
The manuscript for this paper was submitted for review and possible publication on October 16, 2006; approved on 
August 13, 2007. Please cite this paper as: M. López-Ibáñez, T. D. Prasad, and B. Paechter. Ant Colony Optimisation 
for the Optimal Control of Pumps in Water Distribution Networks. Journal of Water Resources Planning and 
Management, ASCE, 134(4):337–346, 2008. doi:10.1061/(ASCE)0733-9496(2008)134:4(337)

Ant Colony Optimisation for the Optimal Control of Pumps in
Water Distribution Networks

Manuel López-Ibáñez

PhD Student, CEC, Napier University, Edinburgh, UK 

T. Devi Prasad*

Lecturer, SEBE, Napier University, Edinburgh, UK 

Ben Paechter

Professor, SCS, Napier University, Edinburgh, UK 

* Corresponding Author

0



The manuscript for this paper was submitted for review and possible publication on October 16, 2006; approved on 
August 13, 2007. Please cite this paper as: M. López-Ibáñez, T. D. Prasad, and B. Paechter. Ant Colony Optimisation 
for the Optimal Control of Pumps in Water Distribution Networks. Journal of Water Resources Planning and 
Management, ASCE, 134(4):337–346, 2008. doi:10.1061/(ASCE)0733-9496(2008)134:4(337)

Ant Colony Optimisation for the Optimal Control of Pumps in
Water Distribution Networks

 

Manuel López-Ibáñez1, T. Devi Prasad2, and Ben Paechter3

Abstract: Reducing energy consumption of Water Distribution Networks (WDNs) has

never had more significance than nowadays. The greatest energy savings can be obtained

by careful scheduling of operations of pumps. Schedules can be defined either implicitly,

in terms of other elements of the network such as tank levels, or explicitly by specifying

the time during which each pump is  on/off.  The traditional  representation  of  explicit

schedules is a string of binary values with each bit representing pump on/off status during

a particular time interval.  In this paper a new explicit representation is presented. It is

based on time  controlled  triggers,  where  the  maximum number  of  pump switches  is

specified beforehand. In this representation a pump schedule is divided into a series of

integers with each integer representing the number of hours for which a pump is active/

inactive. This reduces the number of potential schedules (search space) compared to the

binary representation. Ant Colony Optimization (ACO) is a stochastic meta-heuristic for
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combinatorial optimization problems that is inspired by the foraging behavior of some

species of ants. In this paper, an application of the ACO framework was developed for the

optimal scheduling of pumps. The proposed representation was adapted to an Ant Colony

Optimization framework and solved for the optimal pump schedules. Minimization of

electrical  cost  was  considered  as  the  objective,  while  satisfying  system  constraints.

Instead  of  using  a  penalty  function  approach  for  constraint  violations,  constraint

violations were ordered according to their importance and solutions were ranked based on

this order. The proposed approach was tested on a small test network and on a large real-

world  network.   Results  are  compared  with  those  obtained  using  a  simple  Genetic

Algorithm based on binary representation and a hybrid Genetic Algorithm that uses level-

based triggers.

INTRODUCTION

Operational  cost  of  pumps  in  a  Water  Distribution  Network  (WDN)  represents  a

significant fraction of the total expenditure incurred in the operational management of

WDNs worldwide. Pumps consume large amounts of electrical energy for pumping water

from source to storage tanks and to demand nodes. They also need to be repaired and

replaced,  resulting  in  maintenance  costs.  Therefore,  the  goal  of  a  pump  scheduling

problem is to minimize the total pump operational cost, which includes pumping cost and

pump maintenance cost, while guaranteeing a competent network service. In most cases,

this problem is equivalent to the minimization of cost of pumping, while supplying water
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to consumers at adequate pressures and achieving full recovery of tank levels by the end

of operating period. 

Finding optimal schedules for pumps in a WDN is a difficult task for researchers and

managers alike. It may be due to variability in water consumption, complexity of WDNs

and complex electrical tariff structures. Reduction in the total pumping cost in a water

supply  system  can  be  accomplished  in  many  ways,  from  proper  maintenance  of

infrastructure  to  the  use  of  optimal  control  policies.  A careful  scheduling  of  pump

operations may shift workload to cheaper electrical tariff periods, and as a result, the cost

of  energy  consumed  by  pumps  is  reduced.  Furthermore,  energy  savings  can  be

accomplished  by  pumping  water  when  tank  levels  are  lower  and  combining  the

operations of different  pumps efficiently. In general, pump maintenance cost cannot be

easily  quantified;  therefore,  surrogate  measures  are  used  to  estimate  it.  The  most

commonly used measure is the total number of pump switches (NS): frequent switching

(on/off)  causes  wear  and  tear  of  pumps,  and  hence  future  maintenance  costs.  These

maintenance costs can be limited in the optimization problem using a constraint such as

NS must be less than or equal to a specified value.

Although most of the research in the field of water distribution optimization has been

devoted towards the optimal design of WDNs, few researchers have attempted to develop

new algorithms for operational optimization of WDNs. Many of these algorithms were

developed  to  determine  least-cost  pump  scheduling  policies.  These  algorithms  were

developed  using  linear  programming  (Jowitt  and  Germanopoulos,  1992),  nonlinear
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programming  (Chase  and  Ormsbee,  1993;  Yu et  al.,  1994),  dynamic  programming

(Lansey and Awumah, 1994; Nitivattananon et al., 1996), heuristics (Ormsbee and Reddy,

1995; Leon et al., 2000) and meta-heuristics (Savic et al., 1997; van Zyl et al., 2004; Rao

et al., 2005). The difficulties faced by these models in obtaining optimal or near optimal

solutions can be attributed to: (i) large search space, and thus, a very limited proportion of

solutions can be evaluated in a reasonable length of time; (ii) complexity of real-world

water distribution networks, thereby limiting the usefulness of traditional optimization

methods such as linear and nonlinear programming; (iii) oversimplification of network

model  and system of  hydraulic  equations  to  suit  the  algorithm requirements,  thereby

sacrificing the accuracy; and (iv) tendency of solutions getting trapped at local optima.

Algorithms  based  on  meta-heuristics,  such  as  evolutionary  algorithms  and  simulated

annealing, have shown promise and are able to overcome some of the above limitations.

One of the drawbacks of population based techniques, such as evolutionary algorithms, is

that they require large number of function evaluations before convergence is guaranteed.

The  search  space  of  the  problem  grows  exponentially  with  the  number  of  decision

variables (i.e., number of control elements such as pumps). This, in turn, increases the

number  of  function  evaluations  required  to  adequately  explore  the  search  space.

Calculation of the objective function value and performance indices of an operational

schedule requires conducting an extended period simulation using hydraulic simulator.

Therefore, for large complex networks each function evaluation takes up considerable

amount of computational time and resources. To avoid the lengthy computational times
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researchers have used hybrid  methods (van Zyl  et  al.,  2004).  Use of hybrid  methods

requires  a  user  to  specify when to switch from global  search method to local  search

method. This switch is highly dependent on the problem under consideration and will be

different for different problems.

Operational schedules of pumps in a network can be defined in terms of properties of

other  elements  of  the  network,  called  in  this  study  implicit  pump  scheduling.  For

example,  water levels in tanks are often used to trigger the operation of pumps. Few

researches have considered this representation for pump operation (Atkinson et al., 2000;

van Zyl  et  al.,  2004).  On the  other  hand,  pumps  may also be  controlled  directly  by

specifying  the  time  during  which  a  pump  is  on/off,  called  herein  explicit  pump

scheduling (Savic et  al.,  1997).  Most of the works on explicit  pump scheduling have

encoded pump schedules using a binary string representing the on/off state of a pump

during  a  pumping  interval.  In  this  study, we propose  a  new representation  based on

explicit pump scheduling and using time controlled triggers. The new representation is

developed  by incorporating  constraint  on  the  number  of  pump switches  into  it.  This

representation enables the optimization algorithm to conduct search in a reduced search

space,  which  leads  to  reduction  in  the  number  of  functional  evaluations  and,  hence,

computation  time.  For  example,  let  us  consider  a  single  pump  schedule  (24  hours)

containing on/off states of a pump (binary representation) in one hour intervals. There are

12  possible  pump  switches  and  search  space  contains  224 =  16,777,216  solutions.

However, if the number of pump switches is restricted to three (NS  3), the feasible
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search space with respect to this constraint will be reduced to 290,998 solutions, which is

less than 1.73% of the total search space. Table 1 gives the number of potential solutions

with respect to the number of pump switches. These values are obtained by enumerating a

24 hr pump schedule. As can be observed from Table 1, by incorporating this constraint

on  number  of  pump  switches  into  the  representation,  search  space  could  be  reduced

considerably and direct the search in the reduced space. This will further lead to reduction

in the number of function evaluations required to achieve convergence.

Ant  Colony  Optimization  (Dorigo  and  Stutzle,  2004)  is  a  biologically  inspired

optimization method that mimics the technique used by real ants for optimizing the path

between nest and source of food. Ants follow chemical substances, called pheromones,

previously laid by other ants in their trails. The trail followed by an ant depends strongly

on the amount of pheromone present at each possible direction. Thus, pheromones work

as a communication mechanism and also as a reinforcement learning process. Ant Colony

Optimization  has  been  applied  by  researchers  to  the  design  of  Water  Distribution

Networks (Maier et al., 2003).

The  present  work  focuses  on  the  application  of  ACO to  the  problem of  operational

optimization  of  WDNs.  The pump scheduling  problem along with  the  proposed new

representation are adapted to the ACO framework and evaluated by an algorithm similar

to  the  Ant  System  (Dorigo  et  al.,  1996),  which  is  considered  to  be  the  first  ACO

algorithm.  The proposed method  is  applied  to  an example  network  and a  real  water

distribution  network.  The  efficacy  of  the  method  is  demonstrated  by  comparing  the

6



The manuscript for this paper was submitted for review and possible publication on October 16, 2006; approved on 
August 13, 2007. Please cite this paper as: M. López-Ibáñez, T. D. Prasad, and B. Paechter. Ant Colony Optimisation 
for the Optimal Control of Pumps in Water Distribution Networks. Journal of Water Resources Planning and 
Management, ASCE, 134(4):337–346, 2008. doi:10.1061/(ASCE)0733-9496(2008)134:4(337)

results  of  the  present  method  with  those  published  in  the  literature.  The  paper  is

structured as follows. First, the pump scheduling problem is formally defined. Next, the

application  of  Ant  Colony  Optimization  to  this  problem  is  explained.  Experimental

results  are  presented  and  discussed  followed  by  a  summary  of  conclusions  and

enumeration of future research directions.

PUMP SCHEDULING PROBLEM

Given  a  water  distribution  network  where  demand  patterns,  initial  tank  levels  and

electricity tariffs are specified, the goal is to find the best pump schedule over a typical

operating cycle such that the total operational costs are minimized while guaranteeing a

competent network service. Pump operational costs include cost of energy consumed by

pumps  and  pump  maintenance  costs  derived  from the  workload  imposed  on  pumps.

System constraints  ensure  feasibility  of  pump  schedules,  including  that  demands  are

supplied at adequate pressures and water supplied from tanks is recovered by the end of

the scheduling period.

Pump energy costs  depend  on the  energy price  as  well  as  on  the  amount  of  energy

consumed. The price per unit of energy is given by electricity tariff,  which may vary

during a scheduling period. In general, it is divided into an expensive peak and a cheaper

off-peak electricity tariffs. The actual amount of energy consumed by a pump depends on

several parameters, including flow through the pump, head supplied by the pump and

wire-to-water efficiency. These parameters can be calculated using a hydraulic simulator
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for a known pump schedule. Formally, operation of Np pumps in a WDN is scheduled

over a scheduling period T. This scheduling period is  divided into a  number  of time

intervals NT.  Given a particular  schedule S, representing which pumps operate during

which time interval, the total cost of energy is calculated as:

CE( S )=∑
n=1

N p

(demand charge+consumption charge )

           =∑
n=1

N p

[Rd( n)⋅Ed(n )+∑
i=1

NT

Re( i)⋅Ec(n , i)⋅S (n , i)]
(1)

where Np = number of pumps; NT = number of time intervals; S(n,i) = duration for which

pump n is operating during interval i (hour);  Re(i) = energy tariff during interval i ($/

kWh); Ec(n,i) = energy consumption rate of pump n during interval i (kWh/h); Rd(n) =

maximum demand charge of pump n ($/kW); and Ed(n) = maximum energy consumption

of pump n (kW).

The  energy  consumption  rate  of  a  pump  depends  on  flow  through  the  pump,  head

supplied by the pump, and efficiency at which it is operating.

Ec (n , i)=
0 .01019⋅Q(n , i)⋅h (n , i)

e( n ,i )
(2)

where Q(n,i) = flow rate through pump n during interval i (l/s); h(n,i) = total dynamic

head (TDH) supplied by pump n during interval i (m); and e(n,i) = overall (wire-to-water)

efficiency of pump n during interval i.

Similarly, the maximum energy consumption is calculated as:
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Ed( n)=
0. 0098⋅Qmax( n)⋅h(n )

e (n )
(3)

where Qmax(n) = peak flow rate through pump n (l/s); h(n) = total dynamic head (TDH)

supplied by pump n (m); e(n) = overall (wire-to-water) efficiency of pump n. Although

the network instances considered in our study do not include any demand charge, it can

be incorporated by adding its cost to the total energy cost as defined in Eq. (1).

On the other hand, maintenance costs are difficult to quantify and are usually measured

using a surrogate objective,  such as the number of pump switches.  A pump switch is

defined  as  turning a  pump  on that  was  off  during  preceding  time  interval.  Frequent

switching of pumps causes wear and tear of pumps, which, in turn, increases maintenance

costs. Thus, it  is assumed that minimization of the number of pump switches reduces

maintenance  costs  (Lansey and  Awumah,  1994).  Nonetheless,  our  approach  does  not

minimize the number of pump switches, rather it is considered as a constraint that should

not  exceed  a  specified  value.  Such  constraint  in  the  number  of  pump  switches  is

implicitly enforced by the representation of schedules presented in this paper.

Constraints

In order to obtain feasible pump schedules, the optimization model must satisfy system

constraints  that  represent  its  performance criteria.  These include  hydraulic  constraints

representing conservation of mass and energy, minimum and maximum limits on tank

storage levels, minimum pressures requirements at demand nodes and a balance between

supply and demand from tanks. The hydraulic simulator implicitly handles some of these
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constraints, including hydraulic constraints and constraints on maximum and minimum

tank levels.

To achieve a balance between water supplied and consumed from tanks, a viable schedule

must ensure that tanks recover their levels by the end of scheduling period. That is, tank

levels at  the end of the scheduling period are not lower than those at  the start.  Tank

volume deficit (Vk) is defined as the difference in percentage between initial volume

(Vk,S) and final volume (Vk,E) of water in a tank. A negative volume deficit represents a

surplus of water  in a  tank. However, in this  work it  is  not assumed that  this  surplus

compensates the loss of water in a different tank. Therefore, only positive volume deficits

are accumulated to calculate the total volume deficit (V) of a particular schedule. This

value must be equal to zero for any feasible solution:

ΔV k={
V k ,S−V k , E

V k , S

×100           if V k , S>V k ,E

0                                otherwise

k = 1,…,Nt

(4)

ΔV =∑
k=1

N t

ΔV k=0 (5)

where Nt = number of tanks in the network. 

Consumers  must  be supplied water at  adequate pressures.  Therefore,  the optimisation

model must satisfy minimum pressure constraints at demand nodes:

H j , i>H j
min      j =1, . .. ,N d (6)
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where Hj,i = head supplied at demand node j during time period i; H j
min = is the minimum

head required at demand node j; and Nd = number of demand nodes.

In order to reduce maintenance costs, an additional constraint on the number of pump

switches is used. Thus, the number of pump switches is limited to a specified value:

NS=N p×SW (7)

where  SW is  a  constant  to  be  specified  and  it  is  the  maximum number  of  switches

allowed per pump during a scheduling period. Schedules with a lower number of pump

switches are also acceptable, and thus, constraint Eq. 7 may be relaxed as follows:

NS≤N p×SW (8)

Finally, the hydraulic simulator may issue warnings when some schedules are evaluated.

These are the warnings generated by the simulator when it encounters situations such as

when a pump cannot supply sufficient  head. Whenever pumps cannot deliver  enough

head or flow - one or more pumps will be forced to either shut down (due to insufficient

head) or operate beyond the maximum rated flow (EPANET simulator warning number

4). From efficiency point of view, operating a pump at extreme points on the pump curve

is not desirable  and, in  some cases,  an extra  pump switch may be introduced due to

shutting-off of pump(s). These warnings are not specific to EPANET rather they are due

to inefficient operation of pumps. Similarly EPANET will generate warnings if valves

cannot deliver enough flow (EPANET Warning 5). In this study we have accumulated the
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number of such warnings generated by the simulator and used in the constraint handling

procedure. Feasible schedules should not generate simulation warnings.

Constraints Handling Methodology

Hydraulic constraints and limits on tank levels are enforced implicitly by the simulator

used in this study. The constraint on the number of pump switches, (i.e., either Eq. 7 or

Eq. 8), is implicitly satisfied by the time-based triggers representation. On the other hand,

constraints on total volume deficit, Eq. 5, and minimum pressure requirements at demand

nodes, Eq. 6, must be explicitly handled by the optimisation algorithm.

Previous studies have dealt with constraints by penalising the objective function (Mackle

et  al.,  1995;  2000;  Boulos  et  al.,  2001;  and van Zyl  et  al.,  2004).  This  requires  the

definition  of  a  penalty  function  and  appropriate  penalty  values.  Moreover,  different

penalty values are required for different types of constraints and the degree of violation of

some of  these  constraints  cannot  be easily  quantified.  Penalty values,  in  general,  are

obtained either using rudimentary techniques or by trail-and-error. The penalty function

approach imposes a fixed trade-off between the amount of constraint violation and the

value of the objective function. Low penalty values would allow constraint violations in

return for small  reductions  in the objective value,  while  higher penalty values would

require higher objective value differences to compensate the same amount of constraint

violation. For these reasons, the use of penalty function approach is avoided in this study.

The present paper considers an approach based on ranking solutions with respect to their
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constraint violations and objective function values. In this sequential approach, given two

candidate solutions, the criteria used to choose a better solution are:

1. select the solution with the lowest pressure violation;

2. if  pressure  violations  are  equal,  select  the  solution  with  the  lower  number  of

warnings from the simulator;

3. for equal number of warnings, select the solution with the lower total  volume

deficit (V) ;

4. if total  volume deficits  are equal,  select the solution with the lowest objective

function value (CE).

These criteria effectively rank a feasible solution (zero total volume deficit, no warnings

and  no  pressure  violations)  better  than  any  infeasible  one.  Feasible  solutions  are

compared with respect to their objective function values only, and infeasible solutions are

compared according to their degree of infeasibility. The order chosen for the comparison

of constraint violations establishes some preference for constraint violations. A solution

with tank volume deficit,  where enough water  is  supplied to meet  the demand but a

balance is not achieved at the end of the simulation, is preferred over a solution having

pressure violations, where the adequate demand cannot be supplied. Warnings (described

above) from the simulator are considered to be worse than tank volume deficit,  since

warnings  indicate  inefficient  operation  of  pumps  or  some  other  problem  with  the

schedules  preventing  correct  evaluation  of  the  solution  by the  simulator.  However,  a
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solution with warnings and no pressure violations is preferred over a solution that has

pressure violations. It was observed that a small modification to such a solution removes

warnings. On the other hand, a solution with pressure violations require more fine-tuning,

that is, pumps are required to be active for more hours to supply the demand at required

pressures.

ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is  a meta-heuristic  approach successfully applied to

several optimization problems.  Dorigo and Stutzle  (2004) have provided an extensive

introduction  to  this  technique.  ACO was  inspired  by  the  foraging  behavior  of  some

species of real ants. These ants are able to find an optimal path between nest and food

through indirect communication known as stigmergy, by means of trails of a chemical

substance called pheromone laid by ants along their way when moving between nest and

food. ACO algorithm makes use of very simple agents, analogous to artificial ants, which

stochastically build paths in a graph. Such graph represents an optimization problem,

where  nodes  are  decision  points  and  edges  represent  possible  choices  or  solution

components.  A path  over  the  graph  defines  a  candidate  solution  to  the  optimization

problem (see  Fig.  1).  At  each  decision  point  (node),  an  individual  ant  stochastically

chooses  which  solution  component  (edge),  to  add  to  its  current  path.  Solution

components are added iteratively until a candidate solution is completed. Each stochastic

decision is influenced by numerical information associated with each edge in the graph,
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analogous to pheromone trails. The higher the pheromone value of a particular solution

component, the greater its probability of selection by an ant to add it to its current partial

solution.  Ants  modify  this  pheromone  information  and  increase  the  probability  of

choosing the most attractive edges of the graph. Additionally, all pheromone values are

decreased every iteration,  an operation  known as  evaporation.  This  process  decreases

pheromone  values  associated  with  solution  components  that  seldom  appear  in  good

solutions and that have not been recently reinforced, so the search is directed towards the

most promising regions of the search space.

This work adapts the original Ant System (AS) proposed by Dorigo et al. (1996), which

was the first ACO algorithm, with some minor modifications. The schema of the resulting

algorithm  is  shown  in  Fig.  2.  Let  (i,j)  be  the  jth edge  originating  from  node  i  and

representing solution component (i,j). Let  ij(t) be a numerical value associated to each

solution component (i,j), called pheromone. This pheromone value is updated during the

algorithm run,  and it  depends  on  the  current  iteration  t.  First,  pheromone  values  are

initialized to a constant value 0. Then, a main loop is repeated until termination criteria,

such as maximum number of objective function evaluations, is met. Within this loop, a

set of ants (A) construct candidate solutions to the problem. Each ant ‘a’ constructs a

single  solution  a by  iteratively  adding  solution  components,  which  is  equivalent  to

building a path in the graph by choosing edges at each decision point. Thus, an ant ‘a’ at

each decision point i chooses a single solution component (i,j) from among a set Ni(a) of

possible alternatives. This set Ni(a) is called the feasible neighborhood of ant ‘a’ and it
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may vary according to the current partial solution of ant ‘a’. The probability of choosing

a solution component (i,j) is given by:

pij( a ,t )=
[τ ij ( t )]

α
[ηij ]

β

∑l∈N i (a ) [ τ il( t )]
α

[ηil ]
β (9)

where ij is a heuristic value associated to component (i,j), and represents an estimation

of the suitability of choosing j over the other alternatives in Ni(a); and  and  weigh the

relative influence of pheromone and heuristic information on the final probability pij(a, t).

After each ant has constructed a new solution, they are evaluated and ranked to identify

the  iteration-best  solution  (ib),  the  best  solution  among  the  ones  constructed  in  the

current  iteration‘t’.  Also,  the best  solution found in the  current  run of  the algorithm,

called  best-so-far,  (bf),  is  updated  accordingly.  Finally,  pheromone  information  is

updated to reflect the experience acquired by the ants through the evaluation of their

solutions. The pheromone update is completed in two steps. In the first step, pheromones

of all solution components are evaporated by decreasing pheromone values by a constant

factor. In the second step, pheromones of solution components that are part of the best

solutions  are  reinforced  by  increasing  their  pheromone  values.  Both  operations,

evaporation and reinforcement, can be formalized as:

τ ij ( t +1 )=ρτ ij (t )+ Δτij (10)
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where  [0, 1] is a parameter that determines the evaporation rate (1−) and ij is the 

amount of pheromone deposited in solution components belonging to the iteration-best 

solution (ib) as given by:

Δτ ij={Δτ        if edge ( i,j)  is part of φ ib

0            otherwise
(11)

where   is a user-defined constant.  According to Dorigo and Stuetzle (2004), in the

simplest case  can be the same constant value for all ants. The only requirement is that

 is non-increasing value with respect to the objective function value. In this case, only

the differential cost works in favor of the detection of least-cost components. From our

experiments it was found that =1 produced better results compared to a value based on

solution quality.

This pheromone reinforcement method is different from the update method used in the

original Ant System (Dorigo et al., 1996), where all ants in the current iteration deposited

an amount of pheromone relative to its objective function value. Nevertheless, update

methods that use just one solution to reinforce the pheromone values, either the iteration-

best or best-so-far solutions, are widely used in many modern ACO algorithms to achieve

a faster convergence (Dorigo and Gambardella, 1997; Stutzle and Hoos, 2000; Dorigo

and Stutzle, 2004).

17



The manuscript for this paper was submitted for review and possible publication on October 16, 2006; approved on 
August 13, 2007. Please cite this paper as: M. López-Ibáñez, T. D. Prasad, and B. Paechter. Ant Colony Optimisation 
for the Optimal Control of Pumps in Water Distribution Networks. Journal of Water Resources Planning and 
Management, ASCE, 134(4):337–346, 2008. doi:10.1061/(ASCE)0733-9496(2008)134:4(337)

REPRESENTATION OF PUMP SCHEDULES

An explicit pump schedule defines time intervals during which each pump in a network is

on or off. In an implicit formulation, decision variables are system conditions, such as

tank water levels, that trigger the operation of the pumps. However, the drawback with

implicit approach is that one has to assign each pump to a particular tank a priori. In some

cases the optimal  solution  needs to  be converted  to obtain  an actual  pump schedule,

which  may  not  be  optimal.  In  this  paper,  a  new  explicit  formulation  of  the  pump

scheduling  problem,  where  decision  variables  are  on/off  durations  of  each  pump,  is

developed.

An explicit formulation of decision variables can be represented in several ways, binary

representation being the most commonly used. In binary representation, the scheduling

period (T) is divided into a fixed number (NT) of smaller intervals and a single bit is used

to represent the status of a pump during each interval. For example, a 24 hour scheduling

period  is  divided  into  24  one-hour  intervals.  In  this  case,  the  maximum  number  of

switches per pump would be 12, which is much larger than the number of switches that

would be allowed in any practical solution. In this study, instead of binary representation

for decision variables, a representation based on time-controlled triggers similar to the

one  proposed  by  López-Ibáñez  et  al.  (2005)  is  developed.  It  has  the  advantage  of

implicitly satisfying the constraint on the number of pump switches.

In the time-based triggers representation, each pump switch is defined using a pair of

integers.  These  integers  represent  the  time  for  which  a  pump  is  inactive  and active,
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respectively, in a pump switch. Therefore, for a pump (n) with SW pump switches there

will be (2·SW) decision variables stored in a vector n. For a feasible pump schedule, the

sum of all integers in each vector  n must be equal to the scheduling period T. Thus, a

candidate solution (S) of the pump scheduling problem has the following form:

S= {φ1 , .. . ,φn ,. . . ,φ
N p}      where each   φn= {φ1 ,. . . , φi , .. . ,φ2⋅SW } (12)

such that:

∑
i=1

2· SW

φi=T (13)

Finally, we have to decide the range of values each i can take such that the number of

pump switches should not exceed NS, while satisfying Eq. 13 for each pump. There exist

two scenarios. In the first case, to utilize the maximum allowed pump switches, constraint

Eq. 7 must be enforced. That is, each integer  i must be greater than zero. If there are

(2·SW−1) integers having a value of 1 hour each, then, following constraint Eq. 13, the

remaining integer must be equal to (T−2·SW+1) hours. Therefore, i  [1, (T−2·SW+1)].

On the other hand, if Eq. 8 is used then i  [0, T]. An example of time-based triggers

representation for a single pump with SW = 3 and T = 24 hours in shown in Fig. 3.
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APPLICATION OF THE MODEL

In order to apply the above defined ACO framework to the Pump Scheduling problem,

the time-based triggers representation has to be translated into a graph formulation. For

simplicity let us restrict first to the problem of scheduling a single pump with a maximum

of SW pump switches. By definition, each pump switch involves a pair of time intervals

during which a pump is, respectively, off and on. A complete schedule contains (2·SW)

intervals. If the constraint on pump switches as defined by Eq. 7 is considered, then each

interval can take any value between 1and (T−2·SW+1). On the other hand, if the more

relaxed constraint given by Eq. 8 is used, then each interval can take any value between 0

and T. Therefore, the pump scheduling problem can be adapted to the ACO framework by

associating each decision point to an interval and by defining each solution component (i,

j) as the assignment of number of hours to an interval.

Since  the  total  duration  of  all  operational  intervals  must  be  equal  to  T, the  feasible

neighborhood of ant ‘a’ at decision point i, as defined by Eq. 9, is limited to

N i (a )={ {1,2, .. . , (T−2⋅SW+1−T a )}         if Eq .  7 is used

{0,1,. . .(T−T a) }                              if Eq . 8 is used

(14)

where Ta is  the summation of intervals  already assigned in the partial  solution being

constructed by ant ‘a’. After one solution component (i,j) has been chosen by ant ‘a’ to be

added to its partial solution. Ta is updated by adding the number of hours assigned to
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solution component (i,j) to it. The last solution component is not chosen stochastically;

on the contrary the last edge is assigned a number of hours such that the total duration of

the schedule is T, to satisfy constraint Eq. 13 of the time-based triggers representation.

However, this will cause the last interval to have a higher probability of being assigned a

shorter  duration.  To avoid  introducing  such  a  bias,  each  interval  is  considered  in  a

random order, so that the last assigned interval does not necessarily correspond to the last

interval of the schedule.  To make linear influence,  ij value was taken as equal to (T 

j)/T for time intervals during which a pump is on and otherwise it is equal to (j/T). If

either value is smaller than 0.001 then it is taken as 0.001 to allow pheromones to have

some influence in the result.

The formulation described above is extended to more than one pump by associating a

separate pheromone matrix to each pump. The schedule of each pump is constructed by

using the  values  of  its  own pheromone  matrix.  This  is  equivalent  to  associating  one

independent graph to each pump, such that each ant constructs one path in each graph in

order to build a complete schedule of all pumps. Similarly, each pheromone matrix is

updated following Eq. 11, but only those solution components of ib that are associated to

the pump.
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RESULTS AND DISCUSSION

For  comparison  purposes,  the  proposed  ACO  approach  was  tested  on  two  network

instances  published  in  the  literature:  van  Zyl  test  network  and  Richmond  network.

Typical  pump  scheduling  period  is  24  hours,  whereas  billing  period  is  one  month.

Demand cost, in general, is calculated over a billing period and is not considered (i.e., Rd

= 0) in the present study. The objective is to minimize CE as defined by Eq. 1, and subject

to constraint Eqs. 5 and 6. The optimization algorithm must handle constraint Eqs. 5 and

6, where as conservation of mass and energy equations are implicitly satisfied by the

simulator. A limit of SW = 3 switches per pump is set in all the examples solved using

ACO. Thus, the maximum possible value of total number of pump switches (NS) of any

solution is 9 for van Zyl test network and 21 for Richmond network.

For each example, 25 runs were conducted using different random seeds to assess ACO

model’s  average  performance.  In  order  to  enable  a  fair  comparison  with  the  results

provided by van Zyl  et  al.  (2004), each run was continued until  the same number of

function  evaluations,  i.e.,  6000  function  evaluations  for  van  Zyl  instance  and  8000

function evaluations for Richmond instance. Results obtained are compared with those

obtained using simple GA (SGA) with binary representation and HybridGA with level

controlled triggers representation.
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Van Zyl test network

Initially  the  test  network,  published  in  van  Zyl  et  al.  (2004),  was  solved  using  the

proposed model. It contains 3 pumps and 2 tanks. The layout of the network is shown in

Fig. 4. Pumps 1A and 2B are identical pumps connected in parallel.  When neither of

these pumps is active, a booster pump 3B transfers water from tank A to tank B. In case

one or both the pumps (1A and 2B) are active, pump 3B boosts the flow to tank B. Tank

B has a higher elevation than tank A, and thus, water may flow by gravity from tank B to

tank A through the pipes connected to the demand node. The pump scheduling period T

(24 hrs) is divided into twenty-four 1 hr intervals.

Investigations were carried out to fine-tune the ACO parameters. Mainly, the number of

ants (A), pheromone update parameter (), and parameters  and  were considered for

fine-tuning.  As a result  of these trials,  the following parameter  values were found to

produce  acceptable  results  and  adopted  for  this  example  in  the  pheromone  updating

process:  the  number  of  ants  A = 10,  the  evaporation  parameter   =  0.95,  the  initial

pheromone 0 = 1, pheromone update parameter  = 1,  = 1, and  = 0.25. The median,

standard deviation, best and worst values were obtained from the results of 25 runs and

presented in Table 2. CE and NS correspond, respectively, to the daily electrical cost and

total number of pump switches. Results under ACO-7 were obtained taking into account

constraint Eq. 7, while results under ACO-8 were obtained considering constraint Eq. 8.

In Table 2, results obtained using HybridGA (van Zyl et al., 2004) are also presented. The

ACO algorithm produced much better results compared to minimum cost solution and
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compare  well  with  the  median  results  obtained  using  HybridGA.  The  statistical

parameters of HybridGA, presented in Table 2, were calculated based on results from 7

random runs.  It  should  be  noted  that,  in  case  of  ACO,  no  local  search  method  was

employed and a simple ACO algorithm was used. Unlike the Hybrid GA, it does not

require fine tuning of the penalty cost.

The search  space  of  ACO-7,  for  this  problem,  contains  1.951016 potential  solutions

whereas the search space of ACO-8 contains  2.461016 potential solutions. Comparing

the median electrical costs and number of pump switches obtained by ACO-7 and ACO-

8, the results show that by relaxing the constraint on the number of pump switches, these

can be notably reduced. Although, HybridGA obtained slightly lower median value, the

small difference may be due to the number of solutions utilized in calculating statistical

parameters and the stochastic nature of both the algorithms. To ascertain this aspect, a

statistical  test  was  conducted  to  assess  whether  there  was  any  significant  difference

between objective values obtained by ACO-7 and HybridGA. A non-parametric statistical

test, which does not require the data to be normally distributed, was used for this purpose.

The standard non-parametric statistical test used was Wilcoxon rank sum test, also called

Mann-Whitney U test (Furlong et al., 2000). The result of the test has shown that there

was no statistically significant difference between the median electrical costs obtained by

ACO-7  and  HybridGA  (at  a  critical  value  of  0.05).  Similar  statistical  results  were

obtained for ACO-8 also.
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Richmond test network

To test  the efficacy of the proposed ACO model,  subsequently, it  was applied to the

Richmond  water  distribution  system,  which  is  a  real  system  located  in  the  United

Kingdom. The calibrated network has 7 pumps,  6 tanks and a reservoir. In total,  the

network consists  of 948 links and 836 nodes.  Complete  description of the Richmond

network can be found in van Zyl et al. (2004). This network was first studied by Atkinson

et al. (2000) and later by van Zyl et al. (2004). The network used in this study is the same

as that of van Zyl et al. (2004). All tanks in the network must be 95% full at the start of

the peak electricity period (7:00 am).

Some initial trials were carried out to find optimal ACO parameters. As a result of these

trials, the following parameter values were found to produce better results and adopted

for this example: the number of ants A = 10, the evaporation parameter   = 0.95, the

initial  pheromone  0 = 1, pheromone update parameter   = 1,   = 1, and   = 0.25.

EPANET  hydraulic  simulator  (Rossman,  1999)  was  used  for  calculating  objective

function  values  and constraint  violations.  Although  constraints  on  minimum pressure

requirements  and  tank  volume  deficits  were  explicitly  handled  in  the  optimisation,

EPANET generated warnings for some of these solutions. These warnings, as explained

earlier, were related to pumps that cannot deliver sufficient head. Therefore, in this study

all  such warnings  were  counted  and used  in  the  constraint  handling  procedure.  Two

different case scenarios, explained in the following paragraphs, were investigated. 
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Case 1

In this case, the Richmond network was solved considering 1 hr time step, i.e., pumping

schedule (T) was divided into 24 equal intervals. Twenty five runs were conducted using

the values of ACO parameters described above and different random seeds. Each run

using ACO was continued until 50,000 function evaluations and results at the end of 8000

and  50,000  function  evaluations  were  used  for  comparison  purposes.  The  median,

standard deviation,  best and worst objective function values were calculated from the

results  of  25  runs  and presented  in  Table  3.  The results  under  heading  ACO-7 were

obtained by solving ACO with Eq. 7, and results under heading ACO-8 were obtained by

solving ACO with Eq. 8. It can be observed from Table 3 that the best solution of ACO-7

(after 8000 function evaluations) has an objective function value of 33,683.3 and that of

ACO-8 has an objective function value of 34,319.9. Slightly larger objective function

value could be attributed  to  the larger  search space of ACO-8. For  this  problem,  the

search space of ACO-7 contains 1.11038 potential solutions, whereas ACO-8 contains

1.81038 potential solutions. Also, from Eq. 14 it can be deduced that the search space of

ACO-7 is a subset of the search space of ACO-8. This indicates that the stopping criteria

adopted has an effect on the convergence of the algorithm. To investigate  this  aspect

further,  results  at  the  end  of  50,000  function  evaluations  were  analyzed.  It  can  be

observed from Table 3 that  ACO-8 was able  to identify better  solutions  compared to

ACO-7, when continued to run for longer number of evaluations.
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For comparison purposes, the Richmond network was also solved using a simple Genetic

Algorithm (SGA). In this, each pump schedule was encoded as a binary string with each

bit representing on/off status of a pump during one hour time interval. This representation

will produce pump schedules similar to those obtained by the ACO model. Unlike the

ACO model, the SGA model does not incorporate a constraint on the number of pump

switches into the representation. Therefore, the maximum number of pump switches per

pump using this representation is 12 (one hour pumping intervals). To restrict the number

of pump switches  per  pump to a  maximum of  four, constraint  Eq.  8 was used.  This

constraint along with the other constraints, were handled using the constraint handling

methodology described above. The SGA was run 10 times with different random seeds

and GA parameters. The fine-tuned SGA parameters used are: population size = 100 and

number  of generations  = 1000.  That  is,  a  total  of 100,000 function evaluations  were

performed in each SGA run. The genetic operators used were binary tournament selection

with  elitism (the  best  solution  is  not  replaced),  uniform crossover  with  a  probability

varying between 0.75 and 1.0, and flip mutation with a probability varying between 0.01

and 0.05. Results are presented in Table 3. 

From Table 3, it can be observed that the median SGA solution requires an operational

cost  of  41,099.0  per  annum.  This  solution  was  obtained  within  100,000  function

evaluations. Compared to this, the median solution obtained by ACO-8 requires an annual

operating  cost  of  36,699.7  and  this  solution  was  obtained  within  8000  function

evaluations. The median number of pump switches of ACO-8 is less than a half of that
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corresponding to SGA, that is, the median schedule of ACO-8 requires 12 pump switches

while the one of SGA requires 24.5 pump switches. In conclusion, ACO is able to obtain

schedules with lower maintenance and electrical costs than SGA, in a shorter period of

computation time.

Case 2

The sensitivity of the ACO algorithm to the coarseness of the time discretization was

investigated in this case.  The Richmond network was solved by discretizing the pump

scheduling period (24 hrs) into equal intervals having time steps of 1 hr., 30 min. and 15

min. That is, the problem was solved by taking NT=24, NT=48 and NT=96. For each NT

value, the ACO-8 was solved 25 times using the same ACO parameters described in Case

1  above  and  different  random  seeds.  Each  run  was  continued  until  8000  function

evaluations  were  completed.  Statistical  parameters  calculated  from  these  results  are

presented in Table 4. It can be observed from Table 4 that NT=24 produced best results

and the results using different NT values are differing by no more than 3%. Naturally,

smaller time steps are expected to produce better results; but, the increased search space

requires larger number  of function evaluation.  As can be observed from Table 4,  the

search space of the problem with NT=24 contains 1.81038 potential solutions compared

to 2.11049 potential solutions when NT=48. By running ACO with smaller time steps and

for larger number of function evaluations (Case 1 and Table 2), better results could be

obtained. It should be noted that the problem was solved using NT=96 (i.e., time step=15

min.) out of academic interest. In the real networks implementation of pump schedules
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with pumps off and on in 15 min intervals may not be desirable due to increased pump

maintenance  cost  and  damage  that  may  be  caused  to  infrastructure  due  to  frequent

switching of pumps.

For comparison purposes the statistical parameters calculated from the results of Hybrid

GA (Zyl et al. 2004) are also presented in Table 4. The best results obtained using ACO-8

with different NT values (Table 4) is better than the best result of HybridGA.  It is worth

mentioning that van Zyl  et  al.  (2004) did not provide numerical  results  but objective

function values were presented graphically. These graphical results were converted to the

best of our ability into numerical values and statistical parameters were calculated (Table

4).  Also,  results  from only 10  HybridGA runs were  used  in  the  calculation  of  these

statistical parameters. 

The Wilcoxon rank sum test  does  not  find a  statistically  significant  difference  in  the

median electrical costs obtained by ACO-8 (T=24) and Hybrid GA. This result suggests

that any perceived difference may be due to the random initial seed rather than a real

advantage of one algorithm with respect to the other. However, nothing can be said with

regard  to  maintenance  costs,  since  results  provided  by van  Zyl  et  al.  (2004)  do  not

mention the number of pump switches obtained by Hybrid GA in the Richmond network.

The Hybrid GA proposed by van Zyl et al. (2004) generates more flexible schedules since

pumps may be triggered at any moment of the day, while in the ACO approach the status

of a pump can only change at fixed intervals. In addition, van Zyl et al. (2004) make use

of an implicit representation of schedules based on tank-level triggers, which prevents
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tanks  from becoming  empty,  thus  reducing the  risk of  pressure violations  at  demand

nodes.  In  contrast,  the  time-based  triggers  representation  may  generate  infeasible

solutions with respect to pressure constraints. Finally, the GA proposed by van Zyl et al.

(2004) incorporates local search procedures, which they show to be a key feature of their

method.  Nonetheless,  local  search  methods  may  be  also  incorporated  to  the  ACO

approach and we expect that local search will enhance the results presented in this paper.

On the other hand, there are some benefits in the ACO algorithm discussed here, which

are not present in the approach followed by van Zyl et al. (2004). The flexible schedules

generated  by  the  HybridGA  may  produce  extremely  short  time  intervals  between

successive pump switches, that is, a pump may be turned off and after few minutes turned

on again. Apart from the wear and tear that this sudden switching inflicts to pumps, the

pressure changes may damage the network, thus increasing maintenance costs. Also, the

level-based triggers representation used by van Zyl  et al.  (2004) may generate a high

number of pump switches.  Although van Zyl  et  al.  (2004) introduce penalties  on the

number of pump switches, there is no account on how effective the penalties were in the

case of the Richmond network and how many trial-and-error runs were required to find

adequate  penalty values.  No penalties  are  needed when using time-based triggers,  as

proposed in this work, and the number of pump switches is limited by a user-defined

parameter.

The computational effort required by the ACO approach was measured when run on a

Pentium 4 (3.20GHz) with 1024KB of cache size and running under Red Hat GNU/Linux
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with kernel version 2.4.20. The mean computation time required for 6000 evaluations of

the van Zyl network was 417.6 seconds, while it was 8862 seconds in the case of 8000

evaluations of the Richmond network. However, less than 1 second was consumed by the

ACO  algorithm  (excluding  the  computation  effort  spent  by  the  simulator)  in  the

evaluation of the solutions. Thus, the computational overhead of the ACO algorithm is

negligible and becomes even less important as the network instance grows in complexity.

This result suggests that the highest computation time gains will be obtained by reducing

either the number of function evaluations or the time required by each evaluation.

CONCLUSIONS

The present paper makes two significant contributions to the study of optimisation of

pump operations in Water Distribution Networks. First, a new representation is proposed

based on time-based triggers that turn pumps on/off at certain moments of the scheduling

period.  Second,  the  Ant  Colony  Optimisation  meta-heuristic  is  adapted  to  solve  this

optimisation problem.

The advantage  of  using  the  time-based triggers  representation  over  traditional  binary

representation is that constraint  on the number of switches per pump can be satisfied

implicitly.  That  is,  optimised  schedules  will  have  a  predefined  maximum number  of

pump switches, thus limiting the wear and tear of the pumps, and limiting maintenance

costs.  As  a  consequence  of  this,  the  search  space,  that  is,  the  number  of  potential

solutions  can  be  significantly  reduced.  Experimental  results  indicate  that  schedules
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obtained using new representation contain equal or lower number of pump switches than

schedules obtained by using a  binary representation  and an explicit  constraint  on the

number of pump switches.

An  application  of  the  ACO  framework  to  the  optimisation  of  pump  schedules  is

presented.  The  optimisation  algorithm,  based  on  the  Ant  System,  minimizes  the

electricity cost of pumps while satisfying constraints on minimum pressures and balance

between  supply  and demand  from tanks.  In  contrast  to  the  previous  approaches,  the

proposed algorithm does not use a penalty function to handle constraint violations. Thus,

it  does  not  require  definition  and  fine-tuning  of  penalty  values.  Instead,  constraint

violations are ordered with respect to their perceived importance. This order is used to

rank  solutions  in  such  a  way  that  feasible  schedules  are  always  ranked  better  than

infeasible schedules.

Results of a small  test  network and a real network show that the performance of the

proposed model with a simple ACO algorithm is better than HybridGA. In the case of a

large real-world network,  the proposed ACO algorithm outperforms a simple  Genetic

Algorithm in terms of electrical cost, number of pump switches and computation time.

The particular ACO algorithm used in this study, the Ant System, is rather simple. The

proposed approach can be straightforwardly extended with more complex and modern

ACO algorithms, such as Ant Colony System (Dorigo and Gambardella, 1997) and Max-

Min Ant System (Stutzle and Hoos, 2000). Another interesting finding is that, for this
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problem, the computational effort overhead of the operation of ACO algorithm is very

small in comparison to the spent on hydraulic simulations.
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Figure 1. Representation of a solution as a path in a graph
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Figure 2. Algorithmic schema of ACO.
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Figure 3. Example of time-based triggers representation
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Figure 4. van Zyl test network
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Table 1. Reduced space for various Ns values
Ns

()

Feasible space

with respect to Ns

% of

total search space
1 554 0.0033
2 21806 0.13
3 290998 1.73
4 1761940 10.50
5 5684452 33.88
6 11092764 66.11

12 16777216 100.00
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Table 2. Results of test network

ACO-7 ACO-8 Hybrid GA†

CE NS CE NS CE NS

best 329.1 9 326.5 3 344.4 3

median 357.9 9 349.2 4 348.6 4

worst 364.7 9 357.6 7 354.8 5

std. dev. 11.5 0 9.5 1 4.3 1

search space 1.951016 2.461016 ---
†Statistical parameters were obtained based on results from seven HybridGA runs.
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Table 3. Results of Richmond network with T = 24.

ACO

(8,000 evaluations)

ACO

(50,000 evaluations)

SGA†

(100,000

evaluations)ACO–7 ACO–8 ACO–7 ACO–8

best 33683.3 34319.9 32728.5 32581.4 37266.5 

median 36069.7 36699.7 33747.5 33634.1 41099.0 

worst 38017.3 39052.4 35745.5 34464.8 43508.0 

std dev. 1075.2 1117.9 544.4 575.2 2291.3 

search space 1.11038 1.81038 1.11038 1.81038 3.71050

†Statistical parameters were obtained based on results from 10 SGA runs.
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Table 4. Results of Richmond network with different T values.

ACO–8

 (8,000 evaluations)

HybridGA†

(8,000 evaluations)

NT = 24 NT = 48 NT = 96

best 34319.9 34848.0 35091.1 35405.0 

median 36699.7 37661.1 37898.3 36317.5 

worst 39052.4 39545.2 40204.4 37960.0 

std. dev. 1117.9 1290.0 1321.8 810.7 

search space 1.81038 5.91051 3.91064 ----

†Statistical parameters were obtained based on results from 10 HybridGA runs.
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