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Abstract. Many stochastic local search (SLS) methods rely on the ma-
nipulation of single solutions at each of the search steps. Examples are
iterative improvement, iterated local search, simulated annealing, vari-
able neighborhood search, and iterated greedy. These SLS methods are
the basis of many state-of-the-art algorithms for hard combinatorial op-
timization problems. Often, several of these SLS methods are combined
with each other to improve performance. We propose here a practical,
unified structure that encompasses several such SLS methods. The pro-
posed structure is unified because it integrates these metaheuristics into
a single structure from which we can not only instantiate each of them,
but we also can generate complex combinations and variants. Moreover,
the structure is practical since we propose a method to instantiate ac-
tual algorithms for practical problems in a semi-automatic fashion. The
method presented in this work implements a general local search struc-
ture as a grammar; an instantiation of such a grammar is a program that
can be compiled into executable form. We propose to find the appropriate
grammar instantiation for a particular problem by means of automatic
configuration. The result is a semi-automatic system that, with little
human effort, is able to generate powerful hybrid SLS algorithms.

Keywords: Stochastic local search, generalized local search structure,
grammar, automatic algorithm design

1 Introduction

Many stochastic local search (SLS) methods manipulate a single solution at each
of the search steps [11]. Examples of such SLS methods (also called metaheuris-
tics) include classical iterative best- and first-improvement algorithms [20], iter-
ated local search (ILS) [15], simulated annealing (SA) [13], variable neighborhood
search (VNS) [10], random iterative improvement (RII) [20, 11], probabilistic it-
erative improvement (PII) [11], and iterated greedy (IG) [21], among others.
Successful algorithms for hard combinatorial problems are often the result of
an effective engineering of such SLS methods or of an appropriate combination
of ideas from various of these methods. However, despite the plethora of pos-
sibilities, algorithm designers rarely consider but a few methods when tackling



a new problem. We believe that this is due to two main reasons. First, the hy-
bridization of such techniques is not a trivial task in terms of designing how
the different parts should interact and implementing all possible interactions.
Second, the effort required to design and analyze experiments that evaluate the
different components and parameters of a hybrid algorithm is significant, thus
considering a large number of hybrid algorithms may seem prohibitive at first.

In this paper, we propose a semi-automatic system that, with little human
effort, is able to generate powerful hybrid SLS algorithms. We achieve this by
combining two different proposals. First, we propose a unified structure that en-
compasses many of the above mentioned SLS methods proposed in the literature.
We describe this unified structure as a grammar, from which we may instantiate
not only SLS algorithms following one specific SLS methods, but also SLS algo-
rithms that are composed of algorithmic components that are taken from various
of these individual methods. Hence, our proposed grammar defines a very large
space of possible hybrid SLS algorithms.

Our second proposal is to find the best instantiation of the grammar for
a given problem by means of automatic configuration tools. Automatic con-
figuration tools are typically used for tuning the parameters of optimization
algorithms, given a set of training instances and a description of the parame-
ter space [12, 14]. However, automatic configuration tools are also effective at
instantiating heuristics from grammars [16].

In our approach, most human effort is devoted to implement and improve the
problem-specific components (neighborhood moves, perturbations, heuristics),
which are often the key to the success of an algorithm in a specific problem. Given
these components and a set of training instances representative of the problem,
the system takes care of generating a large number of hybrid SLS algorithms,
and selects the best-performing on the training instances. This generation and
selection process is mainly limited by the computation power available.

There are other two key characteristics of our proposal. First, the unified
structure embodied by the grammar allows reusing the same few problem-specific
components to generate a large number of different algorithms. The implementa-
tion of reusable components is based on ParadisEO [3], a framework that allows
algorithm designers to reuse basic components to build their own algorithms. The
system we propose in this work goes a step beyond and builds the algorithms
automatically. The second key characteristic is that the algorithms instantiated
from the grammar are stand-alone programs that are compiled to executable
code. Therefore, the overhead introduced by the flexibility of the system is min-
imized, and the resulting automatically-crafted SLS algorithms are competitive
with hand-crafted algorithms.

The paper is structured as follows. Section 2 introduces our unified structure
for SLS algorithms and Section 3 how this structure can be implemented through
a grammar and how SLS algorithms are configured. Section 4 describes our
benchmark problem; experimental results are then given in Section 5 before we
conclude and outline directions for extending our proposals in Section 6.



ILS Algorithm
1: s0 := Initialization()
2: s∗ := ILS(s0)
3: return s∗

Function ILS(s0)
Require: perturbation, ls, acceptanceCriterion, stop
1: s∗ := ls(s0)
2: repeat
3: s′ := perturbation(s∗)
4: s′′ := ls(s′)
5: s∗ := acceptanceCriterion(s′′, s∗)
6: until termination criterion (stop) is satisfied
7: return s∗

Fig. 1. The iterated local search (ILS) algorithm

2 Generalized Local Search Structure

In this paper, we focus on SLS algorithms that work on a single solution at a
time. The algorithm may internally keep a memory of multiple solutions, such
as the best solution found so far, but there is the concept of the current solution,
whose neighborhood is being explored.

We propose a generalized local search (GLS) structure modeled after iterated
local search (ILS) [15]. ILS, as shown in Fig. 1, starts from an initial solution
s0, applies an improvement method (usually referred as local search, ls), and
then three steps are repeated until the termination criterion is met: the current
solution is perturbed to generate a new one, local search is applied to the new
solution, and the acceptance criterion (in the simplest case of acceptance cri-
teria) accepts the new solution or stays with the current one. ILS contains the
most important elements of any hybrid LS algorithm, which are a perturbation
operator, a subsidiary local search, and an acceptance criterion.

The perturbation is a transformation of the input solution. In ILS, this is
typically a small random transformation of the solution but it may also be a
random re-initialization. A perturbation may be one simple move in a neighbor-
hood space, but it may also be composed of k applications of a simple move,
and k may be even vary during the search either based on feedback of the search
process or according to a pre-defined schedule. The local search can range from a
simple iterative improvement over short runs of an SA algorithm to a full-fledged
ILS. It could also be that no local search algorithm is used at all.

The acceptance criterion determines which solution will replace the current
solution. The most basic acceptance criterion (improveAccept) accepts only so-
lutions that are better (strictly or not) than the best solution found so far. Other
acceptance criteria allow worse solutions to be accepted in order to increase the
exploration of the search space. For instance, the probAccept criterion accepts
a worsening solution with a probability p ∈ [0, 1]. For example, if p = 1, every
new solution is accepted (alwaysAccept). A thresholdAccept criterion accepts a
worsening solution if the relative deviation between the best and the current
solution is below a threshold. In simulated annealing, a worse solution is ac-
cepted according to the Metropolis criterion (metropolisAccept). This criterion
uses a cooling schedule that starts from an initial temperature, the temperature



Table 1. Classical SLS algorithms modeled after the ILS scheme.

Name Perturbation Local Search Acceptance Criterion

SA [13] one move ∅ Metropolis
PII [11] one move ∅ prob.
RII [20, 11] one move ∅ probRandom
VNS [10] variable move first-improv. descent improvingStrictly
IG [21] deconstruction-construction “any” “any”

is decreased according to the cooling schedule until the algorithm stops after
reaching a final temperature. Often, the temperature is decreased periodically
after a number of iterations (span).

By considering different alternatives for each of these components, we can
replicate many of the SLS methods proposed in the literature. For instance, sim-
ulated annealing (SA) can be replicated by defining the perturbation operator as
a simple move operator in a neighborhood, using no subsidiary local search, and
using the Metropolis acceptance criterion. With these components, the scheme
given for ILS above will actually replicate a classical SA algorithm.

Another example is variable neighborhood search (VNS) [10]. VNS executes
an iterative improvement method at each iteration, and varies the strength of
the perturbation depending on whether the resulting solution improves the best
so far. This is equivalent to an ILS with a specialized variable move operator, it-
erative improvement as local search, and an improveAccept acceptance criterion.
Other classical SLS algorithms can be modeled after ILS in a similar manner,
as shown in Table 1.

In addition to replicating these classical SLS algorithms, the GLS structure
proposed here can also reproduce more complex combinations of SLS algorithms.
For example, an ILS algorithm can use a different ILS algorithm (with different
perturbation and/or acceptance criterion) as a subsidiary local search, which,
in turn may use SA as its own subsidiary local search. We call recursion the
possibility of an ILS to embed another ILS []. The level of recursion is the number
of embedded ILSs. This ability of combining simple components to generate
hybrid local searches allows designing powerful algorithms. However, it raises
the question of how to find high-performing algorithms for a particular problem,
among all the possible combinations. The next section deals with this question.

3 Implementation

3.1 A practical implementation of the GLS structure

In this section, we describe how to implement the GLS structure proposed above
in order to generate practical algorithms for a given problem. Our method con-
sists of three parts. First, we use a generative grammar to describe the design
space defined by the GLS structure. Second, we use a re-usable framework of
source code components as the underlying implementation of the grammar. This
implementation includes both problem-independent code, which can be re-used



in any problem, and problem-specific components, which must be developed for
each problem. Finally, we use automatic algorithm configuration tools to search
the design space and generate high-performing instantiations of the grammar,
given a set of training instances representative of a problem.

3.2 A grammar description of the GLS structure

A practical implementation of the GLS structure will contain many components
that interact. Implementing such a GLS structure as a unique monolithic algo-
rithm is a complex task. Moreover, the fact that a local search can be embedded
within another in arbitrary ways complicates such implementation. The alterna-
tive that we propose here is to implement only the individual components, with
clearly defined interfaces, and directly generate specific algorithms by combin-
ing these components. This is a typical problem in genetic programming, where
grammars are often used to represent the design space of an algorithm [17].

A grammar is a set of derivation rules that describes how the symbols in a
language can be combined to produce valid sentences. In our case, the valid sen-
tences are local search algorithms encoded in C++, but for clarity we will describe
the algorithms in pseudo-code. Fig. 2 shows the grammar that describes the GLS
structure proposed in the previous section. Each line is a production rule of the
form <non-terminal> ::= expression that describes how the non-terminal on
the left-hand side can be replaced by the expression on the right-hand side. Ex-
pressions may contain terminal and/or non-terminals. Alternative expressions
are separated with the symbol “|”. The non-terminal symbol <algorithm> de-
fines the starting point for instantiating an algorithm from the grammar.

The first three rules in the grammar describe the main structure of the GLS
structure proposed earlier (see Fig. 1). The next three rules describe the basic
components of our GLS structure, that is, the perturbation operator (<perturb>),
local search (<ls>), and acceptance criterion (<accept>). Since the rule <ls>

can expand to <ils> which contains again <ls>, a local search can be embedded
within another local search (recursion). The other rules describe the alternatives
available for the various components. Our grammar explicitly contains classi-
cal local search algorithms, but defined in terms of ILS, as detailed in Table 1.
Moreover, the grammar also allows problem-specific components (<pbs_...>),
which can be implemented for each problem tackled.

The possibility of adding problem-specific components is an advantage of our
proposed method. Such components are critical for the success of SLS algorithms.
For example, in this way problem specific construction and destruction mech-
anisms can be incorporated and be used in the destruction/construction phase
(<deconst-construct_perturb>) of an IG algorithm. Hence, our grammar must
account for such components. A practical implementation of our method also
requires to define other problem-specific components in order to describe the
representation of the problem, neighborhood operators, the objective function
and how to read an instance of the problem. For simplicity, we do not include
these in our exposition, but they are implemented in a similar fashion.



<algorithm> ::= <initialization> <ils>
<initialization> ::= random | <pbs_initialization>

<ils> ::= ILS(<perturb>, <ls>, <accept>, <stop>)

<perturb> ::= none | <initialization> | <pbs_perturb>
<ls> ::= <ils> | <descent> | <sa> | <rii> | <pii> | <vns> | <ig> | <pbs_ls>

<accept> ::= alwaysAccept | improvingAccept <comparator>
| prob(<value_prob_accept>) | probRandom | <metropolis>
| threshold(<value_threshold_accept>) | <pbs_accept>

<descent> ::= bestDescent(<comparator>, <stop>)
| firstImprDescent(<comparator>, <stop>)

<sa> ::= ILS(<pbs_move>, no_ls, <metropolis>, <stop>)
<rii> ::= ILS(<pbs_move>, no_ls, probRandom, <stop>)
<pii> ::= ILS(<pbs_move>, no_ls, prob(<value_prob_accept>), <stop>)
<vns> ::= ILS(<pbs_variable_move>, firstImprDescent(improvingStrictly),

improvingAccept(improvingStrictly), <stop>)
<ig> ::= ILS(<deconst-construct_perturb>, <ls>, <accept>, <stop>)

<comparator> ::= improvingStrictly | improving
<value_prob_accept> ::= [0, 1]
<value_threshold_accept> ::= [0, 1]
<metropolis> ::= metropolisAccept(<init_temperature>, <final_temperature>,

<decreasing_temperature_ratio>, <span>)
<init_temperature> ::= {1, 2,..., 10000}

<final_temperature> ::= {1, 2,..., 100}
<decreasing_temperature_ratio> ::= [0, 1]
<span> ::= {1, 2,..., 10000}

Fig. 2. A simplified view of the grammar for the GLS structure.

Finally, each ILS in the proposed grammar has its own termination criterion
(<stop>), which is typically a maximum computation time. If there is more than
one level of ILS algorithms, the total computation time must be divided among
them, such that the inner level does not consume all available time. We adopt
here a simple scheme. The top-level ILS stops once the total time is consumed.
Each subsequent level stops after consuming a ratio of the time allocated to
its parent ILS. This ratio is controlled by a parameter tls ∈ {0.1, 0.2, . . . , 1} for
each level of ILS. These ratios have to be tuned in order to generate an efficient
hybrid SLS algorithm.

In practice, an instantiation of the grammar produces an algorithm that is
mapped to source code implementing the individual components. In our case,
the implementation of the components is done using Paradiseo [3], an open-
source C++ framework whose purpose is to facilitate the design of metaheuristics
by providing a library of reusable components. The idea is that an algorithm
designer can re-use the available algorithm components or implement her own
components, and freely combine these components to design new algorithms.
Our proposal goes a step beyond this idea, since in our proposed method the al-
gorithm designer can focus on implementing problem-specific components, while
the grammar takes care of describing the possible algorithm designs given the
available components. The next section describes how to automatically find a
high-performing SLS algorithm for a given problem, among all the possible al-
gorithm designs that can be generated from the grammar.



3.3 Automatic generation of hybrid LS metaheuristics

Given a particular problem, our goal is to find the highest-performing instan-
tiation of the grammar given above. As mentioned above, techniques such as
genetic programming [17] and grammatical evolution [2] are often used for this
task. Recently, we have shown how to instantiate IG algorithms from a grammar
by means of a parametric representation [16]. The use of a parametric represen-
tation has certain advantages and enables the use of state-of-the-art automatic
configuration tools for offline parameter tuning. In that work, we show that a
parametric representation produced better IG algorithms than the representa-
tion used by grammatical evolution. Here we explore the much larger space of
SLS algorithms defined by the proposed GLS structure.

We follow the method described in our previous work [16] to generate a
parametric description of the grammar. This requires defining a maximum limit
to the number of ILS levels in the final algorithm, that is, a maximum number
of applications of the rule <ls> in the grammar. This limit has an influence on
the number of parameters required to describe the grammar. In the next section,
we explore the effect of this limit on the results.

From the parameter description and given a set of training instances repre-
sentative of the problem, we apply an automatic configuration tool to search the
space of possible algorithm designs. Here, we use irace [14], a publicly available
implementation of Iterated F-Race [1]. Nonetheless, any automatic configura-
tion tool that handles large numbers of categorical, numerical and conditional
parameters with complex constraints would be appropriate.

Each parameter configuration tested by irace is an instantiation of the gram-
mar, which is mapped to C++ code and compiled into an executable. This exe-
cutable is then run on various training instances by irace in order to determine its
performance. A complete description of the irace procedure is beyond the scope
of the paper. It suffices to say that the irace procedure stops after exhausting a
given budget of algorithm runs, and that it returns the SLS algorithm configu-
ration that it identified as the best performing one during the tuning.

4 Experimental Setup

We test our proposed method on the permutation flowshop scheduling problem
with weighted tardiness (PFSP-WT ). In contrast to our previous work [16],
our aim here is to automatically generate a hybrid SLS algorithm that matches
or outperforms the current state-of-the-art algorithm for the PFSP-WT . First,
we briefly describe the PFSP-WT . Then, we summarize the state-of-the-art
algorithm and the problem-specific components added to our grammar. Finally,
we describe the experimental setup.

4.1 The PFSP-WT

The permutation flowshop scheduling problem (PFSP) encompasses a variety of
problems that are typical of industrial production environments. The common



goal of various PFSPs is to schedule n jobs on m machines with the condition
that all jobs must be processed in the same order and jobs are not allowed to
pass each other. Each job i requires, on each machine j, a fixed, non-negative
processing time pij .

In the PFSP-WT , we are asked to determine a schedule that minimizes the
total weighted tardiness. Each job i has a due date di, which denotes the desired
completion time of the job on the last machine, and a priority weight wi, which
denotes its importance. The tardiness of a job i is defined as Ti = max{Ci−di, 0},
where Ci is the completion time of job i on the last machine, and the total
weighted tardiness is given by

∑n
i=1 wi · Ti. This problem is NP -hard even for a

single machine [5].

4.2 Local search components for the PFSP-WT

To the best of our knowledge, a state-of-the-art algorithm for the PFSP-WT
was proposed by Dubois-Lacoste et al. [7]. This algorithm, henceforth called
soa-IG, is an iterated greedy algorithm that works as follows. An initial solution
is constructed using a modified version of the well-known NEH algorithm [19]
called NEH-WSLACK. In NEH-WSLACK [6], the WSLACK heuristic provides
the initial order for the NEH algorithm, and the jobs are inserted in the solution
in the order that minimizes the partial objective function, i.e., computed using
the jobs present in the partially constructed solution. The local search in soa-IG
is a first-improvement descent using a swap neighborhood and with a maximum
number of swaps, fixed to 2 · (n− 1) swaps, where n is the number of jobs. The
perturbation operator consists in removing d jobs randomly from the solution.
These jobs are re-inserted one by one to minimize the partial objective function.
Finally, in the acceptance criterion, a new solution that is worse than the current
one is accepted with a probability given by exp(100 · (f(π)− f(π′))/(f(π) ·Tc)),
where Tc is a user-defined parameter, f(π) is the objective value of the current
solution and f(π′) is the objective value of the new one. Dubois-Lacoste et al. [7]
suggest the settings d = 5 and Tc = 1.2.

We add the aforementioned components to the grammar of our GLS structure
as additional problem-specific components (Fig. 3). In particular, we add two ini-
tialization methods, NEH with and without the WSLACK heuristic (NEH and
NEH-WSLACK). In addition to the random destruction-construction perturbation
used by soa-IG, we add further problem-specific perturbations based on classical
neighborhood move operators (insert, exchange and swap) and a strength pa-
rameter k that controls the number of random moves applied per perturbation.
The value of k may be fixed or vary during the run (var_) as in VNS. The
problem-specific local search used by SOA is added to the grammar (soa_ls).
Moreover, the pbs(_variable)_move used in the grammar (see Fig 2) are set to
the insert move. Note that, the descents also use the insert move to define the
neighborhood. Finally, we add the acceptance criterion of soa-IG as an additional
acceptance criterion.



<pbs_initialization> ::= NEH | NEH-WSLACK
<pbs_perturb> ::= <deconst-construct_perturb>

| <perturb_move>(<k>)
| var_<perturb_move>(<k>)

<perturb_move> ::= insert | swap | exchange
<k> ::= {1,2,...,10}
<deconst-construct_perturb> ::= soa_ig_perturb(<d>)
<d> ::= {1,2,...,10}
<pbs_ls> ::= soa_ig_ls

<pbs_variable_move> ::= var_<pbs_move>(<k>)
<pbs_move> ::= insert
<pbs_accept> ::= soa_ig_accept(<Tc>)
<Tc> ::= [0,1]

Fig. 3. The extended grammar for the PFSP-WT .

4.3 Experimental Protocol

We assess the potential of the proposed method by generating three hybrid SLS
algorithms for the PFSP-WT , and comparing them with soa-IG. In particular,
we generate three algorithms (ALS1, ALS2, and ALS3) for tackling the PFSP-
WT from our GLS structure, by allowing different levels of recursion.

The procedure for generating these three algorithms is as follows. We con-
sider the grammar presented in Fig. 2 and the PFSP-WT -specific extensions
discussed above (Fig. 3). For each level of recursion, we automatically generate
a parameter description. Indeed, the recursion leads to an increasing number of
parameters. With one level of recursion, i.e., a single ILS, the grammar is repre-
sented by 80 parameters. Of these 80 parameters, 27 are categorical and represent
possible algorithmic choices, 25 are integer-valued, and 28 are real-valued. With
two or three levels of recursion, the number of parameters increases to 127 and
174, respectively. Any combination of the values that can be assumed by these
parameters defines a different hybrid SLS algorithm implemented in C++ and
compiled with GCC 4.7.2 with options “-Ofast -flto -march=native”. All
experiments are carried out on a single core of AMD Opteron 6272 processors
(2.1GHz) running CentOS 6.2 Linux.

The parameter description is given to irace together with a number of training
instances. As training instances, we generated 10 random PFSP-WT instances
for each number of jobs in {50, 60, 70, 80, 90, 100} and with 20 machines, following
the procedure described by Minella et al. [18]. Within irace, a specific algorithm,
i.e., a specific parameter configuration, is evaluated by running it on a training
instance with a time limit of 30 CPU-seconds. A single run of irace stops after
exhausting a given budget of evaluations. Since the number of parameters is
different according to the level of recursion, we used different budgets for the
different runs of irace; concretely, 30 000 evaluations for generating ALS1, 40 000
for generating ALS2, and 50 000 for generating ALS3.

The three algorithms ALS1, ALS2 and ALS3 generated by irace are then
run on a set of test instances of size 50x20 and 100x20, different from the
set of training instances. Also soa-IG is run on the same instances. To avoid
differences due to implementation details, we have instantiated soa-IG as one



ALS1 Algorithm: ILS(IG)
s0 := NEH-WSLACK()
s∗ := ILS(perturb move insert(k = 6),

ILS(soa ig perturb(d = 9),
firstImprDescent(strict,

tls = 0.5),
soa ig accept(Tc = 0.8956),
tls = 0.8)

improvingAccept,
tls = maxTime)

return s∗

ALS2 Algorithm: ILS(ILS(VNS)) :
s0 := NEH()
s∗ := ILS(perturb none,

ILS(perturb none,
ILS(variable move insert(k = 1),

firstImprDescent(strict,
tls = 0.4),

improvingStrictlyAccept,
tls = 0.4),

metropolisAccept(1548, 56, 0.7447, 7401),
tls = 0.8),

improvingAccept,
tls = maxTime)

return s∗

ALS3 Algorithm: ILS(ILS(VNS)) :
s0 := NEH-WSLACK()
s∗ := ILS(perturb move exchange(k = 7)),

ILS(soa ig perturb(d = 5),
ILS(variable move insert(k = 3),

firstImprDescent(strict, tls = 0.3),
improvingStrictlyAccept, tls = 0.4),

metropolisAccept(4969, 48, 0.8356, 8954), tls = 0.8),
alwaysAccept, tls = maxTime)

return s∗

Fig. 4. Hybrid LS algorithms automatically generated for PFSP-WT .

specific SLS algorithm through our grammar, taking care that the algorithm
is implemented correctly in this way. These test instances were generated by
Minella et al. [18] from well-known PFSP instances [22]. Each run is repeated
30 times with different random seeds.

5 Experimental Results

The three algorithm (ALS1, ALS2 and ALS3) generated by irace are shown in
Fig. 4. The first one (ALS1) is an IG algorithm within a classical ILS. It uses
the NEH-WSLACK initialization, then executes a classical ILS with a k-insert
move as perturbation, IG as the subsidiary local search, and an improving

acceptance criterion. The IG has a time limit of 0.8 · maxTime, and it is rep-
resented by an ILS with the construction/deconstruction operator of soa-IG as
the perturbation, a first-improvement descent as the subsidiary local search, and
the IG acceptance criterion. The first-improvement descent has a time limit of
0.5 · 0.8 · maxTime. (Note that the first-improvement descent will actually ter-
minate much before its maximum time limit upon finding a local optimum; in
fact, the time limits mentioned here and in the following do actually not restrict
the computation times of iterative improvement algorithms.)

ALS2 is a VNS algorithm included in an ILS that is itself included in an ILS.
ALS2 uses the NEH initialization, then executes a classical ILS without per-
turbation, an ILS as the subsidiary local search, and an improving acceptance
criterion. The subsidiary ILS has a time limit of 0.8 · maxTime, again no per-
turbation, a VNS as the subsidiary local search, and a Metropolis acceptance
criterion. The VNS has a time limit of 0.4 ·0.8 ·maxTime, and it is represented as



an ILS with a variable insert move perturbation, a first-improvement descent
as the subsidiary local search, and the improvingStrictly acceptance criterion.
The first-improvement descent has a time limit of 0.4 · 0.4 · 0.8 ·maxTime.

ALS3 is also a VNS algorithm included in an ILS that is itself included in an
ILS. Although three levels of recursion were allowed when generating ALS3, this
algorithm only has two levels as ALS2. ALS3 uses the NEH-WSLACK initial-
ization, then executes a classical ILS with a k-exchange move as perturbation,
an ILS as the subsidiary local search, and an acceptance criterion that always
accepts a new solution. The subsidiary ILS has a time limit of 0.8 ·maxTime, and
uses the construction/deconstruction operator of soa-IG as the perturbation, a
VNS as the subsidiary local search, and a Metropolis acceptance criterion. The
VNS has a time limit of 0.4 · 0.8 · maxTime and it is represented as an ILS
with a variable insert move perturbation, a first-improvement descent as the
subsidiary local search, and the improvingStrictly acceptance criterion. The
first-improvement descent has a time limit of 0.3 · 0.4 · 0.8 ·maxTime seconds.

Comparison with the state-of-the-art algorithm. To assess the perfor-
mance of the three automatically generated algorithms, we run them 30 times
on the test instances and compare them with soa-IG. Fig. 5 and 6 show the
solution cost reached by each algorithm on each instance. Table 2 gives the best
and mean solution. The behavior of the algorithms is slightly different depending
on the instance size. The performance of the automatically generated SLS algo-
rithms on the 50x20 instances matches the quality obtained by soa-IG in most
instances, and they are noticeably better on a few. On the 100x20 instances, the
automatic SLS algorithms clearly outperform soa-IG.

In order to assess the performance over each set of instances, we perform a
statistical analysis based on the Friedman test for analyzing non-parametric un-
replicated complete block designs, and its associated post-hoc test for multiple
comparisons [4]. First, we pair the runs performed on the same instance using
the same random seed. This is the blocking factor, and the different algorithms
are the treatment factor. Algorithms are ranked within each block, lower solu-
tion cost corresponds to lower rank. If the Friedman test rejects the hypothesis
that the different algorithms obtain the same mean rank, then we calculate the
difference (∆R) between the sum of ranks of each algorithm and the best ranked
one (with the lowest sum of ranks). We also calculate the minimum difference be-
tween the sum of ranks of two algorithms that is statistically significant (∆Rα),
given a significance level of α = 0.05. Table 3 gives the results of this analysis,
applied separately to the two sets of instances of size 50x20 and 100x20. We
indicate in bold face the best strategy (the one having the lowest sum of ranks)
and those that are not significantly different from the best one. In both cases,
the best ranked algorithm is significantly better than the rest. However, the best
algorithm is different in each case. Notably, soa-IG is consistently ranked as the
worst by a large margin, especially on the 100x20 instances. These results are
consistent with the observations above. Therefore, our conclusion is that the
current state of the art can be matched and outperformed by the automatically
generated algorithms.
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Fig. 5. Solution costs obtained by the three automatic SLS algorithms (ALS1, ALS2
and ALS3) and soa-IG on the 50x20 instances.

6 Conclusion

Hybridizations of stochastic local search (SLS) methods that manipulate a sin-
gle solution at each step of the search are among the most effective non exact
algorithms for tackling hard combinatorial optimization problems [11]. Nonethe-
less, designing such hybrid SLS algorithms is an arduous task that requires a
significant amount of effort in implementation, experimental setup and analysis.
In practice, algorithm designers only consider a few ad-hoc combinations of SLS
algorithms. In this paper, we have shown that the process of designing such algo-
rithms can become mostly automatic. In particular, we have proposed a unified
and practical generalized local search (GLS) structure.

We have shown that the GLS structure unifies the formulation of various sim-
ple SLS methods and their possible combinations (hybridizations) into a single
structure. In fact, the best algorithms generated when applied to the PFSP-
WT are complex hybrids that combine ILS with IG, VNS and even a different
ILS. Our proposal is also practical, in the sense that it generates algorithms
that are as efficient as if they were hand-crafted by a competent programmer.
Two properties of our proposal are key for obtaining such efficiency. First, in-
stead of a complex algorithmic framework with many parameters, our system
generates specific algorithms from a grammar description of the GLS structure.
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Fig. 6. Solution costs obtained by the three automatic SLS algorithms (ALS1, ALS2
and ALS3) and soa-IG on the 100x20 instances.

These specific algorithms, which contain only a small fraction of all the algo-
rithmic components available in the grammar, are generated directly as C++

code and compiled. Second, our grammar description allows algorithm designers
to include problem-specific components, which are often crucial for obtaining
high-performing SLS algorithms. The system takes care of combining, testing
and selecting (or discarding) these problem-specific components among all the
available algorithmic components.

We have evaluated our proposal by applying our method to the PFSP-
WT comparing it the a state-of-the-art IG algorithm. Our experimental results
showed that the three automatically generated SLS algorithms are able to out-
perform it on well-known PFSP-WT instances from the literature.

Despite this initial success, there is considerably room for improvement. First,
we used a moderate amount of computing effort for the automatic generation
of algorithms. Therefore, the real potential of the proposed GLS structure may
not have been exhausted. Second, the definition of the GLS structure is a work
in progress. Future work will extend the GLS structure presented here, and
its implementation, to include additional SLS algorithms, for example, greedy
randomized adaptive search procedure (GRASP) [8] and Tabu Search [9]. Addi-
tionally, possible re-designs of specific aspects of the GLS structure and its im-
plementation may be considered once more computational results are gathered.



Table 2. Solution costs obtained by the three automatic SLS algorithms and soa-IG
on the test instances.

ALS1 ALS2 ALS3 soa-IG
Instances Best Avg Best Avg Best Avg Best Avg

50x20 ta051 26589 26806.2 26589 26824.9 26589 26756.1 26589 26899.6
ta052 24059 24273.2 24183 24443.2 24096 24390.8 24059 24333.5
ta053 32897 33307.8 32910 33183.7 32910 33206.8 32897 33634.6
ta054 31221 31470.2 31221 31663.3 31221 31572.7 31221 31488.9
ta055 21908 21936.2 21908 21948.3 21908 21975.9 21908 22094.7
ta056 16181 16516.4 16189 16711.6 16189 16740.7 16181 16556.7
ta057 23610 23869 23610 23990.4 23610 23953.9 23974 24211.2
ta058 22091 22207.7 22091 22131.9 22091 22166.8 22091 22262.1
ta059 27333 27521.3 27333 27685.1 27333 27573.1 27333 27577.9
ta060 63078 63286.3 63078 63235.9 63078 63179.9 63117 63456

100x20 ta081 409667 416932.6 409052 415941.5 409697 415306.3 415388 422625
ta082 325472 329803.8 324060 329161.3 323133 327466.6 328014 334437.1
ta083 492455 496922.6 490669 495669.7 487450 494569.8 500142 505772
ta084 553249 562380.8 549600 558824.5 551359 559419.9 550536 568600.5
ta085 472546 480861 474883 481147.7 471402 479941.3 481576 487291.6
ta086 484905 490357.9 480575 489379 480926 488144.7 484892 496511.1
ta087 378567 382931.6 374208 384024.5 376694 382277.9 382122 388511.8
ta088 389673 395809.4 389475 396729.7 385029 394056.2 394226 402836.5
ta089 562109 571495.2 560593 570489.5 561570 568465.7 569769 582829.9
ta090 459232 464206.4 454597 461262.9 457784 462177.3 464264 471961.3

Table 3. Statistical analysis based on the Friedman-test. The second column gives the
minimum difference in the sum of ranks that is statistically significant (∆Rα), given a
significance level of α = 0.05. For each instance set, algorithms are ordered according
to the rank obtained. The numbers in parenthesis are the difference of ranks relative
to the best algorithm. The algorithm that is significantly better than the other ones is
indicated in bold face.

Instances ∆Rα Algorithms (∆R)

50x20 57.92 ALS1, ALS3 (75), ALS2 (115.5), soa-IG (221.5)
100x20 47.04 ALS3, ALS2 (100), ALS1 (143), soa-IG (573)

Third, additional techniques may prove to be useful for avoiding too complex
SLS algorithm designs. Finally, we will apply the proposed method to other hard
combinatorial problems, with the aim of improving the state of the art.
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