983 8.616 13.526 42.379 44.274 3.028 4.776
mean 0.338 0.395 10.498 13.231 11.899 15.935 45.501 46.923 4.116 13.068
median 0.332 0.401 10.469 12.871 9.688 14.911 44.453 47.034 3.765 14.617
q75 0.34 0.413 10.75 14.256 13.941 18.436 48.996 49.738 4.242 19.993
sd 0.018 0.033 1.335 2.908 5.645 4.325 3.799 3.658 1.848 8.092
sd/mean 0.054 0.082 0.127 0.22 0.474 0.271 0.083 0.078 0.449 0.619
p-value 5.7e-06 0.0001049 0.0055809 0.2942524 0.0002613

CPLEX − Regions 200

0

20

40

60

80

100

%
 c

on
fig

ur
at

io
ns

 p
er

 it
er

at
io

n

% configuration progress

capping
statistical test

Spear

0

20

40

60

80

100

%
 c

on
fig

ur
at

io
ns

 p
er

 it
er

at
io

n

% configuration progress

capping
statistical test

Fig. 2: Mean percentage of configurations selected for elimination by the capping
procedure and the statistical test (solid and dashed lines respectively), and mean
percentage of initial configurations that become elite configurations at the end
of the iteration (bars). Means obtained across 20 independent runs of iracecap on
the Regions 200 and Spear scenarios.

vious whether this renders the criterion always stricter than the statistical test
at the core of irace, which could, in principle, render the latter superfluous. Fig-
ure 2 shows the mean percentage of live configurations selected to be eliminated
by the capping procedure and the statistical test (lines), and the mean percent-
age of initial configurations that become elite configurations at the end of the
iteration (bars). (For results on all other scenarios, see Figure A.2.) The capping
procedure selects more configurations for elimination than the statistical test
in all stages of the search, while the statistical test is mainly able to eliminate
configurations in the initial phases of the search. As the race progresses, capping
elimination quickly becomes mainly responsible for eliminating configurations,
illustrating the importance of introducing it into irace.

The capping mechanism of iracecap and the increased elimination of configu-
rations induce a highly intensified search. On average, iracecap performs in part
many more iterations than irace and shows a lower average number of elite con-
figurations per iteration. This results in an increased number of configurations
sampled overall and instances used for evaluation (Table 2).

10 L. Pérez Cáceres et al.

Table 2: Statistics over 20 independent runs of iracecap and irace: mean number
of iterations performed (iterations), mean number of instances used in the eval-
uation (instances), mean overall sampled configurations (candidates), mean elite
configurations per iteration (elites) and mean total executions (executions).

Regions 100 Regions 200 Corlat Lingeling Spear
mean iracecap irace iracecap irace iracecap irace iracecap irace iracecap irace
iterations 253.5 28.3 85.8 17.1 68.7 13 27.4 10.5 67.0 7.6
instances 258.6 47.6 91.1 36.7 75.1 29.4 35.5 26.3 83.2 16.3
candidates 27914 1136 5191 285 5318 242 2595 214 11193 718
elites 1.09 6.88 1.25 7.12 1.82 7.80 3.28 8.90 2.26 5.99
executions 30604 8362 6779 2770 8873 3147 5218 2878 28039 6109

5.3 Additional analysis of iracecap

In what follows, we examine in more detail the impact of some specific parameter
settings of iracecap on its performance. For the sake of conciseness, we will only
discuss overall trends; detailed results are found in supplementary material [20].

Instance order. The order of the instances may introduce a bias in irace
when the configuration scenario involves a heterogeneous instance set. By de-
fault, irace shuffles the order of the training instances. Without this shuffling,
irace evaluates the instances in the order provided by the user. Since the set of
previously used instances is evaluated in every iteration, elitist irace randomly
permutes the order of previously seen instances (Iold) before each iteration to
further avoid any bias that the previous order may introduce. Table A.2 com-
pares the results obtained by iracecap with and without this instance reshuffling.
For most benchmark scenarios, disabling instance reshuffling produces better
mean results and fewer timed-out runs; for Regions 200 and Lingeling, these dif-
ferences are statistically significant. The main exception is the Spear scenario,
where reshuffling leads to much improved results; this is probably due to the fact
that this scenario contains a very heterogeneous instances set.

These results suggest that the impact of reshuffling depends on the given
configuration scenario; we conjecture that for more heterogeneous instance sets,
reshuffling the instance set becomes increasingly important. Investigating this
conjecture in detail is an interesting direction for future work.

Confidence level of statistical test. The dominance criterion eliminates
more configurations than the statistical test. Lowering the confidence level of the
statistical test should lead to an even higher elimination rate of the latter and
possibly improve the efficacy of the overall configuration process. We explored
this possibility by lowering the confidence level in iracecap from its default value
of 0.95 to 0.75. Table A.3 in the supplementary material shows the impact of
this change. The effects on the elimination of configurations can be observed
in Figure A.5 in the supplementary material. As expected, the statistical test
eliminates more configurations when setting the confidence level to 0.75. This
also results in a small increase in the overall number of configurations evaluated
and a reduction of the mean number of elite configurations (see Table A.4 in
the supplementary material). The more aggressive test slightly improved the
performance for three scenarios, yielding significantly better results for Regions
200. In contrast, a confidence level of 0.75 results in slightly worse performance

An experimental study of adaptive capping in irace 11

on the Spear scenario, indicating that the eliminations performed with lower
confidence can be premature.

If we completely disable statistical testing (confidence level 1.0), the perfor-
mance of iracecap improves on Regions 100 and Regions 200, as seen in Table A.5
in the supplementary material. This suggests that the statistical test can prema-
turely eliminate configurations based on an incorrect criterion. Despite this, we
still recommend keeping the default confidence level of 0.95, as a safe-guard that
may be useful for configuration scenarios with possibly very different properties
from the ones we are testing here.

Log-transformation of running times. When used for running time min-
imisation, irace makes use of the t-test for elimination. However, the potentially
very large variability of target algorithm running times [10] often renders the
distribution of running times far from normal, a situation that may be allevi-
ated by using a transformation of running times – in particular, a logarithmic
transformation. Applying this transformation has, however, only a significant
effect on the Regions 200 scenario. Increasing the difference between the per-
formance of configurations makes the elimination more aggressive and, as seen
in other experiments, the Regions 200 scenario benefits greatly of this increased
intensification. For the other scenarios, the impact on performance is negligible,
as seen in Table A.6 in the supplementary material, probably due to the minor
impact of the statistical test on the elimination of configurations.

Number of initial new instances. Finally, we performed experiments to
evaluate the impact of adding new instances at the beginning of each race. If no
new instances are added at the start, then new configurations can only become
elite by performing better on exactly the same instances on which the current
elites performed well in previous races. Even though the new configurations may
be better on instances not seen yet, they may be eliminated before seeing them,
unless those new instances are evaluated at the start. On the other hand, there
are no running times available for new instances; this issue is addressed by first
running the elite configurations on the new instances to avoid wasting too much
computation time on possibly poor newly sampled candidate configurations.
Table A.7 in the supplementary material shows the results for setting the number
of new initial instances (T new) to 0 (new instances are never added at the start
of each race), 1 (the default setting) and 5. As previously observed for elitist
irace [17], a larger value of T new improves the performance of iracecap for the
Spear scenario. While for the other scenarios, the differences are minor, there
appears to be a tendency for the default value of 1 (or perhaps even a slightly
larger value, such as 2 or 3) to result in the most robust behaviour.5

5 Setting T new to 0 may be beneficial for scenarios with a very large cut-off time,
as used by default in AClib for the CPLEX scenarios. This should help to aggres-
sively bound the running time at the start of each race, by using the running times
of the elite configurations, thus avoiding the high cost of evaluating possibly poor
configurations with a very large cut-off time.

12 L. Pérez Cáceres et al.

Table 3: Statistics over the mean PAR10 performance and percentage of timed-
out instances from 20 runs of iracecap, SMAC and ParamILS. Wilcoxon test
p-values (significance 0.05). Significantly better results in bold and best mean in
cursive.

q25 mean median q75 sd sd/mean %timeout

Regions 100
p-value: 0.5958195

ParamILS 0.318 0.38 0.37 0.416 0.066 0.173 0.130

SMAC 0.45 0.478 0.473 0.499 0.055 0.116 0.045

iracecap 0.32 0.372 0.365 0.395 0.057 0.154 0.095

Regions 200
p-value: 0.03276825

ParamILS 9.412 11.656 10.359 13.606 3.348 0.287 0.005

SMAC 14.205 17.917 16.452 21.925 5.419 0.302 0.045

iracecap 8.854 9.926 9.349 10.533 1.459 0.147 0.005

Corlat
p-value: 0.0083084

ParamILS 30.924 193.303 48.772 74.309 360.42 1.865 5.945

SMAC 30.866 45.847 39.855 63.805 20.903 0.456 1.005

iracecap 12.24 27.974 26.763 33.902 19.426 0.694 0.62

Lingeling
p-value: 0.0362339

ParamILS 250.115 292.529 298.942 327.679 51.497 0.176 9.023

SMAC 266.792 283.907 289.153 298.64 25.121 0.088 8.758

iracecap 244.313 263.651 259.768 271.119 31.736 0.12 8.113

Spear
p-value: 9.5e− 06

ParamILS 3.037 88.083 12.094 40.877 188.929 2.145 2.815

SMAC 1.6 3.416 1.746 2.511 3.733 1.093 0.05

iracecap 5.666 23.741 22.3 25.872 21.512 0.906 0.662

6 Comparison to other configurators

We compare the results obtained by iracecap with two other automatic configu-
rators available in the literature, ParamILS and SMAC. Both have been widely
used in the literature for running time minimisation. SMAC and ParamILS, as
well as irace, were run using default settings. We chose not to include instance
features in the configuration process and use only fully discretised configuration
spaces; this was done to isolate as much as possible the impact of the new cap-
ping mechanism in irace, and to examine whether it would become competitive
with other configurators that already used this technique. Considering features
or non-discrete parameter spaces would introduce additional factors that are
likely to affect performance beyond the impact of capping. Nevertheless, SMAC
can also use instance features in the configuration process, which may improve
its results; therefore, the results obtained here should be considered with caution
for those scenarios in cases where these features are available. Yet, identifying
how much of the improvement is due to instance features or due to differences
in the capping methods between SMAC and other configurators would require
a more extensive analysis that is left for future research. Additionally, SMAC
and irace can handle real-valued parameters and, as already shown for SMAC in
[12], doing so may further improve performance.

As mentioned previously, we ran iracecap, SMAC and ParamILS using the
PAR10 evaluation on the scenarios described in Section 5. Table 3 shows the
mean PAR10 execution times obtained from 20 runs of the configurators. In the
on-line supplementary material, we present results with other penalty factors

An experimental study of adaptive capping in irace 13

Table 4: Statistics over the mean PAR10 performance for the best-out-of-ten runs
sampled from the 20 original runs of iracecap, SMAC and ParamILS. Wilcoxon
test p-values (α = 0.05). Significantly better results are shown in bold-face and
best mean values in italics.

q25 mean median q75 sd sd/mean

Regions 100
p-value: 8.83e-05

ParamILS 0.303 0.305 0.303 0.307 0.003 0.011

SMAC 0.386 0.392 0.386 0.391 0.012 0.031

iracecap 0.312 0.314 0.314 0.314 0.002 0.007

Regions 200
p-value: 0.0001417

ParamILS 8.589 8.871 8.999 9.139 0.266 0.03

SMAC 9.82 11.2 10.106 12.989 1.784 0.159

iracecap 8.456 8.523 8.518 8.581 0.069 0.008

Corlat
p-value: 0.0010241

ParamILS 8.284 10.58 9.58 9.58 4.163 0.393

SMAC 17.801 19.898 19.832 19.832 3.016 0.152

iracecap 7.959 8.194 7.959 8.256 0.627 0.076

Lingeling
p-value: 0.6341078

ParamILS 210.753 218.874 210.753 223.379 13.256 0.061

SMAC 230.175 241.659 236.26 257.77 12.85 0.053

iracecap 220.093 220.212 220.093 220.212 0.212 0.001

Spear
p-value: 9e-05

ParamILS 1.911 2.075 2.012 2.073 0.27 0.13

SMAC 1.454 1.462 1.454 1.463 0.018 0.013

iracecap 2.154 2.497 2.184 2.497 0.581 0.233

from {1, 10, 100}. The table shows the p-values obtained from the Wilcoxon
signed-rank test comparing the performance of the two configurators with the
lowest mean PAR10 score. iracecap obtains the statistically significantly lowest
mean on the Regions 200, Corlat, and Lingeling scenarios, while SMAC obtains
the statistically significantly lowest mean on the Spear scenario. On the Regions
100 scenario, iracecap obtains the lowest mean performance value, though its
performance is not statistically different from that of ParamILS.

It is known that trajectory-based local search methods, such as ParamILS,
can exhibit high performance variability over multiple independent runs due to
search stagnation. A common practice for dealing with this situation, and for
reducing the overall wall-clock time of the configuration process by means of par-
allelisation, is to perform multiple independent configurator runs concurrently
and to return the best configuration found in any of these. This may not always
be feasible when the average running times of configurations on instances are
high, e.g., in the range of hours, in which case the parallelisation features of irace
would be very useful. Nevertheless, we mimic this commonly applied approach
and compare the performance of ParamILS, SMAC and iracecap based on the
following resampling approach: From the 20 values of mean PAR10 performance
previously obtained for each configurator on the test set of each scenario, we
sample 10 values (uniformly at random and without repetition) and take the
best of these samples. This is equivalent to running the configurator 10 times
and determining the best of the configurations thus obtained. We repeat this
process 20 times to obtain 20 replicates of the experiment. Table 4 shows the

14 L. Pérez Cáceres et al.

results thus obtained. ParamILS benefits most from multiple independent runs,
achieving the statistically significantly best performance on the Regions 100
scenario and the best mean performance (though not statistically significantly
different from that of iracecap) on Lingeling. iracecap produces the statistically
significantly best results on Regions 200 and Corlat, while SMAC shows the
best mean performance for the Spear scenario.

7 Conclusions

In this work, we have extended irace, an automatic algorithm configuration pro-
cedure primarily designed for solution quality optimisation, with an adaptive
capping mechanism. We have demonstrated that this results in substantial im-
provements in the efficacy of irace for running time minimisation, and our new
iracecap configurator reaches state-of-the-art performance on prominent configu-
ration scenarios. This considerably broadens the range of configuration scenarios
on which irace should be seen as one of the methods of choice.

In future work, it would be interesting to explore which characteristics of
a configuration scenario makes it particularly amenable to different variants of
adaptive capping. Furthermore, we would like to investigate under which cir-
cumstances iracecap performs better (or worse) than other state-of-the-art con-
figurators, notably SMAC [12], ParamILS [13] and GGA++ [1]. We see this as
an important step towards automatic selection of the configurator expected to
perform best on a given scenario. This could improve the state of the art in auto-
matic algorithm configuration and further boost the appeal of the programming
by optimisation (PbO) software design paradigm [9], which crucially depends on
maximally effective configurators.

Acknowledgments. This research was supported through funding through
COMEX project (P7/36) within the Interuniversity Attraction Poles Programme
of the Belgian Science Policy Office. Thomas Stützle acknowledges support from
the Belgian F.R.S.-FNRS, of which he is a Senior Research Associate. Holger
Hoos acknowledges support through an NSERC Discovery Grant.

References

1. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. IJCAI-15, pp. 733–739. IJ-
CAI/AAAI Press, Menlo Park, CA (2015)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: CP 2009, LNCS, vol. 5732, pp. 142–157.
Springer (2009)

3. Babić, D., Hutter, F.: Spear theorem prover. In: SAT’08: Proceedings of the SAT
2008 Race (2008)

4. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: HM 2007, LNCS, vol.
4771, pp. 108–122 (2007)

An experimental study of adaptive capping in irace 15

5. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT competition 2014. In: Belov, A., et al. (eds.) Proc. of SAT Competition 2014.
Science Series of Publications B, vol. B-2014-2, pp. 39–40. University of Helsinki
(2014)

6. Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine
Learning Perspective. Ph.D. thesis, Université Libre de Bruxelles, Belgium (2004)

7. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer (2010)

8. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi,
Y., et al. (eds.) Autonomous Search, pp. 37–71. Springer (2012)

9. Hoos, H.H.: Programming by optimization. Communications of the ACM 55(2),
70–80 (2012)

10. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers (2005)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed in-
teger programming solvers. In: CPAIOR, LNCS, vol. 6140, pp. 186–202. Springer
(2010)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: LION 5, LNCS, vol. 6683, pp. 507–523.
Springer (2011)

13. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

14. Hutter, F., Lindauer, M.T., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The configurable SAT solver challenge (CSSC). Artificial Intelligence 243, 1–25
(2017)

15. Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M.T., Hoos, H.H., Leyton-
Brown, K., Stützle, T.: AClib: a benchmark library for algorithm configuration.
In: LION, LNCS, vol. 8426, pp. 36–40. Springer (2014)

16. IBM: ILOG CPLEX optimizer. http://www.ibm.com/software/integration/
optimization/cplex-optimizer/

17. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

18. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

19. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and
applications. In: Gendreau, M., et al. (eds.) Handbook of Metaheuristics, pp. 363–
397. Springer, 2 edn. (2010)

20. Pérez Cáceres, L., López-Ibáñez, M., Hoos, H.H., Stützle, T.: An experimental
study of adaptive capping in irace: Supplementary material. http://iridia.ulb.
ac.be/supp/IridiaSupp2016-007/ (2017)

21. Pérez Cáceres, L., López-Ibáñez, M., Stützle, T.: An analysis of parameters of
irace. In: EvoCOP 2014, LNCS, vol. 8600, pp. 37–48. Springer (2014)

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://iridia.ulb.ac.be/supp/IridiaSupp2016-007/
http://iridia.ulb.ac.be/supp/IridiaSupp2016-007/

	An experimental study of adaptive capping in irace

