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Abstract. We present variants of an ant colony optimization (MO-ACO) algorithm and of an evolutionary
algorithm (SPEA2) for tackling multi-objective combinatorial optimization problems, hybridized with an iterative
improvement algorithm and the Robust Tabu Search algorithm. The performance of the resulting hybrid stochastic
local search (SLS) algorithms is experimentally investigated for the bi-objective quadratic assignment problem
(bQAP) and compared against repeated applications of the underlying local search algorithms for several scalariza-
tions. The experiments consider structured and unstructured bQAP instances with various degrees of correlation
between the flow matrices. We do a systematic experimental analysis of the algorithms using outperformance
relations and the attainment functions methodology to asses differences in the performance of the algorithms.
The experimental results show the usefulness of the hybrid algorithms if the available computation time is not
too limited and identify SPEA2 hybridized with very short tabu search runs as the most promising variant.
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1. Introduction

Population-based stochastic local search algorithms are widely used for tackling many combina-
torial optimization problems. Although single objective problems are most commonly studied,
a recent trend is to apply such algorithms also to combinatorial problems that involve multiple
objective functions (Ishibuchi et al., 2003; Jaszkiewicz, 2002; Knowles and Corne, 1999; Zitzler
and Thiele, 1999). Most approaches make use of either no local search algorithm at all, or of
rather simplistic local searches based on some form of iterative improvement algorithm. Only
few approaches exist that combine population-based algorithms for multi-objective combinatorial
problems (MCOPs) with other stochastic local search (SLS) methods, although for several single
objective problems this is known to enhance performance considerably (Fleurent and Ferland,
1994; Galinier and Hao, 1999; Stützle and Hoos, 2000).

In this article, we study the performance of such hybrids. In particular, we experimentally
study the addition of a simple iterative improvement algorithm and short runs of a tabu
search algorithm to an ant colony optimization (ACO) algorithm (López-Ibáñez et al., 2004)
and to SPEA2 (Zitzler et al., 2002). These algorithms are compared to the underlying local
search algorithms applied to scalarizations of the problem for assessing the contribution of the
population-based algorithms. By using different local search algorithms for hybridization, we
can trade efficiency (that is, speed) of the local search algorithm for efficacy (that is, solution
quality). While a simple iterative improvement algorithm is typically very quick in identifying
local optima, short runs of a tabu search algorithm typically require more computation time but
result in solutions of higher quality. By considering these alternative possibilities for hybridiza-
tion, we can examine the relative importance of these features for multi-objective optimization
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problems. In fact, issues of the design of hybrid algorithms may differ from single-objective
to multi-objective optimization problems, because of inherent differences in the nature of the
solutions searched for—a single solution in the first case, a set of solutions in the second case.

This experimental study is based on the bi-objective quadratic assignment problem (bQAP)
(Knowles and Corne, 2003). This problem is chosen because (i) it is well-known that the single
objective QAP is considered to be one of the most difficult combinatorial optimization problems
to solve, and (ii) significant knowledge of the various SLS methods exists for the single objective
case. This study also makes use of two differently structured classes of randomly generated
instances: those where the data is generated using uniform distributions, and those where the
data distribution is close to that of real-world instances, which is strongly non-uniform. Our
experimental results clearly show that the structure of the instance tackled and, to some extent,
the correlation of the instance data (and, hence, the objective functions) have a strong influence
on the relative performance of the hybrid algorithms.

An additional innovative feature of our experimental comparison is the systematic use of
a sound methodology for evaluating and comparing the performance of multi-objective SLS
methods. In the first place, we use information on a specific outperformance relation (Hansen
and Jaszkiewicz, 1998) between the outcomes of SLS algorithms. If by these means no clear
conclusions can be made on the relative performance of the algorithms, we examine in a next
step the attainment functions of the SLS algorithms’ outcomes (Grunert da Fonseca et al., 2001).
This is a very useful tool to clearly identify regions in the objective space, where the performance
of SLS algorithms differs significantly. It is important to note that the usage of dominance
relations and attainment functions in empirical evaluation does not entail the weaknesses of
many unary performance measures identified in (Zitzler et al., 2003).

The article is organized as follows. In the following section we introduce some basic concepts
needed for the rest of the paper and Section 3 presents details on the multi-objective QAP. Sec-
tion 4 presents the local search algorithms, the ACO algorithm and SPEA2. Next, we introduce
the experimental methodology used and discuss the experimental results in Section 6. Finally,
Section 7 gives some concluding remarks and outlines directions for future research.

2. Notations and Definitions

Let U and V be vectors in IRn. We denote component-wise order by U ≺ V , that is, U 6= V and
ui ≤ vi, i = 1, . . . , n, and weak component-wise order by U ≤ V , that is, ui ≤ vi, i = 1, . . . , n.
We consider the following general multi-objective program

min
s∈S






p1 = F 1(s)
...

pQ = FQ(s)

(1)

where S is the set of feasible solutions to the given problem instance, Q is the number of objec-
tives, F q(s) are real-valued functions, and “min” is understood in terms of Pareto optimality.
We say that F (s) =

(
F 1(s), . . . , FQ(s)

)
is the objective function vector of s.

In the context of optimization, we denote the relation between objective value vectors of two
feasible solutions as follows (this relation is often called dominance relation). If F (s) ≺ F (s′), we
say that F (s) dominates F (s′) and if F (s) ≤ F (s′), then F (s) weakly dominates F (s′). Finally,
we also say that F (s) and F (s′) are nondominated if F (s) ⊀ F (s′) and F (s′) ⊀ F (s), and are
non weakly dominated (nwd) if F (s) � F (s′) and F (s′) � F (s). Note that the latter notion
implies that F (s) 6= F (s′). We use the same relations also among solutions if they hold between
their corresponding objective value vectors.

In order to compare sets of solutions in the objective space, we use relations among sets of
objective vectors as proposed by Hansen and Jaszkiewicz (1998) and Zitzler et al. (2003). For
our purposes, we use the weak outperformance relation (Hansen and Jaszkiewicz, 1998), also
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called better in (Zitzler et al., 2003); this relation is denoted by the symbol ⊳ in the following.
Given two sets A and B of nondominated points in a Q-dimensional objective space, we have
A ⊳ B if every b ∈ B is weakly dominated by at least one a ∈ A and A 6= B, i.e., we say A is

better than B.
Finally, we define the weighted sum scalarization of the multi-objective program (1) as

min
s∈S

Q∑

q=1

λqF q(s), (2)

such that λq is the q-th component of the weight vector λ taken from the set of weight vectors

Λ = {λ ∈ IRQ : λq ≥ 0,
Q∑

q=1

λq = 1, q = 1, . . . , Q}. (3)

In fact, all the algorithms that we are studying in this article tackle the bi-objective QAP
using a series of such scalarizations using appropriately chosen strategies for modifying the
weight vector.

3. The Multi-objective QAP

The quadratic assignment problem (QAP) is a well-known NP-hard problem (Sahni and Gon-
zalez, 1976), which can intuitively be described as the problem of assigning a set of facilities to
a set of locations with given distances between each pair of locations and given flows between
each pair of facilities. The goal is to place the facilities on locations such that the sum of the
products between flows and distances is minimal (Çela, 1998).

Knowles and Corne (2003) proposed a multi-objective QAP (mQAP) which uses different
flow matrices, and keeps the same distance matrix. This problem arises in facilities layout of
hospitals (Knowles and Corne, 2003) and social institutions (Hamacher et al., 2001). Here, we
focus on the bi-objective variant (bQAP), which is defined by n facilities and n locations, a n×n
matrix A where aij is the distance between locations i and j, and two n×n matrices B1 and B2

where b1
rs is the first flow and b2

rs is the second flow between facilities r and s. Then, the bQAP
can be formulated as

min
φ∈Φ






∑n
i=1

∑n
j=1 aφ(i)φ(j)b

1
ij

∑n
i=1

∑n
j=1 aφ(i)φ(j)b

2
ij

(4)

where Φ is the set of all possible permutations of the set of integers {1, 2, . . . , n}, φ(i) gives the
location assigned to facility i in the current solution φ ∈ Φ and “min” refers to the notion of
Pareto optimality.

Using a weight vector λ, we can transform the objective vector of a bQAP into a single
objective scalar value as defined by Equation (2). It is known that an optimal solution to this
scalarized problem belongs to the Pareto global optimum set of the corresponding MCOP if the
weights are positive. However, there may exist Pareto optimal solutions which are not optimal
for any weight vector λ (Steuer, 1986).

4. Stochastic Local Search Methods for the bQAP

The local search methods we applied make use of the scalarization given in Equation (2). We
implemented two local search algorithms, a simple iterative improvement algorithm and a tabu
search algorithm. Both algorithms are considered for hybridization with two population-based
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algorithms, a multi-objective ACO (MO-ACO) algorithm and the second version of the strength
Pareto evolutionary algorithm (SPEA2). These algorithms are described in the following.

4.1. Local search algorithms

The iterative improvement algorithm and the tabu search algorithm make use of a 2-exchange
neighborhood, where two solutions φ and φ′ are neighbored, if they differ in the location assigned
to two facilities, that is, N(φ, φ′) ⇔ ∃ r, s : (r 6= s ∧ φ′(r) = φ(s) ∧ φ′(s) = φ(r) ∧ ∀i /∈ {r, s} :
φ′(i) = φ(i)). This neighborhood relation is chosen in almost all local search algorithms for the
QAP. Our implementation of both algorithms uses the fast evaluation of neighboring solutions
described by Taillard (1991).

Iterative improvement. The iterative improvement (II) algorithm searches, at each step, for
the best improvement upon the current solution according to the solution quality defined by
Equation 2 and a given value for λ. It stops as soon as no better neighbor can be identified.

Robust Tabu Search. Robust Tabu Search (RoTS) (Taillard, 1991) is one of the best performing
tabu search algorithms for the single objective QAP. RoTS chooses the best non-tabu neighboring
solution at each local search step. A neighboring solution is tabu if both facilities r and s involved
in the respective 2-exchange move would become assigned to a location that they occupied in
the most recent tt iterations. RoTS also uses an aspiration criterion that overrides the tabu
status of a move if it would lead to a new best solution. Additionally, every 2.2n iterations, tt

is assigned a randomly chosen value within [0.9n, 1.1n]. A single run of the RoTS algorithm is
stopped after ℓ ·n iterations, where n is the size of the particular instance and ℓ is a parameter.

Both algorithms, II and RoTS, are considered for hybridization with the population-based
SLS algorithms described below. In addition, we tested the two local searches as independent
SLS methods, where we run as many different scalarizations as possible within a CPU-time limit.
Each scalarization uses a different weight, taken from a set of available weights. The weights are
generated by recursively partitioning the interval [0, 1] into smaller subintervals; all subintervals
at the same level of the recursion have equal length. Each point where an interval was split into
two equal length subintervals is added to the set of available weights. The weights are generated
in this way to reach a dispersed set of nondominated objective vectors. Upon termination of
the main search process, all solutions returned are filtered to obtain a set of nondominated
objective vectors. The two resulting SLS algorithms are called W-II and W-RoTS, respectively.
(Note that W-II was also used in (Knowles and Corne, 2002) for a landscape analysis of the multi-
objective QAP, while W-RoTS was used in (Paquete and Stützle, 2006) for generating reference
solutions for some bQAP instances.) Earlier experiments show that W-RoTS gives a high quality
approximation to the optimal Pareto set on unstructured instances of the bQAP (López-Ibáñez
et al., 2004; Paquete and Stützle, 2006).

4.2. MO-ACO

Ant colony optimization (ACO) is a SLS method for solving combinatorial problems that is
inspired by the pheromone-trail-laying behavior of some real ant species. It is essentially a
stochastic construction method, where a colony (population) of artificial ants generates solutions
to the problem under consideration and the ants communicate indirectly by means of artificial
pheromone trails.

The multi-objective ACO (MO-ACO) approach considered in this study uses multiple pher-
omone information, that is, one pheromone matrix for each objective (Iredi et al., 2001). A
pheromone trail value τij in matrix q indicates the desirability of assigning facility i to location j
with respect to objective q. This approach was found to achieve high performance in a comparison
of various MO-ACO approaches for the bQAP (López-Ibáñez et al., 2004). Whenever an ant
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constructs a solution, the pheromone information for the different objectives is aggregated using
a weight vector (Iredi et al., 2001); for the bQAP, ant k would assign a facility i to location j
with a probability

pk
ij =

[
τ

λ
1

ij · τ ′λ
2

ij

]

∑
l∈N k

i

[
τ

λ1

il · τ ′λ
2

il

] if j ∈ N k
i (5)

where N k
i is the feasible neighborhood of ant k, that is, those locations which are still avail-

able, and λ = (λ1, λ2), where λ1 and λ2 follow Equation 3. We do not consider any heuristic
information, since it is also not used in state-of-the-art ACO algorithms for the single objective
QAP (Stützle and Dorigo, 1999; Stützle and Hoos, 2000).

There are different ways to define the weight vector. Here, we follow the proposal of Iredi
et al. (2001), which is to use for each ant a different vector λ such that all values are maximally
dispersed in the interval [0, 1]. The weight vectors assigned to each ant do not vary through the
execution of the algorithm since weight modifications were not found to be useful for the bQAP
in earlier experiments (López-Ibáñez et al., 2004).

Each pheromone matrix is updated by the solution with the best value for the corresponding
objective. Hence, only one solution per pheromone matrix will be allowed to update the phero-
mone information, and this solution may be taken either from the set of nondominated solutions
generated in the current iteration, iteration-best (ib) strategy, or from the set of nondominated
solutions since the start of the algorithm, a best-so-far (bf) strategy (López-Ibáñez, 2004). This
pheromone update mimics the typical pheromone update used in the best performing ACO
algorithms for single objective problems (Dorigo and Stützle, 2004). The amount of pheromone
that each ant deposits is set to a fixed, constant amount of pheromone.

For the MO-ACO algorithm studied here, we also consider the usage of multiple colonies;
the number of colonies is denoted by c. If more than one colony is used, each colony uses its
own pheromone information and an ant constructs solutions guided only by the pheromone
information of its own colony. If c > 1, the interval [0, 1] is divided into c equal length subinter-
vals, where the weight vectors of neighboring subintervals overlap by 50%. For each colony the
weight vectors in its subinterval are again maximally dispersed. The colonies cooperate by using
the method called update by region (Iredi et al., 2001), where the nondominated solutions of
the ants are first sorted according to the first objective before being partitioned as equally as
possible into a number of subsets equal to the number of colonies. Then, all solutions assigned
to a specific subset i are assigned to colony i, i = 1, . . . , c. This sorting takes into account the
order of the colonies imposed by the weight intervals: the first colony contains those ants with
the lowest values of λ1, while ants of the last colony have the highest values of λ2; hence, the
first colony is more likely to generate good solutions for the first objective, while with increasing
λ2 the quality of the solutions with respect to the second objective will increase. Once the
ants are assigned to the colonies, the best ants with respect to the two objectives update the
corresponding pheromone matrix. The remainder of the ACO part of the MO-ACO algorithm
follows the rules of MAX -MIN Ant System (MMAS) (Stützle and Hoos, 2000), which is
known to be a state-of-the-art ACO algorithm for the QAP.

The MO-ACO algorithm is combined with the local search algorithms presented in the previ-
ous subsection. In this hybridization, each of the ants is improved by the respective local search
algorithm. The weight vector of the local search algorithm is exactly the same that was used by
the ant that generated the starting solution. If the local search improves over the initial solution,
the best solution with respect to the given scalarization is added to the archive of iteration-best
solutions. The final set of solutions returned by the algorithm is the set of nondominated solutions
found.
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4.3. SPEA2

SPEA2 (Zitzler et al., 2002) is an evolutionary algorithm with the following features: (i) the
fitness of an individual depends on the strength of the individuals by which it is dominated,
where the strength of an individual is defined to be the number of other individuals in the
current population it dominates; (ii) if there are several individuals with the same fitness, ties
are broken using a nearest neighbor density estimation technique; (iii) the size of the archive of
nondominated solutions is fixed to a value α and the nondominated individuals in excess of this
value are discarded using a truncation operator which preserves boundary solutions. For details
on SPEA2 we refer to the original publication (Zitzler et al., 2002).

The search in SPEA2 is organized as follows. SPEA2 starts from an initial population,
that is generated according to heuristics for the underlying problem or randomly, and with
an empty archive. Then, the fitness of individuals in the current population is calculated and
all nondominated individuals are added to the archive. If the resulting archive size is larger
than a parameter α, the individual which has the minimum distance to another individual is
discarded until archive size is exactly α; when the number of nondominated individuals is less
than α, the dominated individual with the minimum fitness value is added to the archive until
there are α solutions in the archive. Next, µ individuals are selected as parents using binary
tournament selection with replacement. Genetic operators, which have to be defined according
to the underlying problem being tackled, are then applied to the parents in order to generate µ
new individuals.

Our implementation of SPEA2 is based on the original source code available from the PISA
project web-pages at http://www.tik.ee.ethz.ch/pisa/ (Bleuler et al., 2003), but we refined
the code by introducing obvious speed-ups to make it more useful for our purposes. For the
problem specific part, we use the CX recombination operator described in (Merz, 2000; Merz
and Freisleben, 2000), which is similar to the cycle recombination operator. CX was previously
shown to outperform several other recombination operators for the single-objective QAP (Merz,
2000). In the hybrid SPEA2 algorithm proposed here, every individual of the initial population
or generated by recombination is improved using local search, either iterative improvement or
RoTS, over a scalarization of the objective function; the weights for scalarization are given
by the weight vector

(µ−w
µ

, w
µ

)
, where w is the index of the individual that is generated by

recombination and, hence, 1 ≤ w ≤ µ. If there is any improvement, the improved solution is
added to the current population.

4.4. Hybrid algorithms

As previously noted, MO-ACO and SPEA2 were both combined with either the II algorithm or
short runs of RoTS of length ℓ · n, ℓ ∈ {1, 5, 10}. By using different lengths of the tabu search
runs (or alternatively iterative improvement), we can trade somehow search exploitation versus
search exploration: the longer the runs of RoTS, the higher the average quality of solutions
returned; however, longer RoTS runs require more computation time and, hence, less iterations
of the population-based algorithm can be run. Thus, the tradeoff incurred can be summarized
as whether it is preferable to have a local search that, on average, returns high quality solutions
but requires long computation times, or whether it is preferable to have a less effective but
faster local search. One central aim of the experimental study reported below is to explore this
issue and relate the answer to instance characteristics such as structure and correlation between
objectives.

For the following we use the local search settings as indices to MO-ACO and SPEA2 to
name the hybrid algorithms. For example, we use MO-ACOII, MO-ACOn, MO-ACO5n, and
MO-ACO10n to name the variants of MO-ACO that use II and RoTS runs of n, 5 · n and 10 · n
iterations respectively.
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Figure 1. Visualization of the EAFs associated to the outcomes of two algorithms (top) and the corre-
ponding differences between the attainment functions (bottom left: positive differences for the EAF of
Algorithm 1 over the EAF of Algorithm 2; bottom right: positive differences of EAF of Algorithm 2 over
the EAF of Algorithm 1).

5. Performance Assessment Methodology

In this article, we experimentally compare the performance of SLS algorithms for the bQAP.
Since the performance of the algorithms depends on parameter settings or discrete choices in
their configuration, such as whether II or RoTS is chosen for the local search, at the first stage,
each of the algorithms needs to be appropriately tuned. Once we know parameter settings and
algorithm configurations that result in good performance, we compare the various algorithms
under consideration. Following this approach, on the one hand our goal is to compare peak
performance of the different hybrid algorithms. On the other hand, we know that instance fea-
tures like correlation between the flow matrices can have significant influence on the algorithms’
performance (Paquete and Stützle, 2006). Hence, a second goal of this study is to provide insight
into how these features affect design choices for the hybrid algorithms.
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Often, this type of approach is reasonably straightforward in the case of single-objective
optimization. However, it can be a considerable challenge when tackling multi-objective prob-
lems. The main reason is that in the latter case the outcomes of the algorithms are sets of
nondominated objective vectors, and, even if we were analyzing deterministic algorithms, the
best possible way of comparing the outcomes remains unclear. In fact, the results of Zitzler
et al. (2003) show that one should not expect that the outcome of an algorithm for multi-objective
optimization can be summarized in one single value. Therefore, the use of simple statistics such as
means and standard deviations of unary measures (or combinations thereof) must be interpreted
very carefully if it is to give accurate information about the relative performance of algorithms.

We base our experimental analysis on two tools that do not have the known disadvantages
of unary performance measures. In a first step, we compare the outcomes of pairs of algorithms
with respect to the �-relation introduced in Section 2. Since our algorithms are stochastic and
we run each one multiple times, we count how many times an outcome of an algorithm A weakly
dominates an outcome of an algorithm B on one instance and vice-versa; in fact, if each of
the algorithms is run r times, we do r2 comparisons between all possible pairs of outcomes of
the algorithms. If the pair of outcomes considered does not weakly dominate each other, i.e.,
they are incomparable or equal, we do not count such cases. The result of this step will be two
numbers, the percentage of comparisons in which the outcomes of A are better than B and the
percentage of comparisons in which the outcomes of B are better than A.

If this first step shows no clear advantage of one configuration / algorithm over the other, we
have a strong indication that the outcomes could be incomparable most of the time (we do not
expect the algorithms to produce equal outcomes, given the stochasticity involved). Therefore,
we are now interested in knowing where these outcomes differ and how large this difference is.
This is exactly the information that can be provided by attainment functions that represent
the probability that an arbitrary goal in the objective space is attained during a single run of
the algorithm (Grunert da Fonseca et al., 2001). This probability can be estimated using data
collected from several independent runs in a way analogous to estimating empirical distribu-
tions of one-dimensional random variables; this estimation process leads to the definition of the
empirical attainment function (EAF) (Grunert da Fonseca et al., 2001). The EAF can be seen
as a distribution of the solution quality (here as a set of nondominated objective value vectors
obtained from each run) after running an algorithm for a specific amount of computation time;
it can be seen as an extension of the solution quality distribution in the context of performance
assessment of SLS algorithms for single objective case (Hoos and Stützle, 2004). Here, the EAFs
are used mainly for giving visual information on the pairwise performance of two SLS algorithms
or two configurations of one SLS algorithm by plotting the location of the differences with respect
to their EAFs (Paquete et al., 2004). Given the outcomes of two algorithms/configurations A and
B, we only indicate explicitly areas in the objective space, where the difference in the EAFs of the
two outcomes is above a value of 0.2. Since the sign of the differences gives information about
which algorithm/configuration performed better at that point, we plot positive and negative
differences separately. In addition, the size of the differences between the EAFs of A and B are
encoded using different shades of grey: the darker a point, the larger is the difference.

Figure 1 illustrates the performance assessment method used in this article by means of
EAFs. The two plots in the top part of Figure 1 give the EAFs associated to two algorithms
that were run several times in one instance. The lower line on each plot connects the best set
of points attained over all the runs of that algorithm, while the upper line connects the set of
points attained by any of those runs. The bottom plots show the location of the differences
between the EAFs of the two algorithms; in more detail, on the left are shown those regions
where the EAF of Algorithm 1 is larger by at least 0.2 than that of Algorithm 2 and on the right
the differences in the opposite direction (positive differences between the EAFs of Algorithm 2
over the one of Algorithm 1). In addition, the lower line on both plots connects now the best
set of points attained over all the runs of both algorithms and the upper one the set of points
attained by any of that runs. The amount of the differences is encoded in a grey-scale scale
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Figure 2. Grey-scale encoding of the differences between attainment functions; differences smaller than
0.2 are not indicated.

also shown in Figure 2. We can clearly observe that Algorithm 1 performs better in the center,
while Algorithm 2 performs better towards high quality solutions for the second objective (low
values on the y-axis). As can be seen from this example, these plots are useful for identifying
differences of performance between algorithms that would be ignored by most of the current
unary and binary measures. The code for computing the EAFs was kindly provided by Carlos
Fonseca1; the computation of the EAFs took, on average, almost one minute for each comparison
described in the experimental part of this article, within the same computational environment.
For the remaining plots of this article, we only use the plots of the differences between the
EAFs of pairs of algorithms as indicated in the lower row of Figure 1 and we use the grey-scale
encoding given in Figure 2.

6. Experimental results

The algorithms were coded in C and we ran 100 repetitions of each experiment on a Intel
Xeon CPU 2.40 GHz with 2 GB of RAM under Debian GNU/Linux. All algorithms were tested
on six benchmark instances of size n = 50 and their relative performance was then analyzed.
The experimental analysis of the algorithms focuses mainly on the hybridization, that is, what
strength of the local search gives best performance. To explore the dependence of the relative
performance of the algorithms on the available computation time, we used three different time
limits as stopping criteria for each experiment. These time limits were defined according to the
time required by W-RoTS to perform a particular number of scalarizations using RoTS of length
10n. We considered 27 + 1, 210 + 1 and 213 + 1 scalarizations in order to obtain short, medium
and long time limits, which resulted to be of 16.62, 132 and 1055 CPU-seconds, respectively.

6.1. Benchmark instances

The algorithms were tested on 6 symmetric bQAP instances, 3 unstructured and 3 structured

ones. The unstructured instances were taken from an earlier experimental study (Paquete and
Stützle, 2006). All instances were generated using the instance generator of Knowles and Corne
(2003) with size n = 50 and ξ ∈ {0.75, 0.0, −0.75}, where ξ is a parameter that influences
the correlation between flow matrices. The QAP specific parameter settings for generating the
unstructured instances were the same as those used for generating instances of class Taixxa

(Taillard, 1995); parameter settings for the structured instances were analogous to those for
generating Taixxb (Taillard, 1995) instances. These two types of instance classes (Taixxa and
Taixxb) are among the most widely studied QAP instances with SLS algorithms for the single-
objective QAP, hence we focus on this instance class for the generalization to the bQAP. The
instances used in our study are available at http://www.intellektik.informatik.tu-darmstadt.

de/∼lpaquete/QAP.
Note that the correlations of the flow matrices also result in different correlations between the

objective value vectors, especially for the unstructured instances; the value of ξ and the empiri-
cally measured correlation ξ̂ between the objective vectors of randomly generated solutions are

1 A new version of the code is now available at http://www.tik.ee.ethz.ch/pisa/
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Table I. Given is for each instance the empirical
correlation ξ̂ between the components of objective
value vectors. ξ is the parameter of the correlation
between the flow matrices used in the generation of
the instances.

Unstructured Structured

ξ 0.75 0.00 −0.75 0.75 0.00 −0.75

ξ̂ 0.90 0.01 −0.91 0.23 0.03 −0.08

given in Table I. The influence of the ξ parameter on the empirical correlation of the objectives
for structured instances is rather small, probably because of the high number of zero entries in
the flow matrices of structured instances.

6.2. Parameter adjustment for MO-ACO and SPEA2

For each of the algorithms we initially studied a number of parameter settings, which are detailed
below.

MO-ACO. As previously stated, for MO-ACO we used MAX -MIN Ant System (MMAS)
(Stützle and Hoos, 2000) as the underlying ACO algorithm. The total number of ants (m) was
set equal to the instance size and we used c ∈ {1, 3, 5} colonies, where each colony had m/c
ants. For the management of the pheromones, we followed the rules of MMAS with ρ = 0.9
for the pheromone evaporation; pbest = 0.05 to derive the factor between the lower and upper
pheromone trail limits; and τmax was set to the theoretically largest value (Stützle and Hoos,
2000). We also tested both iteration-best (ib) and best-so-far (bf) pheromone update strategies.

SPEA2. SPEA2 requires parameter settings for α, the archive size, and µ, the number of new
individuals generated in each iteration. For some preliminary experiments, we used the following
settings: α′ = 1 and µ′ ∈ {0.2, 1}; α′ ∈ {4, 10} and µ′ ∈ {0.2, 1, 5}, where we have that α = α′ ·n
and µ = µ′ · n.

From the possible settings for MO-ACO and SPEA2, we tried to identify values resulting
in good performance. From some initial experiments it became clear that both MO-ACO and
SPEA2 without the use of any local search were clearly outperformed by the hybrid algorithms.
In fact, for SPEA2, 100% of the trials without local search were dominated according to the
⊳-relation by any of the trials with local search; for MO-ACO we refer to the results presented
in (López-Ibáñez et al., 2004). When considering only the trials of the hybrid algorithms, we
noted that the most significant influence on the final outcomes of the hybrid algorithms was due
to the various possible choices of the local search; the choice of the best local search is explained
in detail in Section 6.4.

Concerning the algorithm specific parameters, we found that in MO-ACO the influence of
the various parameters of the ACO algorithm is not strong if we keep the local search fixed: the
outcomes corresponding to different parameter choices for a fixed local search resulted mainly in
incomparable sets of solutions; also, analysis of the attainment functions did not lead to strong
tendencies for specific configurations. Hence, for the following experiments we chose parameter
settings that resulted in good performance overall: c = 3 and ib were used for unstructured
instances, and c = 5 and bf for structured ones. For SPEA2 the parameters best overall values
were α = 200 and µ = 50, with the other settings giving slightly worse performance.
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Figure 3. Location of differences with respect to the EAFs for the comparison between W-RoTS with ℓ = 5 and
W-RoTS with ℓ = 10 (left side: positive differences of W-RoTS5n over W-RoTS10n; right side: positive differences
of W-RoTS10n over W-RoTS5n) for a computation time of 1055 seconds for an unstructured instance with negative
correlation.

6.3. W-RoTS and W-II

As a first step in the further analysis, we tested the influence of instance structure and correlation
between the flow matrices on the relative performance of W-II and W-RoTS. As said in Section 5,
we do pairwise comparisons of the various algorithm settings for each instance. This results in a
total of 4 algorithms tested (W-II and W-RoTS with settings of ℓ ∈ {1, 5, 10}) giving 12 pairwise
comparisons among algorithms; for each instance and pair of algorithms then 100 · 100 pairwise
comparisons of the outcomes of the trials (100 trials per instance and algorithm combination)
with respect to the ⊳-relation are to be done. The results of this comparison are given in Table
II. Here, each entry gives the frequency by which the algorithm indicated on the row is better
than the one in the column. In a nutshell, the comparisons based on the ⊳-relation show that for
unstructured instances W-RoTS is clearly superior to W-II: for these instances, W-RoTS is often
better with a frequency of 100%. In fact, for the positively correlated instance, Table II suggests
that the longer the length of a tabu trial, the better the performance. Limited experiments with
ℓ = 100 have even shown slightly superior performance of this setting over ℓ = 10; however, this
is not anymore true for other values of the correlation. In the case of unstructured instances
with zero and negative correlations, this trend is less obvious. However, an examination of the
differences based on EAFs indicates that W-RoTS with a setting of ℓ = 10 appears still to be
superior over ℓ = {1, 5} (see Figure 3).

For the structured instances, the results based on the pairwise comparisons are not conclusive,
since in most cases the outcomes were incomparable (see Table II part on W-RoTS, Structured).
However, from an inspection of the EAFs, a rather clear picture arises. W-II and W-RoTS with
ℓ = 1 perform significantly better across the whole objective space than W-RoTS with ℓ =
{5, 10}. W-II and W-RoTS with ℓ = 1 are mainly incomparable (see Figure 4).

Main result 1. The main result of this comparison is that the structure of bQAP instances has
a very strong influence on the relative performance of the local search algorithms. In fact, for
unstructured instances long runs of RoTS inside W-RoTS result in best performance; while for
structured instances, W-II and very short RoTS runs in W-RoTS are preferable.



12Table II. Pairwise comparisons of the local search influence on the final performance for three SLS methods, W-RoTS and W-II, SPEA2, and MO-ACO.
The results are organized according to correlation (ξ), stopping time criterion (Time), and local search intensity (II and RoTS of length n, 5 · n, 10 · n).
Each entry gives the percentage of the pairwise comparisons for which the outcomes of the algorithm in the row is better than the algorithm in the
column.

Correlation 0.75 0.0 −0.75

Time 16.62 132 1055 16.62 132 1055 16.62 132 1055

Iterations II n 5n 10n II n 5n 10n II n 5n 10n II n 5n 10n II n 5n 10n II n 5n 10n II n 5n 10n II n 5n 10n II n 5n 10n

WROTS

Unstructured

II - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0

n 57 - 0 0 54 - 0 0 54 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0

5n 100 99 - 1 100 100 - 0 100 100 - 0 97 78 - 0 99 96 - 0 100 99 - 0 0 0 - 0 67 4 - 0 95 59 - 0

10n 100 100 15 - 100 100 20 - 100 100 20 - 98 85 0 - 100 99 0 - 100 100 0 - 0 0 0 - 44 2 0 - 98 79 0 -

Structured

II - 0 2 6 - 0 0 2 - 0 0 0 - 0 0 3 - 0 0 0 - 0 0 0 - 0 0 1 - 0 0 0 - 0 0 0

n 0 - 1 5 0 - 0 2 0 - 0 0 0 - 0 3 0 - 0 0 0 - 0 0 0 - 0 1 0 - 0 0 0 - 0 0

5n 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0

10n 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 -

SPEA2

Unstructured

II - 0 25 100 - 0 0 0 - 0 0 0 - 0 0 5 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0

n 82 - 99 100 98 - 1 2 99 - 0 0 2 - 2 47 17 - 0 0 17 - 0 0 0 - 0 1 0 - 0 0 0 - 0 0

5n 5 0 - 100 100 47 - 18 100 69 - 2 0 0 - 35 16 0 - 0 54 2 - 0 0 0 - 2 0 0 - 0 0 0 - 0

10n 0 0 0 - 99 34 4 - 100 81 18 - 0 0 0 - 4 0 0 - 54 2 0 - 0 0 0 - 0 0 0 - 0 0 0 -

Structured

II - 0 99 100 - 0 0 1 - 0 0 0 - 0 99 100 - 0 0 0 - 0 0 0 - 0 97 100 - 0 0 4 - 0 0 0

n 0 - 98 100 0 - 0 1 0 - 0 0 0 - 99 100 0 - 0 0 0 - 0 0 0 - 94 99 0 - 0 2 0 - 0 0

5n 0 0 - 93 0 0 - 0 0 0 - 0 0 0 - 84 0 0 - 0 0 0 0 0 0 0 - 69 0 0 - 0 0 0 - 0

10n 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 - - 0 0 0 - 0 0 0 - 0 0 0 -

MOACO

Unstructured

II - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0

n 64 - 0 0 70 - 0 0 82 - 27 10 1 - 0 0 1 - 0 0 1 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0

5n 100 99 - 1 97 95 - 0 74 0 - 0 99 82 - 0 98 87 - 0 99 89 - 0 0 0 - 0 59 1 - 0 93 44 - 0

10n 100 100 16 - 97 96 18 - 80 3 13 0 99 90 0 - 99 95 0 - 99 93 0 - 0 0 0 - 36 1 0 - 97 93 0 -

Structured

II - 0 1 12 - 0 6 57 - 0 0 0 - 0 0 3 - 0 1 21 - 0 0 0 - 0 0 0 - 0 0 9 - 0 0 0

n 0 - 1 10 0 - 5 52 0 - 0 0 0 - 0 3 0 - 0 19 0 - 0 0 0 - 0 0 0 - 0 6 0 - 0 0

5n 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0

10n 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 -
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Figure 4. Location of differences with respect to the EAFs for the comparison between W-II and W-RoTS run
with n (top), 5 · n (center) and 10 · n (bottom) iterations for each RoTS trial using a computation time limit of
132 seconds on a structured instance with negative correlation. The name at the bottom of each plot indicates
for which of the two algorithms the differences shown are positive.
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6.4. Local search for MO-ACO and SPEA2

Next, we investigated which local search is best hybridized with MO-ACO and SPEA2. As
indicated by the results for W-RoTS and W-II, the structure of the instances had a very significant
influence on the final performance of the hybrids.

SPEA2. From the tables and the inspection of EAFs plots, it can be deduced that for the
unstructured instance with ξ = 0.75, the choice of an appropriate setting of ℓ depends on the
time limit: while for short computation times (of 16.62 seconds) a setting of ℓ = 1 appears
to be preferable over longer runs of RoTS, for longer computation times (of 1055 seconds) it
becomes preferable to use larger values for ℓ. This tendency can be observed by means of EAFs
on the unstructured instances of ξ = 0.75 and ξ = 0.0 (see Figure 5 for an illustration of this
effect). Furthermore, it should be noted that for negative correlation, SPEA2 with long tabu
searches (ℓ = {5, 10}) was performing better than with short tabu searches (ℓ = 1) at the tails
of the outcomes in the objective space, while the outcomes obtained by short tabu searches
were slightly better in the center, as shown in the bottom plot of Figure 5. For the structured
instances using short computation times, SPEA25n and SPEA210n are clearly outperformed by
SPEA2n and SPEA2II (see Table II). For larger computation times, the results based on the
⊳-relation become inconclusive and therefore, Table II does not give clear results. However, an
inspection of the EAFs shows that SPEA2n and SPEA2II remain highly preferable over the
other two variants, while they are mainly incomparable mutually.

MO-ACO. For MO-ACO a very clear picture arises concerning the influence of the local search.
For unstructured instances, the longest tabu search length of 10·n resulted in best overall perfor-
mance. For the positively correlated instance, this is clear from the results given in Table II (entry
MO-ACO); however, for the instance with ξ = 0.75 and large computation time (1055 seconds),
we should notice that MO-ACOn also obtains very good results. For the remaining unstructured
instances with zero or negative correlation, the EAFs give a very strong indication that the
larger number of tabu search iterations is clearly preferable: although this conclusion cannot
be obtained directly from Table II, the topmost plot in Figure 6 indicates that MO-ACO10n

shows much better performance than even MO-ACO5n. As for structured instances, the results
of MO-ACO in Table II are not clear; particularly for large computation times the outcomes of
all variants of MO-ACO were incomparable with respect to the ⊳-relation, and thus, all entries
are zero. Nevertheless, an inspection of the EAFs for the structured instances indicates a strong
advantage of MO-ACOn and MO-ACOII over MO-ACO5n and MO-ACO10n. In Figure 6, this
is exemplified by the middle plot showing variant MO-ACOII versus MO-ACO5n. In contrast,
MO-ACOn and MO-ACOII are mainly incomparable, showing little differences in various regions
of the objective space, as illustrated in the plot at the bottom of Figure 6.

Main result 2. The main result of this section is that the best local search in a hybrid algorithm,
be it SPEA2 or MO-ACO, depends strongly on the structure of the bQAP instance tackled and to
some extent on the correlation ξ and the computation time limit chosen. The general tendency
is that differences in the performance of the four local search variants are more pronounced
for MO-ACO than for SPEA2, so that, especially on unstructured instances, the MO-ACO10n

variant is often better than others, while for SPEA2 the best length of the tabu search depends
on the computation time.

6.5. Comparison of SLS methods

As a final step, we compared the SLS methods MO-ACO, SPEA2, and W-II or W-RoTS,
respectively, using for each instance class good parameter settings identified in the previous
analysis.
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Figure 5. Location of differences with respect to the EAFs for the comparison between SPEA2 using RoTS with
n and 5 ·n iterations for 16.62 (top) and 1055 seconds (center) for an unstructured instances with ξ = 0.0. On the
bottom is given the comparison between SPEA2 using RoTS with n and with 10 · n iterations for 1055 seconds
for an unstructured instance with ξ = −0.75. The name at the bottom of each plot indicates for which of the two
algorithms the differences shown are positive.



16

Figure 6. Location of differences in terms of EAFs in the unstructured instance with null correlation between
MO-ACO5n and MO-ACO10n (top); and in the structured instance with negative correlation, between MO-ACOII

and MO-ACO5n (middle), and between MO-ACOII and MO-ACOn (bottom). All the plots refer to experiments
with a time limit of 1055 seconds. The name at the bottom of each plot indicates for which of the two algorithms
the differences shown are positive.
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When comparing SPEA2 to MO-ACO, their relative performance depends strongly on whether
the type of instance is structured or unstructured. For structured instances, MO-ACO and
SPEA2 show typically incomparable performance from the point of view of the ⊳-relation as
shown in Table III. However, SPEA2 appears to be slightly preferable over MO-ACO for shorter
CPU-time, since the differences in terms of EAFs seem to favor SPEA2 (see Figure 7); for longer
computation times, the differences between SPEA2 and MO-ACO become less clear. The picture
is different on unstructured instances. Although from Table III we see that the results of SPEA2
and MO-ACO are often incomparable with respect to the ⊳-relation, analysis of the EAFs shows
clear advantages for SPEA2. In fact, for ξ = 0.75 and ξ = 0.0, the EAFs of MO-ACO are in
no point larger than the EAFs of SPEA2 by a value of 0.2, while the opposite is true in many
points (see Figure 7).

When comparing SPEA2 and MO-ACO to the best versions of W-II and W-RoTS, typically
we find better behavior of the hybrid SLS methods. This is particularly true for SPEA2 and MO-
ACO on the structured instances; MO-ACO on the unstructured instances appears to perform
only slightly better than the constituent local search algorithms. However, the advantage of
MO-ACO increases with longer computation time, a fact which suggests that MO-ACO requires
long computation times for identifying very high quality approximations to the Pareto global
optimum set.

Main result 3. From the various algorithms tested, the overall best performing one appears
to be SPEA2. This is clear for the unstructured instances, and to a lesser extent for struc-
tured instances. MO-ACO appears to be competitive to SPEA2 in structured instances for long
computation times. Additionally, we can conclude that especially for medium and large com-
putation times, the population-based hybrid MO-ACO and SPEA2 algorithms typically show
much better behavior than W-II or W-RoTS, which use repeated trials of the same underlying
local search algorithms for different scalarizations starting from random initial solutions. Hence,
the complexity added to W-RoTS or W-II by introducing an appropriate generation of initial
solutions to the local search appears to pay off, at the cost of some fine-tuning of parameters.
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Table III. Pairwise comparisons between W-RoTS, W-II, SPEA2 and MO-ACO on their best configurations for each instance. The results are organized according to
correlation (ξ), stopping time criterion (Time) and instance type. Each entry gives the percentage of the pairwise comparisons for which the outcomes of the algorithm in
the row is better than the algorithm in the column.

Correlation 0.75 0.0 −0.75

Time 16.62 132 1055 16.62 132 1055 16.62 132 1055

Unstructured

SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS SPEA2 WROTS

SPEA2 - 6 - 54 - 53 - 0 - 0 - 6 - 0 - 0 - 0

WROTS 14 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

MOACO WROTS MOACO WROTS MOACO WROTS MOACO WROTS MOACO WROTS MOACO WROTS MOACO WROTS MOACO WROTS MOACO WROTS

MOACO - 4 - 5 - 3 - 0 - 0 - 0 - 0 - 0 - 0

WROTS 6 - 2 - 1 - 0 - 0 - 0 - 0 - 0 - 0 -

SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO

SPEA2 - 6 - 54 - 48 - 0 - 0 - 4 - 0 - 0 - 0

MOACO 13 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Structured

SPEA2 W-II SPEA2 W-II SPEA2 W-II SPEA2 W-II SPEA2 W-II SPEA2 W-II SPEA2 W-II SPEA2 W-II SPEA2 W-II

SPEA2 - 29 - 5 - 0 - 7 - 0 - 0 - 0 - 0 - 0

W-II 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

MOACO W-II MOACO W-II MOACO W-II MOACO W-II MOACO W-II MOACO W-II MOACO W-II MOACO W-II MOACO W-II

MOACO - 0 - 12 - 0 - 0 - 0 - 0 - 0 - 0 - 0

W-II 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO SPEA2 MOACO

SPEA2 - 28 - 0 - 0 - 6 - 0 - 0 - 0 - 0 - 0

MOACO 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
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Figure 7. Location of differences in terms of EAFs between SPEA2 and MO-ACO for 16.62 seconds (top) and
1055 seconds (middle) on a structured instance with ξ = 0.0 and for 1055 seconds on an unstructured instance
with ξ = 0.75. The name at the bottom of each plot indicates for which of the two algorithms the differences
shown are positive.



20

7. Conclusions

In this article, we studied the performance of SLS algorithms for the bQAP. We focused on
hybrid algorithms between local searches (including iterative improvement algorithms and tabu
searches) and the population-based algorithms MO-ACO and SPEA2 (an ant colony optimiza-
tion algorithm and an evolutionary algorithm). The local search algorithms studied in the hybrids
allow to trade, rather arbitrarily, effectiveness of the local search for efficiency. Computational
results on benchmark bQAP instances, show that the best tradeoff depends strongly on the
structure of the underlying QAP instances. For instances with unstructured distance and flow
matrices, the general tendency is to prefer more effective local searches; while on structured
instances similar to real life ones, the efficiency of the local search is more important and the
hybrid algorithm relies more heavily on the guiding abilities of the population-based search.
However, the best tradeoff for SPEA2 and for MO-ACO apparently lies at different points.
Especially for the unstructured instances, MO-ACO profits more from the effectiveness of
longer RoTS trials than SPEA2. In general, the tendencies about the configuration of effective
hybrid algorithms for the bQAP apparently are strongly related to that observed on the single-
objective QAP (Gambardella et al., 1999; Stützle and Hoos, 2000), where the structure of
instances has a similar strong influence on the best possible configuration of hybrid algorithms
as observed here. In this case, the knowledge obtained on the single-objective QAP would serve
as a good guide in designing high-performing hybrid algorithms in the multi-objective case.
However, further experimental results on other combinatorial optimization problems are needed
to ascertain whether the conclusions obtained for NP-hard single-objective problems can be
transfered straightforwardly to the multi-objective counterparts. If this were the case, it would
significantly ease the design of algorithms for multi-objective problems.

As stated, the strongest influence on the relative performance of the hybrid algorithms studied
here is exerted by the structure of the instances. In earlier research, it was found that the
correlation between the flow matrices alone has a very significant influence on the performance
of local search algorithms for the bQAP (Paquete and Stützle, 2006). For the hybrid algorithms
applied here, there is still some notable influence of the correlation on the relative performance
of the algorithms. For example, from the results in Tables II and III for positively correlated or
zero-correlated flow matrices alone, some conclusions can often be drawn about which variant is
performing better. This is typically not true for negatively correlated flow matrices, possibly due
to the widely spread fronts in this latter case. Nevertheless, the hybrid algorithms are much less
affected by the correlation between the flow matrices than the underlying local search algorithms.

Among the two population-based algorithms, SPEA2 hybrids appear to be preferable over
MO-ACO hybrids. In fact, our hybrid SPEA2 algorithm at the very moment is a state-of-the-art
algorithm for the bQAP. However, it must also be mentioned that evolutionary algorithms for
solving multi-objective problems are very widely studied with even specialized conferences like
EMO, while effective ACO approaches for these problems are still in their infancy. Hence, further
research on ACO may shift that conclusion.

Finally, let us mention that the performance assessment methodology used in this article
overcomes the drawbacks of unary measures by comparing algorithms based on the ⊳-relation;
we are able to indicate whether the outcome of one algorithm is better than another, a conclusion
that cannot be obtained by unary measures or combinations thereof (Zitzler et al., 2003).
Moreover, when incomparability is detected between outcomes, we use the attainment functions
methodology to pin-point where differences in the objective space occur and how large these
differences are. Further work is required in this area to extend the usefulness of these performance
assessment methods for inferring conclusions with sound statistical support.
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(eds.): ANTS’2004, Fourth International Workshop on Ant Algorithms and Swarm Intelligence, Vol. 3172 of
Lecture Notes in Computer Science. pp. 214–225, Springer Verlag, Berlin, Germany.

Merz, P.: 2000, ‘Memetic Algorithms for Combinatorial Optimization Problems: Fitness Landscapes and Effective
Search Strategies’. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of
Siegen, Germany.

Merz, P. and B. Freisleben: 2000, ‘Fitness Landscape Analysis and Memetic Algorithms for the Quadratic
Assignment Problem’. IEEE Transactions on Evolutionary Computation 4(4), 337–352.
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