
Unbalanced Mallows Models for Optimizing Expensive
Black-Box Permutation Problems

Ekhine Irurozki
∗

Telecom Paris

Paris, France

irurozki@telecom-paris.fr

Manuel López-Ibáñez

University of Málaga

Málaga, Spain

manuel.lopez-ibanez@uma.es

ABSTRACT

Expensive black-box combinatorial optimization problems arise in

practice when the objective function is evaluated by means of a

simulator or a real-world experiment. Since each fitness evaluation

is expensive in terms of time or resources, the number of possi-

ble evaluations is typically several orders of magnitude smaller

than in non-expensive problems. Classical optimization methods

are not useful in this scenario. In this paper, we propose and ana-

lyze UMM, an estimation-of-distribution (EDA) algorithm based on

a Mallows probabilistic model and unbalanced rank aggregation

(uBorda). Experimental results on black-box versions of LOP and

PFSP show that UMM outperforms the solutions obtained by CEGO,

a Bayesian optimization algorithm for combinatorial optimization.

Nevertheless, a slight modification to CEGO, based on the different

interpretations for rankings and orderings, significantly improves

its performance, thus producing solutions that are slightly better

than those of UMM and dramatically better than the original ver-

sion. Another benefit of UMM is that its computational complexity

increases linearly with both the number of function evaluations and

the permutation size, which results in computation times an order

of magnitude shorter than CEGO, making it specially useful when

both computation time and number of evaluations are limited.

CCS CONCEPTS

•Mathematics of computing→Combinatorial optimization;

• Theory of computation→ Random search heuristics.

KEYWORDS

Combinatorial optimization, Bayesian optimization, Expensive black-

box optimization, Estimation of distribution algorithms

ACM Reference Format:

Ekhine Irurozki and Manuel López-Ibáñez. 2021. Unbalanced Mallows Mod-

els for Optimizing Expensive Black-Box Permutation Problems. In 2021
Genetic and Evolutionary Computation Conference (GECCO ’21), July 10–14,
2021, Lille, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.

1145/3449639.3459366

∗
Also with Basque Center for Applied Mathematics.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00

https://doi.org/10.1145/3449639.3459366

1 INTRODUCTION

In many practical optimization problems, the objective function

is not explicitly available and solutions are evaluated by means

of expensive prediction models, simulations or physical experi-

ments. When decision variables are continuous, the use of Bayesian

surrogate-models (e.g., Gaussian processes) is widespread in op-

timization [10?]. Motivated by this success, there have been at-

tempts at adapting such surrogate-based optimization algorithms

to the combinatorial case [13], a notable example being Combi-

natorial Efficient Global Optimization (CEGO) [16, 17]. However,

the ruggedness of combinatorial landscapes lessens the effective-

ness of global surrogate models [7]. Moreover, surrogate models

are expensive to train and optimize. The additional time required

by the Bayesian optimizer may impose a significant overhead in

computation time, specially if computation time of each function

evaluation is measured in “few” minutes or hours rather than days

and when “expensive” refers to resources or economical cost rather

than wall-clock time. Pérez Cáceres et al. [14] recently showed

that ant colony optimization (ACO) is competitive with CEGO on

a black-box version of the travelling salesman problem under a

budget of 1 000 function evaluations. On the other hand, 1 000 eval-

uations is still a relatively large budget for CEGO, whereas ACO

was not designed for such short budgets.

In this work, we propose and analyze the Unbalanced Mallows

Model (UMM) algorithm, a population-based probabilistic algo-

rithm specifically designed for optimizing black-box problems over

a permutation landscape under a limited budget. There exists a

wide body of research on probabilistic models for permutations,

such as Mallows [9], that have already been used in optimization

problems successfully, with the most prominent examples being

estimation of distribution algorithms (EDAs) [4]. ACO may also

be considered a type of EDA, since it builds a probability distribu-

tion model from which solutions are sampled with a bias towards

the best solutions evaluated so far. These classical EDAs assume

that function evaluations are cheap and/or the fitness function is

white-box.

In contrast, UMM aims at learning as much as possible with a lim-

ited number of function evaluations. Moreover, unlike EDAs, UMM

does not rely on a fixed-size population of solutions that evolves

over “generations”. Instead, taking inspiration from Bayesian opti-

mizers, UMM considers a sample of permutations during the whole

execution that is increased by one new permutation at each itera-

tion. The sample is used to learn a Mallows model from which a

single new permutation is sampled. The model is learned by using

uBorda [12], a generalization of the well-known rank aggregation

algorithm Borda [1]. Rank aggregation algorithms summarize in a

single permutation the information of a sample of permutations,

https://doi.org/10.1145/3449639.3459366
https://doi.org/10.1145/3449639.3459366
https://doi.org/10.1145/3449639.3459366

GECCO ’21, July 10–14, 2021, Lille, France Ekhine Irurozki and Manuel López-Ibáñez

and they can be seen as functions to compute the sample mean.
The uBorda algorithm computes a weighted sample mean and has

been shown to return the correct estimator with high probability

on streaming contexts [12]. Finally, the balance between intensifi-

cation and exploration is dynamically adapted by controlling the

variance of the probabilistic Mallows model.

This paper is structured as follows. Section 2 summarizes funda-

mental concepts. Section 3 presents the UMM algorithm, which is

the main contribution of this paper. UMM is analyzed using the ex-

perimental setup presented in Section 4 and results are presented in

Section 5. We end the paper with overall conclusions and a call for

further research on this type of optimization scenario (Section 6).

2 BACKGROUND

2.1 Permutations: rankings vs orderings

Permutations are bijections of the set [𝑛] of integers onto itself.

The set of all permutations of 𝑛 values is denoted by 𝑆𝑛 and has

cardinality 𝑛!. We will use the one-line notation and denote permu-

tations with Greek letters, 𝜎 = (𝜎 (1), . . . , 𝜎 (𝑛)). The composition

of 𝜎 and 𝜋 is 𝜎𝜋 = (𝜎 (𝜋 (1)), . . . , 𝜎 (𝜋 (𝑛))) and the inverse of 𝜎 is

𝜎−1, for which the relation 𝜎𝜎−1 = (1, 2, 3, . . . , 𝑛) always holds.
Throughout this paper and for consistency, permutation 𝜎 rep-

resents a ranking: 𝜎 (𝑖) = 𝑗 denotes that item 𝑖 has rank 𝑗 . The

ordering associated with 𝜎 is given by its inverse 𝜎−1, therefore,
𝜎 (𝑖) = 𝑗 ⇔ 𝜎−1 (𝑗) = 𝑖 . This distinction is importante since statis-

tical methodologies typically assume rankings whereas the opti-

mization literature often assumes orderings. Mixing both concepts

is a very common confusion with grave consequences, as we will

illustrate in the experimental section.

Kendall’s-𝜏 distance is the metric for rankings that counts the

pairs of items ranked in different order in two permutations:

𝑑 (𝜎1, 𝜎2) =
���{(𝑖, 𝑗) : 𝑖 < 𝑗 ∧

((
𝜎1 (𝑖) < 𝜎1 (𝑗) ∧ 𝜎2 (𝑖) > 𝜎2 (𝑗)

)
∨(

𝜎1 (𝑖) > 𝜎1 (𝑗) ∧ 𝜎2 (𝑖) < 𝜎2 (𝑗)
))}��� (1)

An equivalent definition for the Kendall’s-𝜏 distance counts the

number of adjacent swaps that have to be made to convert 𝜎−1
1

into 𝜎−1
2

and, therefore, it is sometimes called swap distance [16] or
adjacent swap distance.

2.2 Distributions over permutations

Distributions over permutations are functions that assign a proba-

bility value 𝑝 (𝜎) ∈ [0, 1] to each permutation 𝜎 ∈ 𝑆𝑛 . One of the

most popular distributions is the Mallows Model (MM), which is

considered as an analogous to the Gaussian distribution for per-

mutations. The MM defines the probability of each permutation

𝜎 ∈ 𝑆𝑛 as follows:

𝑝 (𝜎 | 𝜎0, \) =
exp(−\𝑑 (𝜎, 𝜎0))

𝜓
∼ 𝑀𝑀 (𝜎0, \) (2)

with two parameters, \ and 𝜎0. Permutation 𝜎0 ∈ 𝑆𝑛 is a reference

permutation and has the largest probability value, i.e., the mode

of the distribution. The probability of every permutation 𝜎 ∈ 𝑆𝑛
decays exponentially as its distance 𝑑 (𝜎, 𝜎0) increases, and the dis-

persion parameter \ controls this decay. The normalization constant

𝜓 can be easily computed for the Kendall’s-𝜏 distance (Eq. 1) as well

as for the Hamming, Cayley and Ulam distances [11].

We will use the standard maximum likelihood estimation (MLE)

approach to fit the parameters of a MM for a given collection of

permutations. The MLE process is divided in two stages: first, we

estimate the central permutation of the distribution, �̂�0 and, second,

compute the dispersion parameter,
ˆ\ [11].

The exact MLE for 𝜎0 is given by the well-known Kemeny rank-

ing [6]. Unfortunately, obtaining such ranking is NP-hard [6]. An

alternative to the Kemeny ranking is the Borda ranking [1], which

has several advantages: (i) it requires polynomial computational

time; (ii) it guaranties high quality parameters for a sample dis-

tributed according to the MM [3]; and (iii) when no distribution is

assumed, Borda is an approximation to Kemeny [5].

The Borda ranking of a sample of permutations 𝑆 ⊂ 𝑆𝑛 is com-

puted as follows. First, for each item 𝑖 ∈ [𝑛], compute its Borda

score 𝐵(𝑖) = ∑
𝜎 ∈𝑆 𝜎 (𝑖). Then, assign rank 1 to the item with the

smallest Borda score, rank 2 to the item with the second smallest

score and so on, i.e., order the positions by Borda score increasingly.

2.3 Unbalanced Borda

We introduce now the core of our probabilistic algorithm, the

uBorda algorithm. Following the convention of the community,

the ranking returned by the uBorda algorithm will be denoted

uBorda ranking. The uBorda algorithm is a recent generalization

of Borda [12]. In uBorda, we consider that each permutation in the

sample 𝜎 ∈ 𝑆 has an associated weight 𝑤 (𝜎) where 𝑤 : 𝑆𝑛 → R+.
Then, the score of item 𝑖 ∈ [𝑛] is defined as follows:

𝐵(𝑖) =
∑
𝜎 ∈𝑆

𝑤 (𝜎)𝜎 (𝑖) , (3)

and, the same as Borda, orders the items 𝑖 ∈ [𝑛] increasingly by

their score.

Borda and uBorda are equivalent when 𝑤 (𝜎) is constant for
every 𝜎 . Otherwise, uBorda ranking will be closer to the rankings

in 𝑆 with larger value of𝑤 (𝜎). Roughly speaking, it is equivalent

to replicating in the sample the 𝜎 with high values of 𝑤 (𝜎). The
choice of𝑤 (𝜎) depends on the relevant property of a ranking in a

particular domain. Finally, uBorda is computed in polynomial time.

2.4 Black-box combinatorial optimization

under a limited budget

Let us assume a black-box “fitness” function that must be mini-

mized over a space of permutations 𝑓 : 𝑆𝑛 → R. Being black-box

means that we can evaluate any candidate permutation 𝜎 ∈ 𝑆𝑛 to

obtain 𝑓 (𝜎), however, we do not know anything else about the form

of 𝑓 . Moreover, the evaluation of 𝑓 is expensive in computation

time or resources and, thus, we can only evaluate a limited budget

𝑚 of candidate permutations. Here, we will study budgets lower

than 400. Such expensive black-box combinatorial problems arise

in diverse contexts, for example, protein folding [15] and industrial

production [8], where the fitness function may involve expensive

simulations for which no closed-form mathematical description is

available. The black-box formulation and limited budget preclude

most of the optimization techniques that are successful in combina-

torial optimization, such as constructive heuristics and local search,

Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems GECCO ’21, July 10–14, 2021, Lille, France

Algorithm 1 UMM: Unbalanced Mallows Model Algorithm

Require: 𝑚ini: number of initial permutations,𝑚: total budget,

𝑟1, 𝑟2: parameters controlling the learning rate

1: 𝑆 := ∅
2: for 𝑖 := 0 to𝑚ini do

3: 𝜎 := generate uniformly at random

4: 𝑆 := 𝑆 ∪ ⟨𝜎, 𝑓 (𝜎)⟩ ⊲ Evaluate it

5: for 𝑖 :=𝑚ini to𝑚 evaluations do

6: �̂�0 := uBorda(𝑆, 𝜌) ⊲ Learning Step

7: Initialize (first iteration) or decrease \

⊲ See Sampling Step and Eq. 5

8: 𝜎 := sample a permutation from𝑀𝑀 (�̂�0, \)
9: 𝑆 := 𝑆 ∪ ⟨𝜎, 𝑓 (𝜎)⟩ ⊲ Evaluate it

10: return ⟨𝜎∗, 𝑓 (𝜎∗)⟩ := argmin⟨𝜎,𝑓 (𝜎) ⟩∈𝑆 𝑓 (𝜎)

leading to a particularly challenging scenario, perhaps even more

challenging than its continuous counter-part.

3 UNBALANCED MALLOWS MODEL (UMM)

In this section we describe our main contribution: Unbalanced

Mallows model (UMM), a novel algorithm for the optimization of

an expensive black-box function over permutation spaces. This

algorithm is a probabilistic method based on the Mallows model

and uBorda learning.

As shown in Algorithm 1, UMM starts with a small sample of𝑚ini

permutations that are generated uniformly at random (although

it would be possible to employ other sampling methods such as

max-min-distance sequential design) and evaluated. Then, using

the current sample 𝑆 , the uBorda algorithm is applied to learn a

reference permutation �̂�0 (line 6). Together with the parameter \ ,

the algorithm defines the Mallows model 𝑀𝑀 (�̂�0, \). A decreasing

\ parameter along iterations (line 7) implies a decreasing variance

of the Mallows model (Eq. 2), as explained in Section 3.2 below.

Then, we sample a new candidate permutation from 𝑀𝑀 (�̂�0, \)
(line 8, also in Section 3.2). This candidate permutation (solution)

is evaluated and added to the sample 𝑆 . The process is repeated up

to a given maximum budget of evaluations𝑚.

The key idea behind UMM is that the probabilistic Mallows

model (MM) used in UMM does not simply represent the current

sample 𝑆 . Instead, the model assigns higher probability values to

the permutations with known (or expected) minimal fitness values.

This is achieved by means of the uBorda ranking (Section 2.3) with

𝑤 (𝜎) = 𝜌 𝑓 (𝜎) and 𝜌 ∈ (0, 1). Intuitively, uBorda behaves as if there
were many copies of the best solutions and few of the bad ones. A

property of UMM is that the computational complexity of working

with the original sample (Borda) and with the transformed sample

(uBorda) is the same, i.e., polynomial. The most important steps

are the update (learning) of the parameters 𝜎0, \ and 𝜌 (line 6 in

Algorithm 1) and the sampling from𝑀𝑀 (𝜎0, \) (line 8)

3.1 Learning step

At each iteration, we start by fitting aMM to the sample 𝑆 , which im-

plies estimating �̂�0 and \ . Parameter \ is updated deterministically

at the sampling step. The parameter 𝜎0, however, is learned from

the current sample 𝑆 by using the uBorda algorithm with a weight

𝑤 (𝜎) = 𝜌scale(𝑓 (𝜎)) (Section 2.3). The function scale : R → [0, 1]
is defined as scale(𝑓) = (𝑓 − 𝑓min)/(𝑓max − 𝑓min), where 𝑓min and

𝑓max are, respectively, the minimum and maximum fitness values in

𝑆 . A possible alternative to scaling would be ranking the elements

in 𝑆 with respect to their fitness values, which would make UMM

invariant to non-linear monotonic transformations of the fitness

function. However, in most applications, the fitness values have a

real-world meaning (e.g., monetary value) and the relative scale of

fitness differences is relevant.

The learning rate is controlled by parameter 0 < 𝜌 < 1. In UMM,

the value of 𝜌 depends on the set of true fitness evaluations saved

in 𝑆 and it is set at each iteration such that the largest 100𝑟1% of

the mass of the weights is concentrated in the best 100𝑟2% of the

solutions in 𝑆 :

𝑟1 ·
∑

⟨𝜎,𝑓 (𝜎) ⟩∈𝑆
𝜌scale(𝑓 (𝜎)) =

∑
⟨𝜎′,𝑓 (𝜎′) ⟩∈𝑆′

𝜌scale(𝑓 (𝜎
′))

(4)

where |𝑆 ′ | = 𝑟2 |𝑆 | ∧ ∀⟨𝜎 ′, 𝑓 (𝜎 ′)⟩ ∈ 𝑆 ′, ⟨𝜎, 𝑓 (𝜎)⟩ ∈ 𝑆 \ 𝑆 ′ : 𝑓 (𝜎 ′) ≤
𝑓 (𝜎), i.e., 𝑆 ′ contains the 𝑟2 |𝑆 | elements of 𝑆 with the best fitness.

3.2 Sampling step

In this step, the algorithm samples from the distribution the new

data point to be evaluated. Sampling from𝑀𝑀 (𝜎0, \) can be done

efficiently given the parameters 𝜎0 and \ , as studied by Irurozki

et al. [11], where the computational complexity is 𝑂 (𝑛 log𝑛). At
each iteration of UMM, 𝜎0 = �̂�0 is the permutation obtained in the

previous learning step. The scale \ controls the expected value and

variance of the distance𝐷 of a random permutation 𝜎 ∼ 𝑀𝑀 (𝜎0, \)
to the location parameter 𝜎0. Both the expected value of 𝐷 and its

variance increase monotonically with the value of \ . In particular,

the expected distance E[𝐷] is given by [9]:

E[𝐷] = 𝑛 · exp(−\)
1 − exp(−\) −

𝑛∑
𝑗=1

𝑗 · exp(− 𝑗\)
1 − exp(− 𝑗\) (5)

Parameter \ is set automatically by the algorithm to control the

diversification and intensification trade off. At the first iteration, \

is set so that E[𝐷] =
(𝑛
2

)
/2, i.e., half of the expected distance for the

uniform distribution. Then the expected distance linearly decreases

until the last iteration𝑚 where \ is set such that E[𝐷] = 1. Despite

it is not possible to isolate \ in Eq. (5), its monotonicity allows the

use of bisection methods for efficiently finding an approximation.

Setting E[𝐷] =
(𝑛
2

)
will generate random permutations at early

stages, slowing the algorithm convergence. A purely explotation ap-

proach will set E[𝐷] = 0 generating 𝜎0 in the sampling stage. How-

ever, the setting of a decreasing variance controls the exploration-

explotation tradeoff as a function of the number of function eval-

uations (𝑚) that the algorithm performs, thus the behaviour is

different for different choices of𝑚. Similar approaches have been

taken in different contexts [2].

4 EXPERIMENTAL SETUP

UMM. UMM initially samples𝑚ini = 10 solutions uniformly. The

other two parameters of UMM are 𝑟1 and 𝑟2 that determine the

learning rate 𝜌 in uBorda, and consequently, determine the balance

GECCO ’21, July 10–14, 2021, Lille, France Ekhine Irurozki and Manuel López-Ibáñez

between exploration and exploitation. In the experimental section

we will study their impact.

CEGO. Combinatorial Efficient Global Optimization (CEGO) [17] is

an extension of the well-known EGO method [?] to unconstrained

black-box combinatorial optimization problems. In EGO, Gauss-

ian process models are used as a surrogate of the landscape of

the expensive original problem. An optimization method searches

for solutions in the surrogate model by optimizing the expected

improvement criterion, which balances the expected mean and

variance of the chosen solution. Once a solution is chosen, it is eval-

uated on the actual fitness function and the result is used to update

the surrogate-model, hopefully increasing its predictive power.

CEGO replaces the Euclidean distance measure, used by the

surrogate model in EGO, with a distance measure appropriate to

combinatorial landscapes [16]. In CEGO, the surrogate model is ex-

plored by a GA with crossover and mutation operators appropriate

for the particular combinatorial problem. A thorough comparison of

CEGO with other optimizers for expensive black-box combinatorial

optimization ranked it as the best-performing [17].

We use here the original implementation of GECO.
1
Although it

is never stated in the original paper, the implementation of CEGO

generates a set of initial solutions of size𝑚ini = 10 by means of a

max-min-distance sequential design: new solutions are added to the

set sequentially by maximizing the minimum distance to solutions

already in the set. These initial solutions are then evaluated on the

true fitness function and the result is used to build the initial surro-

gate model. Following the authors of CEGO [16, 17], the surrogate

model is optimized by a GA with population size of 20, crossover

rate of 0.5, mutation rate of 1/𝑛, tournament selection of size 2

with probability of 0.9, interchange mutation (i.e., exchanging two

randomly selected elements) and cycle crossover for permutations.

CEGO runs the GA with a budget of 10
4
evaluations of the surro-

gate model to generate a new solution, which is then evaluated on

the true fitness function. The original paper [17, p. 875] notes that

coupling the GA with local search does not improve the results

significantly since the model is anyway an inexact estimation of

the original fitness function.

Benchmark problems. Experiments with real-world expensive

black-box problems would be computationally infeasible. Instead,

we consider classical combinatorial optimization problems as black-

box optimization problems. For consistency with the rest of the

paper, a permutation 𝜎 denotes a ranking also in this section. Recall

that the ordering associated to ranking 𝜎 is given by its inverse, 𝜎−1.
Thus, we will use ordering 𝜎−1 to formulate the problems. Later in

the experimental section we discuss the effects of not performing

this inversion.

The Linear Ordering Problem (LOP), when minimizing as in our

case, is defined as

min

𝜎 ∈𝑆𝑛
𝑓 (𝜎) =

𝑛∑
𝑖=1

𝑖−1∑
𝑗=1

𝑎𝜎−1 (𝑖),𝜎−1 (𝑗) (6)

where [𝑎𝑖, 𝑗] is a matrix of size 𝑛 × 𝑛.

The Permutation Flowshop Scheduling Problem (PFSP) is defined
by a matrix [𝑝𝑖 𝑗] of size 𝑛 ×𝑀 that gives the processing time of a

job 𝑖 ∈ [𝑛] on a machine 𝑗 ∈ [𝑀]. All jobs must be processed by all

1
https://cran.r-project.org/package=CEGO

machines in the same order. Given a permutation (ranking) 𝜎 , 𝐶𝑖, 𝑗

denotes the completion time of job 𝜎−1 (𝑖) at position 𝑖 on machine

𝑗 , and𝐶max = 𝐶𝑛,𝑀 is the completion time of the last job on the last

machine, i.e., the makespan. The objective of the PFSP is to find:

min

𝜎 ∈𝑆𝑛
𝑓 (𝜎) = 𝐶𝑛,𝑀

s.t. 𝐶1, 𝑗 = 0 𝑗 ∈ [𝑀], 𝐶𝑖,1 = 0 𝑖 ∈ [𝑛]
𝐶𝑖, 𝑗 = 𝑝𝜎−1 (𝑖), 𝑗 +max{𝐶𝑖−1, 𝑗 ,𝐶𝑖, 𝑗−1} 𝑖 ∈ {2, . . . , 𝑛},

𝑗 ∈ {2, . . . , 𝑀}

(7)

Datasets. We consider LOP datasets from the LOLIB repository.
2

In particular, we have taken two instances of various types focusing

on relatively small instances, since he computation time of CEGO

grows rapidly with instance size: N-p40-01, N-p40-02, N-p50-01
and N-p50-02 of type RandB; N-t59d11xx and N-t59b11xx of type
IO; and N-sgb75.01 and N-sgb75.02 of type SGB. In the case of

the PFSP, we consider the same instances as Zaefferer et al. [16],

i.e., reC05, reC13, reC19 and rec31, with 𝑛 ∈ {20, 20, 30, 50} and
𝑀 ∈ {5, 20, 10, 15}, respectively.
Other settings. We consider three different values𝑚 ∈ {100, 200,
400} for the maximum budget of evaluations of the actual objec-

tive function in UMM. In the case of CEGO, we only run exper-

iments with the largest budget𝑚 = 400. In a white-box context,

state-of-the-art algorithms for the LOP and PFSP typically evalu-

ate thousands of solutions, thus, the budget considered here for

the black-box context is extremely limited. For simplicity, we use

Kendall’s-𝜏 distance (Eq. 1) in all experiments. We plan to extend

UMM to other distance measures in the future.

Computing environment. Experiments were run on Intel Xeon

Ivybridge E5-2650v2 CPUs at 2.60 GHz, 64 GB RAM running CentOS

Linux release 7 (Core).

5 EXPERIMENTAL ANALYSIS

5.1 Analysis of 𝑟1 and 𝑟2 parameters

The first part of the experimental analysis concerns the analysis

of the learning rate, which corresponds to parameter 𝜌 of uBorda.

As stated in Section 3.2, 𝜌 is automatically set at each iteration

in such a way that the 100𝑟1% of the samples have the 100𝑟2% of

the weight. In this regard, we tried a few different values of pa-

rameters 𝑟1 and 𝑟2 in all the instances. Only values of 𝑟1 < 𝑟2
make sense and 𝑟1 = 𝑟2 = 0.5 would produce equal weights in

the learning step. Thus, we tried values 𝑟1 = {0.1, 0.2, . . . , 0.5} and
𝑟2 = {0.6, . . . , 0.9, 0.99}. Figure 1 shows the best solution found

by each independent run (averaged over 10 runs) for instances:

N-t59d11xx and N-sgb75.02 for the LOP, and reC13 and reC19
for the PFSP. Results for all the datasets can be found in the supple-

mental material (doi: 10.5281/zenodo.4500974).

The plot shows that UMM is indeed very sensitive to the values

of 𝑟1 and 𝑟2, yet, low values of 𝑟1 and high values of 𝑟2 almost

always produce the best results, independently of the problem.

In particular, we observe that the pattern on the two top figures

differs from the two bottom ones. While on the top figures the

fitness gets worse homogeneously from the top-right corner to

the bottom-left one, the pattern on the bottom figures is not as

2
http://grafo.etsii.urjc.es/optsicom/lolib/

https://cran.r-project.org/package=CEGO
http://doi.org/10.5281/zenodo.4500974
http://grafo.etsii.urjc.es/optsicom/lolib/

Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems GECCO ’21, July 10–14, 2021, Lille, France

N-t59d11xx (LOP)

0.6 0.7 0.8 0.9 0.99
r2

0.
1

0.
2

0.
3

0.
4

0.
5

r 1

20000

30000

40000

50000
N-sgb75.02 (LOP)

0.6 0.7 0.8 0.9 0.99
r2

0.
1

0.
2

0.
3

0.
4

0.
5

r 1

1950000

2000000

2050000

2100000

reC13 (PFSP)

0.6 0.7 0.8 0.9 0.99
r2

0.
1

0.
2

0.
3

0.
4

0.
5

r 1

2100

2150

2200

reC19 (PFSP)

0.6 0.7 0.8 0.9 0.99
r2

0.
1

0.
2

0.
3

0.
4

0.
5

r 1

2350

2400

2450

Figure 1: Mean fitness (over 10 runs) of different configura-

tions of 𝑟1 and 𝑟2 (darker is better).

homogeneous, yet still fitness gets worse with decreasing 𝑟2. We

observe that this behavior is related to the adequacy of UMM to

the problem: the homogeneous behavior of parameters 𝑟1 and 𝑟2
depends on the problem (not on the particular instances) and the

more homogeneous the behavior, the better performance of UMM.

We elaborate this argument in detail in the next section.

From this preliminary experiment, it is not obvious how the

best settings are related to problem features, such as permutation

length 𝑛. On the other hand, given the sharp transitions in the plots,

it is clear that further fine-tuning may improve performance and

uncover further patterns.

Over all the instances, we observe that the configuration 𝑟1 = 0.1,

𝑟2 = 0.9 has good performance, i.e., its mean rank (over 10 runs)

relative to all the other configurations is less than 4 for all the

instances. Although automatic parameter tuning may likely provide

even more fine-tuned settings, our goal here is to understand how

UMM performs in comparison to an existing Bayesian method

(CEGO) and automatically tuning the parameters of CEGO is not

computationally feasible. For consistency, in the following sections,

we run UMM with this parameter configuration. Moreover, we

recommend this configuration as the current default of UMM.

5.2 Experiments with rankings and orderings

In Section 2.1, we highlighted the important difference between

rankings and orderings, usually neglected in the optimization liter-

ature. Statistical models (Borda or the Kendall’s-𝜏 distance) are usu-

ally defined for rankings while the optimization literature usually

builds upon orderings. For example, the (adjacent) swap distance

𝑑𝑠 (𝜎, 𝜋) is the Kendall’s-𝜏 distance counterpart in optimization,

𝑑𝑠 (𝜎, 𝜋) = 𝑑 (𝜎−1, 𝜋−1).
As a consequence of this important distinction, when dealing

with permutations, in particular in combinatorial problems, we

must convert rankings to orderings by inverting the permutation,

as done in Eq. 6 and Eq. 7, for the LOP and PFSP, respectively. This

might seem an implementation detail but a failure to use the correct

interpretation has grave consequences.

During our experiments, we realized that distance metric called

Swap in CEGO [16] actually assumes rankings, that is, it actually

implements the Kendall’s-𝜏 distance, yet CEGO does not invert the

permutation before evaluating the PFSP. We verified that this is

indeed how the implementation works and that those results match

the published ones [16]. Thus, the obvious question arises about

the effect of inverting the permutation before calling the objective

function, so that the rankings are transformed to orderings, as done

by our UMM algorithm. In the following, we show results of both

variants, that is, the original CEGO (CEGOori) and our modified

version that inverts the permutation before evaluation (CEGOinv).

5.3 Experimental Analysis

Since the number of evaluations is small and the algorithms evaluate

just one solution at each step, we chose to record and plot the fitness

of the solution evaluated at each step of each run, instead of the

usual plots of the best-so-far solution over number of evaluations.

We believe that plotting each evaluated solution provides better

insights on the search dynamics of the algorithms analyzed here.

Please note that the algorithms do not return the final solution

shown in the plots, but rather the best one (minimum fitness) of

each run. Nevertheless, the minimum values achieved in the plot up

to a particular number of function evaluations gives an estimation

of the mean fitness of the best-so-far solution up to that point in

the run. We provide later an analysis of the best solution found by

each run of the algorithms.

Figure 2 shows the results on the real-world instances from

LOLIB and PFSP. There is one plot per instance. The horizontal line

indicates the best-known fitness for that instance. Besides, there

are 5 different lines representing each of the different algorithm

variants tested, in particular:

• UMM100, UMM200 and UMM400 are three different versions

of UMM, each considering a different total budget of function

evaluations. As can be expected, the lines corresponding

to UMM100 and UMM200 do not reach the right corner of

the figure. As mentioned in Sec. 3.2, the behavior of UMM

depends on the value of𝑚.

• CEGOori and CEGOinv are, respectively, the original version

of CEGO and the modification discussed in Section 5.2, i.e.,

the ranking generated by the CEGO algorithm at each itera-

tion, 𝜎 , is inverted before being evaluated, so the evaluation

is performed on 𝜎−1.

For each algorithm, we plot the mean fitness of the solution eval-

uated at each step over 10 runs with different random seeds. The

shaded area shows one standard deviation around the mean. Ide-

ally, each new evaluation will monotonically improve in fitness,

since each solution evaluated helps to refine the model and leads

to a better solution being evaluated in the next step. However, it is

possible that new solutions are worse than their predecessors.

Convergence analysis of UMM. We start our analysis with the

three variants of UMM. We can see a common trend in all instances:

After the 10 random initial permutations, the fitness of new so-

lutions decreases with a linear trend along iterations. The (close

to) linear decrease is given by the linear decrease in the expected

distance of the model, as described in Section 3.2. Overall, the rate

of improvement does not seem to converge, not even for the longer

GECCO ’21, July 10–14, 2021, Lille, France Ekhine Irurozki and Manuel López-Ibáñez

runs of 400 evaluations. Therefore, we conjecture that longer runs

are likely to produce further improved solutions. Moreover, a non-

linear decrease in the expected distance should result in a faster

convergence for larger evaluation budgets.

Convergence analysis of CEGO. The red and the gold lines in

the plots shown in Fig. 2 correspond to the two variants of CEGO

the original CEGOori and our modified version CEGOinv. The dif-

ference between these two variants is overwhelmingly in favour

of CEGOinv. With the exception of the reC19 PFSP instance, the

search behavior of CEGOori resembles a random search, after a brief

improvement phase at the start of the run. By contrast, CEGOinv

shows a very fast improvement in fitness within the first 50 evalua-

tions and tends to converge around the 150
th

evaluation, showing

little improvement after that. Since the only difference between

these two variants is the transformation from rankings to order-

ings before evaluating the objective function (Sec. 5.2), we must

conclude that this difference has tremendous effect in performance.

Comparison of UMM and CEGO. When comparing the UMM

and CEGO variants shown in Fig. 2, we can observe that all UMM

variants perform much better than the original CEGO (CEGOori),

while they converge slower than our modified CEGOinv. However,

the rate of improvement of the UMM variants does not seem to slow

down near themaximumbudget given and, in several instances such

as rec31 and N-sgb75-01, matches and surpasses the solutions

found by CEGOinv. Interestingly, this is the case, even for the

shorter budget variants of UMM, i.e., UMM100 and UMM200. We

also observe a pattern that UMM performs better, or CEGOinv

performs worse, on larger instances, as can be seen by comparing

rec19 with rec31.

Comparison of the best solutions found. We now turn our anal-

ysis to the best (minimum) fitness found at the end of the run by

the two best algorithms, that is, CEGOinv and UMM400. We show,

in Table 1, the mean fitness (and standard deviation), over the 10

runs of each algorithm, of the best solution found at the end of the

run, together with a 95% confidence interval (CI) around their mean

fitness difference. Except for PFSP instances rec05 and rec31, the
differences are statistically significant in favour of CEGOinv (the

intervals do not contain the value zero). Nevertheless, the CIs indi-

cate that the differences, although consistent, are relatively small.

Detailed results of UMM100 and UMM200 and the original CEGOori

are given in Table 2 for completeness. In this table, it can be seen

that the quality of CEGOori solutions is similar to the UMM100

version of UMM.

Runtime comparison. Table 1 also shows the runtime (in min-

utes) of CEGOinv and UMM when both are run for 400 evaluations.

For the same number of function evaluations, CEGO requires al-

most a day, whereas UMM never requires more than one hour, often

much less than that. Details for other algorithm variants are given

in Table 3. The average runtime for all the instances is around 0.3

minutes, 1.15 minutes and 4.5 minutes respectively for the UMM

variants with 100, 200 and 400 fitness evaluations. For CEGO, in

both versions, the average runtime for 400 evaluations is more than

22 hours. This is 300 times slower than UMM for the same number

of function evaluations. Moreover, the runtime of UMM scales well

for larger instances since its computational complexity is𝑂 (𝑛 log𝑛)
at each iteration.

6 CONCLUSIONS

In this paper, we have introduced UMM, a population-based proba-

bilistic algorithm based on an unbalanced Mallows model. The algo-

rithm is designed for expensive black-box combinatorial problems

on permutation landscapes when the budget of fitness evaluations

is severely limited (here, up to 100, 200 and 400 evaluations). Al-

though we were inspired by previous work on ACO for expensive

black-box combinatorial problems [14], UMM is, to the best of our

knowledge, the first EDA specifically designed for such problems.

We also discuss the importance of the representation of permuta-

tions in applied mathematics problems. Permutations can bee seen

as rankings or orderings of items and this difference is often ne-

glected. Based on this differentiation, we propose an improvement

for CEGO over the original version. The results of UMM clearly

improve over the original CEGO and they are competitive with the

improved version of CEGO proposed here.

In addition, UMM is specially well-suited for budget-limited sce-

narios that are still time-sensitive, e.g., when the overhead incurred

by the optimizer should be no more than a few second per fitness

evaluation (no more than one hour for 400 evaluations), due to its

quasi-linear time complexity. By comparison, CEGO may require

several minutes per fitness evaluation (around 22 hours for 400 eval-

uations), with the time increasing non-linearly with permutation

size and larger budgets. Hence, UMM is a computationally feasible

alternative for relatively large problem sizes.

The current version of UMM uses the Kendall’s-𝜏 distance and,

therefore, it is appropriate for problemswhere the pairwise ordering

among the items is relevant (as opposed to the actual exact position

of each item in the permutation), such as the Linear Ordering Prob-

lem and the Permutation Flow-shop Scheduling. However, we are

certain that it is possible to extend UMM to other distance metrics

such as Hamming, which will allow us to dynamically select among

various distance metrics for an unknown black-box permutation

landscape. In addition, a more detailed analysis would be needed

of the parameters (𝑟1 and 𝑟2) of UMM to provide either generally

good static values or an online adaptation approach. Finally, an

even more diverse range of problems would be needed to under-

stand the behavior of UMM on real-world black-box combinatorial

landscapes.

The results presented here show that, despite the intrinsic diffi-

culty of the expensive black-box combinatorial scenario, there are

still significant advances yet to be made. Thus, we hope that this

paper will motivate further research.

Reproducibility. Source code, datasets and scripts necessary to

reproduce the results are available at doi: 10.5281/zenodo.4500974.

ACKNOWLEDGMENTS

We would like to thank Hao Wang (Leiden University) for pointing us to the ar-

guments of [7]. This article is based upon work from COST Action CA15140 ‘Im-

proving Applicability of Nature-Inspired Optimisation by Joining Theory and

Practice (ImAppNIO)’ supported by COST (European Cooperation in Science

and Technology). M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished

Researcher (BEAGAL 18/00053) funded by the Ministry of Science and Innova-

tion of the Spanish Government. This work is also partially funded by the Elka-

rtek program (Basque Government) and the Industrial Chair “Machine Learning

for Big Data” from Télécom Paris, France.

http://doi.org/10.5281/zenodo.4500974

Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems GECCO ’21, July 10–14, 2021, Lille, France

N-p40-01 (LOP)

0 50 100 150 200 250 300 350 400
Function evaluations

10000

12500

15000

17500

20000

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

N-p40-02 (LOP)

0 50 100 150 200 250 300 350 400
Function evaluations

12000

14000

16000

18000

20000

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

N-t59b11xx (LOP)

0 50 100 150 200 250 300 350 400
Function evaluations

100000

125000

150000

175000

200000

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

N-t59d11xx (LOP)

0 50 100 150 200 250 300 350 400
Function evaluations

20000

40000

60000

80000

100000

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

SGB_N-sgb75_01 (LOP)

0 50 100 150 200 250 300 350 400
Function evaluations

1600000

1800000

2000000

2200000

2400000

2600000

Fi
tn

es
s Solver

CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

SGB_N-sgb75_01 (LOP)

0 50 100 150 200 250 300 350 400
Function evaluations

1600000

1800000

2000000

2200000

2400000

2600000

Fi
tn

es
s Solver

CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

reC05 (PFSP)

0 50 100 150 200 250 300 350 400
Function evaluations

1300

1400

1500

1600

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

reC13 (PFSP)

0 50 100 150 200 250 300 350 400
Function evaluations

2000

2100

2200

2300

2400

2500

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

reC19 (PFSP)

0 50 100 150 200 250 300 350 400
Function evaluations

2300

2400

2500

2600

2700

2800

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

reC31 (PFSP)

0 50 100 150 200 250 300 350 400
Function evaluations

3400

3600

3800

4000

Fi
tn

es
s

Solver
CEGO_inv
CEGO_orig
UMM_100
UMM_200
UMM_400

Figure 2: Mean fitness (and standard deviation) of each solution evaluated by each algorithm on various instances.

GECCO ’21, July 10–14, 2021, Lille, France Ekhine Irurozki and Manuel López-Ibáñez

Table 1: Mean fitness (and standard deviation) of the best solution found at the end of each run, over 10 independent runs for

each problem instance. The 95% confidence interval corresponds to the two independent samples t-test on themean difference

between the fitness of CEGOinv minus the one of UMM400. Mean runtime is shown in hours.

Mean fitness (sd)

95% CI of the

mean difference

Mean runtime

Problem Instance CEGOinv UMM400 CEGOinv UMM400

LOP N-p40-01 10496.6 (116.8) 12369.1 (389.9) [-2157.1, -1587.9] 19.9 0.3

N-p40-02 11714.7 (84.7) 13160.5 (454.8) [-1773.5, -1118.1] 20.1 0.3

N-t59b11xx 102408.0 (3800.2) 114075.5 (5389.2) [-16084.2, -7250.8] 21.1 0.4

N-t59d11xx 12692.2 (1097.9) 16662.9 (2155.3) [-5618.5, -2322.9] 21.2 0.4

N-sgb75.01 1893533.2 (28594.6) 1992059.9 (40235.7) [-131577.1, -65476.3] 33.2 1.0

N-sgb75.02 1895801.8 (82847.9) 1967132.3 (49228.1) [-136421.2, -6239.8] 33.3 1.1

PFSP rec05 1276.2 (15.1) 1276.3 (8.4) [-11.8, 11.6] 18.3 0.1

rec13 1992.9 (27.6) 2057.8 (22.8) [-88.8, -41.0] 18.5 0.1

rec19 2264.5 (45.0) 2304.8 (37.7) [-79.4, -1.2] 18.2 0.2

rec31 3415.5 (62.1) 3419.3 (37.0) [-52.6, 45.0] 23.1 0.5

Table 2: Mean fitness, over 10 independent runs for each problem instance, of the best solution found at the end of each run

of the original CEGO (CEGOori) and its improved version (CEGOinv) and three variants of UMM that differ in the budget of

evaluations𝑚 ∈ {100, 200, 400}. The runs of CEGO used a budget of𝑚 = 400.

Problem Instance CEGOinv CEGOori UMM400 UMM200 UMM100

LOP N-p40-01 10496.6 15027.7 12453.7 1.336170e+04 14649.9

N-p40-02 11714.7 15150.2 13191.9 1.420900e+04 15206.2

N-t59b11xx 102408.0 126204.0 114726.5 1.202020e+05 132039.5

N-t59d11xx 12692.2 30199.8 16775.4 2.352089e+04 29884.1

N-sgb75.01 1893533.2 2095899.6 1983521.2 2.004006e+06 2046895.1

N-sgb75.02 1895801.8 2069286.9 1973083.9 2.001244e+06 2039356.1

PFSP rec05 1276.2 1318.7 1282.1 1.287000e+03 1320.2

rec13 1992.9 2096.0 2077.7 2.108500e+03 2131.6

rec19 2264.5 2328.4 2318.5 2.352100e+03 2386.5

rec31 3415.5 3512.3 3420.5 3.490900e+03 3474.3

Table 3: Mean runtime in minutes, over 10 independent runs for each problem instance, of the original CEGO (CEGOori) and

its improved version (CEGOinv) and three variants of UMM that differ in the budget of evaluations𝑚 ∈ {100, 200, 400}. The runs
of CEGO used a budget of𝑚 = 400.

Problem Instance CEGOinv CEGOori UMM400 UMM200 UMM100

LOP N-p40-01 1195.90 1170.81 3.12 0.85 0.21

N-p40-02 1207.24 1183.09 3.11 0.83 0.20

N-t59b11xx 1265.98 1240.36 3.78 0.95 0.23

N-t59d11xx 1269.93 1252.89 3.93 0.97 0.25

N-sgb75.01 1994.22 2004.70 10.88 2.73 0.72

N-sgb75.02 1995.09 1975.41 10.88 2.76 0.69

PFSP rec05 1099.63 917.81 0.80 0.20 0.10

rec13 1109.51 1043.08 0.85 0.20 0.10

rec19 1090.06 1087.38 1.76 0.47 0.10

rec31 1387.09 1367.26 4.77 1.28 0.32

Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES

[1] A. Ali and M. Meilă. 2012. Experiments with Kemeny ranking: What Works

When? Mathematical Social Science 64, 1 (July 2012), 28–40. https://doi.org/10.

1016/j.mathsocsci.2011.08.008

[2] E. Arza, J. Ceberio, A. Pérez, and E. Irurozki. 2019. Approaching the quadratic

assignment problemwith kernels of mallowsmodels under the hamming distance.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO Companion 2019, M. López-Ibáñez et al. (Eds.). ACM Press, New York,

NY. https://doi.org/10.1145/3319619.3321976

[3] I. Caragiannis, A. D. Procaccia, and N. Shah. 2013. When Do Noisy Votes

Reveal the Truth?. In Proceedings of the Fourteenth ACM Conference on Elec-
tronic Commerce, M. J. Kearns et al. (Eds.). ACM Press, New York, NY, 143–160.

https://doi.org/10.1145/2482540.2482570

[4] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. 2014. A distance-based

ranking model estimation of distribution algorithm for the flowshop scheduling

problem. IEEE Transactions on Evolutionary Computation 18, 2 (2014), 286–300.

https://doi.org/10.1109/TEVC.2013.2260548

[5] D. Coppersmith, L. K. Fleischer, and A. Rurda. 2010. Ordering by Weighted Num-

ber of Wins Gives a Good Ranking for Weighted Tournaments. ACM Transactions
on Algorithms 6, 3 (July 2010), 1–13. https://doi.org/10.1145/1798596.1798608

[6] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. 2001. Rank aggregation methods

for the Web. In Proceedings of the Tenth International World Wide Web Conference,
WWW 10, V. Y. Shen et al. (Eds.). ACM Press, New York, NY, 613–622. https:

//doi.org/10.1145/371920.372165

[7] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. 2019. Scalable

Global Optimization via Local Bayesian Optimization. In Advances in Neural
Information Processing Systems (NeurIPS 32), H. M. Wallach et al. (Eds.). 5496–

5507. arXiv:http://papers.nips.cc/paper/8788-scalable-global-optimization-via-

local-bayesian-optimization.pdf

[8] S. Fernández, S. Álvarez, D. Díaz, M. Iglesias, and B. Ena. 2014. Scheduling

a Galvanizing Line by Ant Colony Optimization. In Swarm Intelligence, 9th
International Conference, ANTS 2014, M. Dorigo et al. (Eds.). Lecture Notes in

Computer Science, Vol. 8667. Springer, Heidelberg, 146–157. https://doi.org/10.

1007/978-3-319-09952-1_13

[9] M. A. Fligner and J. S. Verducci. 1986. Distance Based Ranking Models. Journal
of the Royal Statistical Society: Series B (Methodological) 48, 3 (1986), 359–369.

https://doi.org/10.1111/j.2517-6161.1986.tb01420.x

[10] A. I. J. Forrester and A. J. Keane. 2009. Recent advances in surrogate-based

optimization. Progress in Aerospace Sciences 45, 1-3 (2009), 50–79. https://doi.

org/10.1016/j.paerosci.2008.11.001

[11] E. Irurozki, B. Calvo, and J. A. Lozano. 2019. PerMallows: An R Package for

Mallows and Generalized Mallows Models. Journal of Statistical Software 71
(2019). https://doi.org/10.18637/jss.v071.i12

[12] E. Irurozki, J. Lobo, A. Perez, and J. Del Ser. 2020. Rank aggregation for non-

stationary data streams. Arxiv preprint arXiv:1910.08795 [stat.ML] (2020). https:

//arxiv.org/abs/1910.08795

[13] A. Moraglio and A. Kattan. 2011. Geometric Generalisation of Surrogate Model

Based Optimization to Combinatorial Spaces. In Proceedings of EvoCOP 2011 – 11th
European Conference on Evolutionary Computation in Combinatorial Optimization,
P. Merz and J.-K. Hao (Eds.). Lecture Notes in Computer Science, Vol. 6622.

Springer, Heidelberg, 142–154.

[14] L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle. 2015. Ant colony optimization

on a limited budget of evaluations. Swarm Intelligence 9, 2-3 (2015), 103–124.

https://doi.org/10.1007/s11721-015-0106-x

[15] P. A. Romero, A. Krause, and F. H. Arnold. 2012. Navigating the Protein Fitness

Landscape with Gaussian Processes. Proceedings of the National Academy of
Sciences 110, 3 (Dec. 2012), E193–E201. https://doi.org/10.1073/pnas.1215251110

[16] M. Zaefferer, J. Stork, and T. Bartz-Beielstein. 2014. Distance Measures for

Permutations in Combinatorial Efficient Global Optimization. In PPSN 2014,
T. Bartz-Beielstein et al. (Eds.). Lecture Notes in Computer Science, Vol. 8672.

Springer, Heidelberg, 373–383. https://doi.org/10.1007/978-3-319-10762-2_37

[17] M. Zaefferer, J. Stork, M. Friese, A. Fischbach, B. Naujoks, and T. Bartz-Beielstein.

2014. Efficient Global Optimization for Combinatorial Problems. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2014, C. Igel and
D. V. Arnold (Eds.). ACM Press, New York, NY, 871–878. https://doi.org/10.1145/

2576768.2598282

https://doi.org/10.1016/j.mathsocsci.2011.08.008
https://doi.org/10.1016/j.mathsocsci.2011.08.008
https://doi.org/10.1145/3319619.3321976
https://doi.org/10.1145/2482540.2482570
https://doi.org/10.1109/TEVC.2013.2260548
https://doi.org/10.1145/1798596.1798608
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/371920.372165
https://arxiv.org/abs/http://papers.nips.cc/paper/8788-scalable-global-optimization-via-local-bayesian-optimization.pdf
https://arxiv.org/abs/http://papers.nips.cc/paper/8788-scalable-global-optimization-via-local-bayesian-optimization.pdf
https://doi.org/10.1007/978-3-319-09952-1_13
https://doi.org/10.1007/978-3-319-09952-1_13
https://doi.org/10.1111/j.2517-6161.1986.tb01420.x
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.18637/jss.v071.i12
https://arxiv.org/abs/1910.08795
https://arxiv.org/abs/1910.08795
https://doi.org/10.1007/s11721-015-0106-x
https://doi.org/10.1073/pnas.1215251110
https://doi.org/10.1007/978-3-319-10762-2_37
https://doi.org/10.1145/2576768.2598282
https://doi.org/10.1145/2576768.2598282

	Abstract
	1 Introduction
	2 Background
	2.1 Permutations: rankings vs orderings
	2.2 Distributions over permutations
	2.3 Unbalanced Borda
	2.4 Black-box combinatorial optimization under a limited budget

	3 Unbalanced Mallows model (UMM)
	3.1 Learning step
	3.2 Sampling step

	4 Experimental setup
	5 Experimental analysis
	5.1 Analysis of r1 and r2 parameters
	5.2 Experiments with rankings and orderings
	5.3 Experimental Analysis

	6 Conclusions
	Acknowledgments
	References

