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1 Introduction

Stochastic Local Search (SLS) algorithms for Multiobjective Combinatorial Optimization Prob-
lems (MCOPs) typically involve the selection and parameterization of many algorithm com-
ponents whose role with respect to their overall performance and relation to certain instance
features is often not clear. This fact is becoming more problematic because of the recent trend
in solving MCOPs that is giving increasing attention to hybrid methods.

In this extended abstract we use a modular approach for the design of SLS algorithms for
MCOPs that are solved in terms of Pareto optimality. We assume that SLS algorithms can be
seen as combinations of algorithm components that can be coupled together to solve a given
problem. These algorithm components have different targets that are important for successful
approaches to solve MCOPs. Our approach offers the possibility of analyzing SLS algorithms
by experimental design techniques. In fact, each algorithm component is considered a factor
in experimental design, i.e., it is an abstract characteristic of SLS algorithms that can affect
random variables that describe the solution quality returned and the required computation
time. Each factor has associated levels which are possible instantiations of the component.
We show that different choices for algorithm components can affect the SLS algorithm in
various ways, and that even the same choices can lead to different behavior in dependence of
various instance features.

We illustrate our analysis using SLS algorithms for the biobjective Quadratic Assignment
Problem (bQAP). The bQAP is defined as follows: given n facilities and n locations, one n×n
matrix A where aij is the distance between locations i and j, and two n× n matrices B1 and
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B2 where b1
rs is the first flow and b2

rs is the second flow between facilities r and s, the objective
function in the bQAP can be stated as
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where Φ is the set of all permutations of {1, 2, ..., n}, φi gives the location assigned to facility
i in the solution φ ∈ Φ, and “min” refers to the notion of Pareto optimality.

For our analysis, we implemented straightforward extensions of simple SLS algorithms for
the single-objective QAP to tackle the bQAP by solving several scalarizations of the objective
function vector for instances of different size, structure of the input data, and correlations
between the flow matrices. As the underlying SLS algorithms we considered the use of an
Iterative Improvement algorithm (II) based on the 2–exchange neighborhood for the QAP
and, alternatively, the usage of Robust Taboo Search (RoTS) [17]. Performance assessment
is carried out by means of attainment functions [5], which do not incur any of the known
limitations of unary quality indicators for multiobjective algorithms [19].

2 Algorithm Components

We use scalarizations of the objective function vector based on a weighted sum formulation
For tackling MCOPs in terms of Pareto optimality [15]. For each weight vector, we do one
run of the underlying local search algorithm. Given its simplicity, this framework allows us to
incorporate, in a straightforward way, the following algorithm components:

Dispersion Policy. A usual requirement on the set of solutions returned by SLS algorithms
for MCOPs is that they are spread in the objective space. SLS algorithms with scalarizations of
the objective function often use maximally dispersed weight vectors [15], which is also done here
as follows: given Q objectives and

(

z+Q−1

Q−1

)

distinct weight vectors, each vector λ = (λ1, . . . , λQ)

is normalized such that
∑Q

q=1 λq = 1 and its components has values in { i
z

/ i = 0, . . . , z}.

Intensification Mechanism. Besides spreadness, also the quality of the individual solutions
is an important factor in the performance assessment. High solution quality for each of the
scalarizations can be obtained by, for example, increasing the number of iterations of the
underlying SLS algorithm. This can be seen as an intensification mechanism for the search
process whereas the dispersion policy introduces diversification.

Search Strategy. We consider two search strategies: The first starts the underlying SLS
algorithm for each scalarization from a randomly generated initial solution (Restart strategy).
The second strategy consists of the following two phases (TPLS): (i) obtain a high quality
solution for one of the objectives; and (ii) solve a sequence of scalarized problems by starting
from the best solution found in the previously tackled scalarization—in the first iteration the
starting point is the solution returned in the first phase (see [13] for more details). The change
of the weights in this second phase is done as follows: given two objectives, the weight vector
in the first and last position in the sequence of weight vectors that are examined are (1, 0) and
(0, 1), respectively; two successive weight vectors differ by only ±1/z in any two components.
This approach for generating the weight vectors can be easily extended to an arbritrary number
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of objectives using an algorithm to generate all compositions of z in Q parts in a Gray Code
order as in [8]. (Note that by different strategies for changing the weights by, for example,
allowing larger steps than of size ±1/z, different search behavior may result; however, such a
study is beyond the scope of this article.)

Component-wise Step. Since the number of solutions of the two search strategies is bounded
by the number of scalarizations, an extension is to accept non weakly dominated solutions in
the neighborhood of each solution returned by a scalarization [13]; we call this additional
procedure component-wise step.

3 Performance Assessment Methodology

The performance assessment and comparison of algorithms for MCOPs is by far more complex
than in the single-objective case and fundamental critics have been raised against the use of
unary quality indicators for the performance of algorithms for MCOPs [19]. These critics do
not apply to the analysis of the solution quality of multiobjective opimizers by means of the
attainment functions methodology [5]. This methodology associates the performance of a SLS
algorithm for MCOPs to the probability of attaining an arbritrary point in the objective space;
the function that characterizes this probability is called attainment function [5] and can be
seen as a generalization of the distribution function of solution cost [6] to the multiobjective
case. These probabilities can be estimated empirically from the outcomes obtained in several
runs of an SLS algorithm by the empirical attainment function (EAF). Using EAFs, we can
apply statistical hypothesis tests on the EAFs of several algorithms for a certain problem
instance. Suitable test statistics are the maximum absolute distance between two EAFs for
the two-sample case and the maximum absolute distance between k EAFs, for the k-sample
case [1]; if the latter is rejected, pairwise comparisons between the k EAFs can be performed,
where the returned p-values are corrected by Holm’s procedure [7]. Since the distribution of
these test statistics is not known, permutation tests [4] based on the above test statistics have
to be performed [14]. If the null hypothesis (H0) of the equality of the EAFs is rejected,
a visualization of the performance difference between pairs of algorithms can be done by
identifying regions of the objective space where the maximum absolute difference between
EAFs is large (we defined large differences as above 20%) [5]; in addition, the sign of the
differences indicates which algorithm performs better in which region. When the experimental
goal is to study the main effects of several factors, the permutation procedure can be changed
to eliminate the masking effect of other factors; in such a case, given a factorial experiment,
the permutation test can be performed by restricted randomization [4]. Differently, the CPU
time taken by the various configurations, which results to be a univariate distribution, can
be analyzed by parametric statistics, if the assumptions of independence of error terms, equal
variance and normality are verified [2]. Moreover, since we do not expect large differences
of CPU time among instances of the same type (same correlation between flow matrices or
same size), we can extend the notion of block used in our experimental design to include all
instances of the same type.
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4 Experimental Analysis

The bQAP instances were generated using the instance generator in [9]. We considered the
following parameters: instance size n ∈ {25, 50, 75}, correlation between flow matrices ρ ∈
{−0.75, 0.0, 0.75}, and unstructured or structured instances (the unstructured instances are
generated as those of class Taixxa [18] and the structured ones as the Taixxb [18] instances). We
generated 3 instances for each combination, resulting in a total of 54 instances. We considered
the following values for each algorithm component: {n, 5n, 10n} scalarizations, {II, 50n, 100n}
tabu iterations (where II means that RoTS is replaced by an Iterative Improvement algorithm),
Restart and TPLS strategies, and the use or not of the component-wise step; since TPLS should
start from a good solution to one of the objectives, its first phase takes 10n2 tabu iterations.
For each combination of these parameters, 5 trials were done on each instance in a full factorial
experiment. In the following we give a summary of the findings in our statistical analysis using
a significance level α = 0.05.

4.1 Computation Times

In our experimental design, we allow for different settings of the levels of several algorithm
components and we treat the computation time as a variable whose value depends on the par-
ticular configuration tested. There is also one more specific reason of leaving the computation
time variable: When fixing computation time, without an exact cost model for the dependence
between computation time and parameter settings, it is very difficult to choose the algorithm
components and parameter settings in such a way as to guarantee termination of the algorithm
within the given time limits and to still have a balanced experimental design. When analyzing
the computation time, it is obvious that if everything is the same except, for example, the
number of tabu search iterations is increased, also the computation times increase. While some
of these tradeoffs are clear, we are more interested in analyzing the interactions between factors
or to answer questions like whether the component-wise step does give a significant overhead
in computation time if it is used. To answer these questions, we performed an ANOVA with
respect to computation time. In order to meet the required assumptions for the ANOVA anal-
ysis, we divided the data into structured and unstructured input data; in addition, we defined
instance size and the correlation of the flow matrices as crossed blocks [2]. Two interactions in
common to both analysis were detected. These are (i) tabu iterations × scalarizations × size
and (ii) tabu iterations × scalarizations × search strategy. The meaning of interaction (i) is
the following: since the instance size affects the size of the neighborhood, this is reflected in
the computation time resulting by changes in the number of tabu iterations or the number of
scalarizations. Interaction (ii) means that search strategies behave differently with the change
of tabu iterations and the number of scalarizations. Rather obviously, as also indicated by
ANOVA, the number of iterations and scalarizations have the largest effect on the computation
times, whereas, interestingly, the component-wise step has very little effect. Two more obser-
vations are noteworthy. The first is that Restart is faster than TPLS under the conditions set
here. The reason is mainly due to the long first phase of TPLS. The second is that, when using
II as the local search algorithm, there do not exist statistically significant differences between
the TPLS search strategies with an increasing number of scalarizations (between n and 5n on
unstructured instances, and among all scalarizations tested here on structured instances).
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4.2 Solution Quality

As a next step, we analyze the influence of the various algorithm components on the solution
quality as it is evaluated using attainment functions.

Search strategies. The null hypothesis (H0) on the equality of the EAFs associated to
the two search strategies was always rejected for all instances tested, which means that both
search strategies produce statistically different outcomes. We detected large differences in the
plots associated to both search strategies, which means that Restart and TPLS are performing
better in different regions of the objective space; all plots showed differences in favor of TPLS
in the region of the objective space with lowest values for the objective to which the first phase
of TPLS was applied; as the size of the structured instances grows, the difference between TPLS

and Restart becomes even larger in that objective. The correlation between flow matrices
also plays apparently a strong role in the shape of the approximation to the Pareto front. This
directly translates into a performance advantage of Restart, since the differences in favor of it
cover a wide region on the instances with negatively correlated objectives. Finally, we observed
large differences between search strategies in structured instances favoring Restart.

Component-wise step. Except for two unstructured instances of size 25 and the unstruc-
tured instances of size 50 and 75 with positively correlated flow matrices, H0 was always
rejected. This means that on most of the instances, in particular, all structured instances, the
usage of the component-wise step resulted in improved quality. In addition, we only found
differences in favor of the usage of the component-wise step. As the correlation of the flow
matrices decreases in unstructured instances, also for these the benefit of using the component-
wise step becomes more relevant.

Tabu iterations. H0 was rejected for most unstructured instances (few exceptions occur
when comparing 50n with 100n tabu iterations) and for structured instances of size 25, while
for the structured instances of size 50 and 75 it could not be rejected. Looking at the location
of large differences, one can observe that the influence of this component depends strongly
on the structure of input data: while for unstructured instances the largest differences are
found between II and 50n tabu iterations, for structured instances, in the few cases that H0

is rejected, they occur between 50n and 100n tabu iterations.

Number of scalarizations. H0 is mostly rejected, except when comparing 5n against 10n
scalarizations in larger structured instances; this could indicate some limiting behavior above
5n scalarizations. The increase on the number of scalarizations corresponds to a roughly
constant improvement in the front of non-dominated solutions, although the differences are
not so well marked as with different tabu iterations.

Summary and general discussion. Note that the mentioned differences in the attainment
functions can also be visualized in plots; some examples, which were also discussed above,
are given in Figure 1. Through the systematic analysis of experimental designs, we could
statistically validate the influence of different choices for the algorithm components and the
instance features on the computation time and the solution quality found by specific kinds
of SLS algorithms for MCOPs. For example, we identified the number of tabu iterations
as the main responsible for the main marked differences both in terms of computation time
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and solution quality in unstructured instances; therefore, we have a clear trade-off of solution
quality vs. computation time between different choices of this component (having the other
components fixed): II returns lower solution quality, but takes very little time, whereas RoTS
returns higher solution quality, but takes much more time. On the other hand, on structured
instances, the increase of the number of tabu iterations is negligible in terms of the solution
quality for large instances; in fact, even II seems to return reasonably good solution quality for
those instances in much less time than RoTS variants. For structured instances, however, the
increase of the number of scalarizations from n to 5n significantly improved solution quality,
while increasing further the number of scalarizations to 10n diminishes this effect. Hence, on
these instances 5n scalarizations should be preferable to 10n scalarizations. Another interesting
aspect of this analysis is the interaction between the component-wise step and the correlation
between flow matrices, with respect to solution quality; the relevance of this component grows
when going from positive to negative correlations between flow matrices. Additionally, given
the very minor (if noticeable at all) increase in computation time, we recommend its use in
general.

The statistical differences between search strategies in all instances indicate that Restart
and TPLS are far from producing similar outcomes; a noticeable difference is found in structured
instances, indicating a better performance of Restart. This suggests that Restart is a good
candidate as a baseline algorithm for comparing other strategies, given its good performance
here. TPLS performs quite well on unstructured instances with positive correlation, although
this is mainly due to the longer first phase of this search strategy. A variant of TPLS with the
component-wise step was previously shown to be a state-of-the-art algorithm for the biobjective
Traveling Salesman Problem (bTSP) [13]. One may have expected that it would perform better
than a simple Restart strategy also for the bQAP, which was not the case here, at least for
structured instances. There are several reasons for this. Firstly, the bQAP itself has a very
different structure regarding the clustering of solutions as shown in [11]. Secondly, the usage of
RoTS on structured bQAP instances is not ideal, since it is known to show also relatively poor
performance on structured, single-objective QAP instances when compared to other algorithms
like, for example, iterated local search. We compared TPLS against other high-performance
algorithms for the bQAP and we found that for unstructured instances it was competitive to
state-of-the-art algorithms [10]. For structured instances, the current version of TPLS is worse
than state-of-the-art, but once one changes the local search from RoTS to a high-performing
SLS algorithm for (single-objective) structured QAP instances, like iterated local search [16],
again results competitive to the state-of-the-art are obtained [10]. Performance results that
corroborate these claims will be shown in an extended version of this paper.

5 Conclusions and Further Work

This extended abstract shows that SLS algorithms for MCOPs can be analyzed by their al-
gorithm components and that statistical statements about their performance can be provided
by means of an experimental design methodology, both with respect to computation time
and solution quality. Additionally, we show that certain instance features can have dramatic
influence on the choice of the best levels of these components; therefore, we think that fur-
ther experimental studies on SLS algorithms should focus on interactions between algorithm
components and instance features in order to identify pairs of key-success factors leading to
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Figure 1: In the plots are given the locations of the differences above 0.2 (20%) in the EAFs
comparing selected results of our analysis; the amount of differences are indicated by different
shades of grey. Left side: Advantage of using 5n over n scalarizations on a structured instance
with n = 50 and ρ = 0.0. Middle: Advantage of using the component-wise step over not using
it on the same instance. Right side: Advantage of using 50n tabu search iterations over II for
an unstructured instance with n = 75 and ρ = −0.75. The differences between the EAFs with
a different sign are not shown, since all them were below 0.2.

high-performance SLS algorithms for MCOPs.

The current experimental methodology can be extended by considering also aspects of
stochastic dominance between EAFs and the number of objectives as another blocking factor.
In addition, other experimental scenarios can be tested, e.g., the study of the development of
the solution quality as a function of an algorithm’s run-time; in this case, time can be con-
sidered as another objective [12]. Moreover, we could also study the variance of the outcomes
in the objective space [3]. Finally, it would be interesting to apply systematic experimental
designs also to more complex algorithms like multiobjective evolutionary algorithms or hybrids
of it, in order to understand the contribution of various of their components like populations
or the type of selection criteria.
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