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Abstract

Automatic configuration (AC) methods are increasingly used to tune and design optimisation
algorithms for problems with multiple objectives. Most AC methods use unary quality
indicators, which assign a single scalar value to an approximation to the Pareto front, to
compare the performance of different optimisers. These quality indicators, however, imply
preferences beyond Pareto-optimality that may differ from those of the decision maker (DM).
Although it is possible to incorporate DM’s preferences into quality indicators, e.g., by means
of the weighted hypervolume indicator (HV w), expressing preferences in terms of weight
function is not always intuitive nor an easy task for a DM, in particular, when comparing the
stochastic outcomes of several algorithm configurations. A more visual approach to compare
such outcomes is the visualisation of their empirical attainment functions (EAFs) differences.
This paper proposes using such visualisations as a way of eliciting information about regions
of the objective space that are preferred by the DM. We present a method to convert the
information about EAF differences into a HV w that will assign higher quality values to
approximation fronts that result in EAF differences preferred by the DM. We show that the
resulting HV w may be used by an AC method to guide the configuration of multi-objective
optimisers according to the preferences of the DM. We evaluate the proposed approach on a
well-known benchmark problem. Finally, we apply our approach to re-configuring, according
to different DM’s preferences, a multi-objective optimiser tackling a real-world production
planning problem arising in the manufacturing industry.

Keywords: Metaheuristics, Automatic algorithm design and configuration, Multi-objective
optimisation, Decision maker’s preferences

1. Introduction

Most real-world problems require the simultaneous consideration of multiple and often
conflicting criteria and, thus ideally, they should be addressed as multi-objective optimisation

∗Corresponding author.
Email addresses: jediaz@usfq.edu.ec (Juan Esteban Diaz),

manuel.lopez-ibanez@manchester.ac.uk (Manuel López-Ibáñez)

http://dx.doi.org/10.1016/j.ejor.2020.07.059


Please cite this pre-print manuscript as: Juan Esteban Diaz and Manuel López-Ibáñez. Incorporating Decision-Maker’s
Preferences into the Automatic Configuration of Bi-Objective Optimisation Algorithms. European Journal of Operational
Research, 2020. doi: 10.1016/j.ejor.2020.07.059

problems (MOPs) (Deb, 2001; Miettinen, 1999). In MOPs, there exists a set of solutions
known as Pareto-optimal set that consists of all solutions that are not dominated by any
other solution. The image of the Pareto set in objective space is the so-called Pareto front.
Given the Pareto front, or a good approximation of it, the decision maker (DM) may choose
their preferred solution(s) from it. The goal of some multi-objective optimisation methods
is to generate as good an approximation of the Pareto front as possible.

Meta-heuristics, such as evolutionary and local search algorithms, are attractive optimi-
sation methods in the context of Pareto optimality. For instance, multi-objective evolution-
ary algorithms (MOEAs) are ideal for tackling multi-objective problems, not only due to
their wide applicability, flexibility (Coello Coello, 2006) (e.g., they do not require linearity,
differentiability, convexity and other strict assumptions), and ease of use (Coello Coello,
2015), but also because multiple non-dominated solutions can be found in a single iteration
due to their population-based nature (Coello Coello, 2006; Deb, 2001). For similar reasons,
multi-objective local search methods are widely used in combinatorial optimisation (Dubois-
Lacoste et al., 2011a, 2015; Jaszkiewicz, 2018; Lust and Teghem, 2010; Paquete et al., 2007).
Hybridisations of evolutionary algorithms and local search (sometimes called memetic algo-
rithms) are also possible (Jaszkiewicz et al., 2011; Knowles and Corne, 2005).

The performance assessment of these multi-objective optimisers is not a trivial task due
to various reasons. First, meta-heuristic algorithms typically produce approximations to
the Pareto-optimal front. Second, due to the inherent stochasticity of meta-heuristics and
the variability of input problems, these approximation fronts can be seen as stochastic sets,
and we must assess their expectation and variance. Third, although it is possible that the
approximation fronts produced by one algorithm completely dominate the ones produced by
an alternative algorithm, the most usual case is that approximation fronts are incomparable
in terms of Pareto optimality.

To ease the analysis and comparison of multi-objective optimisers, several techniques are
employed in the literature. The most prominent among them (Knowles et al., 2006; Zitzler
et al., 2008) are unary quality indicators, such as the hypervolume indicator (HV ) (Zitzler
et al., 2003), and the empirical attainment function (EAF) (Grunert da Fonseca et al., 2001).
The EAF is particularly useful for visualising performance differences in the objective space
between optimisers (López-Ibáñez et al., 2010).

In this paper, we first describe a procedure for articulating DM’s preferences by visualis-
ing EAF differences between two alternative algorithm configurations or designs, and asking
the DM to state which alternative is their preferred one. The EAF differences are then
translated into a weight function over the objective space that biases the computation of
the HV in favour of the differences that are preferred by the DM. Our proposed procedure
is useful on its own for articulating DM’s preferences in performance assessment of multi-
objective optimisers. However, our main motivation is actually the automatic configuration
(AC) and design of such optimisers.

AC methods are increasingly being adopted for tuning the large number of parameters
and design choices present in modern optimisation algorithms (Birattari, 2009; Hoos, 2012).
The application of AC methods to multi-objective optimisers relies in the use of unary quality
indicators. Unfortunately, these quality indicators introduce unstated preferences (Auger
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et al., 2012) that may not correspond to the preferences of the DM, who in the AC context
is a human designing a new optimiser or tuning an existing one for a class of problems of
their interest.

To enable a DM to state their preferences during the AC process, we combine our pro-
posed procedure with irace (López-Ibáñez et al., 2016), a widely used AC method. At some
point of the AC process, the DM is shown the EAF differences between two configura-
tions exhibiting the largest differences, and asked to choose which side of the differences
they prefer. After the interaction, irace continues the AC procedure guided by the stated
preferences.

We demonstrate the proposed procedure in two scenarios. First, we consider a simple
tuning task involving a single parameter. The expected algorithms’ behaviour according
to the value of this parameter is well-known, and we show that the interaction with the
DM guides irace towards the expected parameter values, depending on the particular DM’s
choice. This simple scenario serves to validate and illustrate the proposed approach.

Our second scenario arises in the context of a real-world multi-objective production
planning problem under uncertainty for a chemical manufacturer (Diaz et al., 2017). Here
we show how diverse DM’s preferences expressed through our proposed method result in
different configurations of a multi-objective optimiser and different solutions to a real-world
problem.

The remainder of this paper is structured as follows. The following section continues with
important background information. Section 3 describes our proposed method for eliciting
preferences from visualisations of the EAF differences. Section 4 explains how to select
the pair of algorithm configurations to be shown to the DM during the AC process. The
experimental setup and results are discussed in Section 5. Finally, conclusions derived from
this study, limitations and future research directions are given in Section 6.

2. Background

2.1. Multi-objective Optimisation
In a MOP, m conflicting objective functions need to be optimised simultaneously, and

thus each solution in the solution space X maps to an m-dimensional vector in the objective
space Rm, that is, ~f : X → Rm, and the objective vector ~z ∈ Rm corresponding to a solution
x ∈ X is given by ~z = ~f(x) = (z1 = f1(x), . . . , zm = fm(x)).

A partial order can be defined among all vectors in the objective space, called weak
Pareto dominance relation. Let us assume, without loss of generality, that all objectives
must be minimised. We say that vector ~p in the objective space weakly dominates ~q, ~p � ~q,
iff pi ≤ qi ∀i. In the case that ~p � ~q and ~p 6= ~q, we say that ~p dominates ~q (~p ≺ ~q) in terms
of Pareto optimality. When pi < qi ∀i, we say that ~p strongly dominates ~q. Solutions whose
objective vectors are not dominated by any other feasible solution form the Pareto set and
the image of this set in objective space is the Pareto front.

Any set of mutually nondominated objective vectors (A ⊆ Rm, ∀~a ∈ A, @~a′ ∈ A \ {~a}:
~a′ � ~a) is called an approximation front (Zitzler et al., 2003). Multi-objective optimisers
generate approximations of the true Pareto front and to assess their performance, their
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resulting approximation fronts need to be compared. The weak Pareto dominance relation
can be generalised to approximation fronts as A � B iff ∀~b ∈ B, ∃~a ∈ A : ~a � ~b. If A � B
and A 6= B, then we say that A is better in terms of Pareto optimality than B. However,
this relation only defines a partial order among approximation fronts, and it is often the
case that they are incomparable in terms of Pareto optimality, that is, A � B ∧B � A.

2.2. (Weighted) Hypervolume Indicator
Quality indicators that map approximation fronts onto scalar values have been proposed

to ease such a comparison. A desirable feature of quality indicators is Pareto compliance (Zit-
zler et al., 2003), i.e., they must not contradict the partial order given by the relation among
fronts that states when an approximation front is better than another in terms of Pareto
optimality, as defined above. Perhaps the most prominent Pareto-compliant indicator is the
HV , which measures the volume of the objective space weakly dominated by an approxima-
tion front up to a given reference point (Auger et al., 2012; Zitzler and Thiele, 1999). More
formally, given an approximation front A and a reference point ~r, the HV can be defined
as:

HV (A) =

∫ ~r

αA(~z)d~z (1)

where αA(~z) is the attainment function αA : Rm → {0, 1} specifying which points in the
objective space are weakly dominated by A, that is,

αA(~z) =

{
1 if A � {~z}
0 otherwise

(2)

According to the definition of the HV given above, two different approximation fronts
that dominate different regions of the objective space, but with the same HV value, would
be indistinguishable in terms of quality. In reality, however, certain regions of the objec-
tive space may be preferred by a DM and, by using the HV as a quality indicator, those
preferences are completely ignored.

The weighted hypervolume indicator (HV w) (Auger et al., 2009; Zitzler et al., 2007)
encodes DM’s preferences by assigning a weight function to the objective space, so that two
solutions with the same HV may differ in terms of their HV w, depending upon the objective
space regions those solutions dominate.

The HV w assigns a positive weight to each point in the objective space, w : Rm → R>0,
and modifies the definition of HV as follows:

HV w(A) =

∫ ~r

w(~z)αA(~z)d~z (3)

In principle, the DM could directly define weight functions that induce different approx-
imation front shapes (Auger et al., 2009) as well as convert other forms of preference (e.g.,
Tchebycheff, ε-constraint and desirability functions) to weight functions (Brockhoff et al.,
2013). However, in the case of expressing a preference between two competing algorithms
(or configurations thereof), we believe that the visualisation of differences between EAFs
provides a more intuitive interface.
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2.3. Empirical Attainment Function (EAF)
The concept of attainment function can be generalised to describe the frequency that a

specific objective vector was attained by a multiset (a set that allows repeated elements)
of approximation fronts. If the approximation fronts are generated by an optimiser, this
EAF (Fonseca and Fleming, 1996; Fonseca et al., 2005, 2011; Grunert da Fonseca and Fon-
seca, 2010; Grunert da Fonseca et al., 2001) approximates the probability of the algorithm
finding at least one solution whose objective vector weakly dominates a specific objective
vector ~z. More formally, let A = {A1, . . . , An} be a multiset of n approximation fronts, the
EAF is the function αA : Rm → [0, 1] such that:

αA(~z) =
1

n

n∑
i=1

αAi(~z) (4)

The visualisation of the EAFs is a well-known method for analysing the performance
of multi-objective optimisers (Knowles, 2005; López-Ibáñez et al., 2010). Moreover, by
comparing the EAFs of two stochastic multi-objective optimisers, it is possible to assess
differences in the expected location of their generated objective vectors (López-Ibáñez et al.,
2006). The visualisation of EAF differences is an effective and intuitive way to compare the
performance of two multi-objective optimisers in the objective space (Zitzler et al., 2008).

Figure 1 is an example of such a visualisation, where shaded areas indicate regions of
the objective space where the EAF of one algorithm is larger (by at least 0.2 and larger
for darker regions) than the EAF of the other algorithm, thus pointing out the location
in the objective space where one algorithm is more likely to outperform the other. The
visualisation also shows as solid lines the region in the objective space attained at least once
by either algorithm or always by both algorithms, since any EAF differences must exist
within those two lines. Finally, the dashed line shows the median attainment surface that
delimits the region attained by each algorithm with an EAF value of at least 0.5.

Although EAF visualisations for more than two objectives are possible (Tušar and Filipič,
2014), they are less widespread and more computationally demanding. For simplicity, in the
remainder of the paper, we will focus on problems with two conflicting objectives that,
without loss of generality, must be minimised.

2.4. Automatic Configuration and Design of Multi-Objective Optimisers
An emerging trend in optimisation research (and machine learning) is the increasing

use of AC methods for tuning the large number of parameters and design choices present
in modern optimisation algorithms (Birattari, 2009; Hoos, 2012). The use of AC methods
enormously simplifies this tedious and error-prone task and provides an easy-to-use and
reproducible approach.

In the context of multi-objective optimisers, AC methods are being used not only for
parameter tuning (Bezerra et al., 2020a; Dubois-Lacoste et al., 2011a; Radulescu et al.,
2013), but also for automatically designing new algorithms, from frameworks of algorithmic
components, that often outperform the traditional algorithms designed by humans (Bezerra
et al., 2016; López-Ibáñez and Stützle, 2012).
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Figure 1: EAF differences between two different algorithms.

There is a distinction between multi-objective AC methods, which are able to configure
an optimiser according to multiple criteria simultaneously, such as solution cost and compu-
tation time (Blot et al., 2016; Zhang et al., 2015), and the use of single-objective AC methods
for configuringmulti-objective optimisers, i.e., optimisers that return an approximation front.
In this paper, we focus on the latter scenario.1 To the best of our knowledge, the use of
a quality indicator (or combination thereof) is necessary when configuring multi-objective
optimisers by means of well-known AC methods (Bezerra et al., 2020a).

In any case, the use of quality indicators introduces implicit preferences beyond Pareto-
optimality (Auger et al., 2012) that may not reflect the ones of the DM. Therefore, it would
be better if DM’s preferences were explicitly incorporated into the AC process. Although
a DM may articulate their preferences by using a weighted formulation of the HV (Auger
et al., 2009), in our experience, the specification of a weight function is far from trivial
and intuitive, especially in the context of AC, where multiple stochastic outcomes of several
configurations of an algorithm are compared at once.

Therefore, in this paper, we propose to elicit DM’s preferences by visualising EAF dif-
ferences, then converting those preferences into a HV w that will guide the AC method.

3. From EAF Differences to Weighted Hypervolume Indicator

We describe in this section a procedure to convert EAF differences into a HV w that may
be used to measure the quality of approximation sets. More concretely, after visualising the

1Nevertheless, a single-objective AC method may aggregate multiple criteria into a single one and return
an algorithm configuration that performs well in all indicators (as they tend to be correlated) (Bezerra et al.,
2020b).
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EAF differences between two optimisers (or different configurations of the same optimiser),
a DM chooses their preferred direction of the differences. The resulting HV w will assign a
better quality to objective vectors or approximation fronts that attain the areas where the
EAF differences are larger and in favour to the DM’s preferences, while respecting the Pareto-
optimality criterion. This may be used to select objective vectors from a final approximation
front, to rank alternative approximation fronts or to guide a HV -based optimiser (Brockhoff
et al., 2013). Later in this paper, we show how it can be also used to guide the AC of
multi-objective optimisers.

We are given two multisets of n approximation fronts, A = {A1, . . . , An} and A′ =
{A′1, . . . , A′n}, possibly generated by n independent runs of two different algorithms (or
different configurations of the same algorithm). For the computation of the HV (Eq. 1), we
also require a reference point ~r that is weakly dominated by any approximation front under
consideration. If ~r is set by the DM, any objective vector that does not weakly dominate ~r
is discarded.

In order to compute the EAF differences, we first compute αA]A′ , the EAF of their
multiset sum (the union of multisets that allows repeated elements). A finite representation
of αA]A′ is given by a sequence of approximation fronts Ω = 〈L1, . . . , L2n〉, where:

Li = min{~z ∈ Rm : αA]A′(~z) ≥ i/2n} (5)

and “min” denotes the minima elements according to Pareto-optimality. The size of Ω is
finite and bounded by

∑2n
i=1 |Li| ∈ Θ(2n ·

∑n
i=1 |Ai|+ |A′i|) (Fonseca et al., 2011).

Let us assume, w.l.o.g, that the DM prefers differences in favour of A, i.e., ∆αA,A′(~z) =
αA(~z)− αA′(~z) is positive. A finite representation of these EAF differences will contain the
points that bound, by below, regions with the same value of the difference. Since a change in
the value of ∆αA,A′(~z) implies a change in the number of approximation fronts that dominate
a certain region, it will also imply a change in αA]A′(~z). Therefore, in a second step, we
revisit all points in Ω and compute their value of the EAF differences ∆αA,A′(~p), ∀~p ∈ Li,
i = 1, 2, . . . , 2n.

Starting from Ω and the EAF differences computed above, Algorithm 1 computes a finite
representationR of the rectangular regions of the objective space where ∆αA,A′(·) is positive,
i.e., differences are in favour of A. Each region R ∈ R is defined by a tuple 〈~l, ~u,∆αA,A′(~l)〉,
where ~l and ~u are the points in the objective space that define, respectively, the lower and
upper bounds of the region. Since Ω is a sequence of approximation fronts 〈L1, . . . , L2n〉,
where each Li−1 � Li, we can process each pair of fronts Li−1 and Li to find the regions
delimited by them (line 2). Let us assume that all points within each Li are sorted in
increasing order (resp. decreasing order) of the first (resp. second) objective, ∀~pk, ~pk+1 ∈ Li,
~pk,1 < ~pk+1,1 ∧ ~pk,2 > ~pk+1,2. Algorithm 1 proceeds by examining each point ~pj ∈ Li−1 in
order and finding out what point ~pk ∈ Li bounds by above the region dominated by ~pj.
If the region is unbounded, we use the reference point ~r as an upper bound. The loop in
line 7 processes all points ~pk ∈ Li that are above the current ~pj ∈ Li−1, whereas the code
in lines 14–22 processes all points ~pj ∈ Li−1 that are not below the current ~pk ∈ Li. The
variable top keeps track of the second coordinate of the lower bound from the last processed
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rectangle. The loop in line 23 processes all points in Li−1 that are not bounded to the right
by any point in Li. Since the last L2n contains the points dominated by all approximation
fronts of both A and A′ (Eq. 5), its value of the EAF difference is always zero and we do
not need to process it.

Figure 2 illustrates the output of Algorithm 1 for a given input. The output consists
of 7 regions (both positive and negative), and each colour represents a different value of
∆αA,A′(·).
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Figure 2: Example of the output generated by Algorithm 1. The input was Ω = 〈L1, L2, L3, L4〉 and ~r.
Each shaded area corresponds to a region R = 〈~l, ~u,∆αA,A′(~l)〉 of the objective space that has a non-zero
value of ∆αA,A′(~l) and it is bounded by ~l (bottom left corner) and ~u (top right corner).

Given the regions R computed by Algorithm 1, we now compute the HV w of a given
approximation front A as follows. First, we decompose the HV w (Eq. 3) into unweighted
and weighted components, i.e., we compute the HV corresponding to A and we add an
additional HV w

R (A) for points in A that dominate the regions in R:

HV w(A) = HV (A) +HV w
R (A) · β (6)

where β is the increased weight factor assigned to the area corresponding to HV w
R . The

weight factor is defined relative to the total area of the objective space as follows:

β = (r1 − fmin
1 ) · (r2 − fmin

2 ) · ψ, (7)

where ~r = (r1, r2) is the reference point and fmin
1 (resp. fmin

2 ) is the minimum value in
objective 1 (resp. 2) for any approximation front in A ∪ A′, and ψ ∈ [0, 1] is a factor that
controls the overall weight of the differences.

The motivation behind scaling β with respect to the total area of the objective space is
to increase the scale of HV w

R (A) relative to HV (A), so that there is a strong bias towards
the regions in R even if their total area is much smaller than the total area of the objective
space. Such an example is presented in Figure 3. Parameter ψ allows controlling this scale,
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Algorithm 1: Compute the set of regions R corresponding to EAF differences
∆αA,A′(~z) = αA(~z)− αA′(~z).

Input: Ω = 〈L1, . . . , L2n〉 : finite representation of EAF differences (Eq. 5)
∆αA,A′(~p) : value of the EAF difference at each ~p ∈ Ω
~r : reference point

Output: R: set of regions
1 R ← {}
2 for i← 2 to |Ω| do
3 j ← 1, ~pj ∈ Li−1
4 k ← 1, ~pk ∈ Li
5 top← r2
6 while j ≤ |Li−1| ∧ k ≤ |Li| do
7 while k ≤ |Li| ∧ pj,2 < pk,2 do // ~pj is below ~pk

8 if pj,1 < pk,1 then // ~pj dominates ~pk

9 ~l← (pj,1, pk,2), ~u← (pk,1, top)

10 R ← R∪ 〈~l, ~u,∆αA,A′(~pj)〉 // Add rectangle

11 top← pk,2
12 k ← k + 1

13 if k ≤ |Li| then // ~pj is not below ~pk

14 if pj,1 < pk,1 then // ~pj does not dominate ~pk

15 ~l← ~pj, ~u← (pk,1, top)

16 R ← R∪ 〈~l, ~u,∆αA,A′(~pj)〉 // Add rectangle

17 top← pj,2
18 j ← j + 1 // Move to next point in Li−1
19 else if j > |Li−1| then
20 break // Done with Li−1, switch to next i

21 else if top == pk,2 then // ~pj−1 was not above ~pk

22 k ← k + 1 // Move to next point in Li

23 while j ≤ |Li−1| do // We are done with Li but not with Li−1

24 ~l← ~pj, ~u← (r1, top)

25 R ← R∪ 〈~l, ~u,∆αA,A′(~pj)〉 // Add rectangle
26 top← pj,2
27 j ← j + 1 // Move to next point in Li−1

28 return R
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Figure 3: Example of the effect of β (Eq. 7). We have two approximation fronts A1 and A2, each of
them containing only one point. The shaded area corresponds to a region R = 〈~l = (1000, 100), ~u =

(1050, 150),∆αA,A′(~l) = 2〉, which is much smaller in terms of area than (r1−fmin
1 ) · (r2−fmin

2 ). If β = 1 in
Eq. 6, then HV w(A1) = 730000 < HV w(A2) = 770000, even though A1 dominates the weighted region and
A2 does not. If β is scaled as in Eq. 7 with ψ = 0.5, then HV w(A1) = 2813225000 > HV w(A2) = 770000,
thus A1 is now considered better than A2, as expected.

thus increasing or decreasing the weight of the regions. This scaling is equivalent to scaling
each objective to unit length and using a weight of β ∈ [0, 1] (Brockhoff et al., 2013).

Algorithm 2 computes HV w
R (A) given an approximation (Pareto) front A and a set

of regions R. The algorithm finds which points ~p ∈ A partially dominate each region
R = 〈~l, ~u,∆αA,A′(~l)〉 ∈ R. A region is partially dominated by ~p iff ~p strictly dominates ~u,
pi < ui ∀i. Before the start of the algorithm, points in A are sorted by descending p2 and
then by ascending p1, and regions in R are sorted by descending u2 and then by ascending
u1. Algorithm 2 considers the following three cases depicted in Figure 4: (1) ~p is above ~u,
(2) ~p strictly dominates ~u, and (3) ~p is below and to the right of ~u.

In case (1), the algorithm skips to the next point in A, keeping track of the second
coordinate of ~u (top). In case (2), we calculate the area of the region that is dominated
by ~p (line 14) using the variable top to avoid counting the same area again. Figures 4 (c)
and (d) show how top is used to bound the area and how it is updated if the previous
point also belonged to case (2). Finally, in case (3), there is nothing to do but move to
the next region. In both cases (2) and (3), we move to the next region until all regions are
considered (line 16) or the remaining regions are below ~p. After that, the algorithm restarts
the sequence of regions and moves to the next point, which will be below the first region,
i.e., either case (2) or (3). The algorithm stops when all points in A have been visited.

By using the HV w
R value returned by Algorithm 2 to compute HV w (Eq. 6), we can

numerically evaluate the quality of approximation fronts in a way that respects the DM’s
choice of their preferred EAF differences.
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Algorithm 2: Compute HV w
R (see Eq. 6).

Input: A: an approximation (Pareto) front as a queue sorted by descending p2 then
ascending p1
R: set of regions sorted by descending u2 then ascending u1

Output: HV w
R

1 HV w
R ← 0 // Initialise to zero

2 r ← 1, 〈~l, ~u,∆αA,A′(~l)〉 ← Rr ∈ R // First region
3 top← u2
4 ~p← pop(A)
5 while p2 ≥ u2 do // Case #1: ~p is above all regions
6 top← p2
7 if A == ∅ then return HV w

R
8 ~p← pop(A)

9 repeat
10 repeat
11 if p1 < u1 ∧ l2 < top then // Case #2: ~p strictly dominates ~u

12 width← u1 −max{p1, l1}
13 height← min{top, u2} −max{p2, l2}
14 HV w

R ← HV w
R + width · height · α(~l)

// Else Case #3: ~p is below and to the right of ~u: do nothing
15 r ← r + 1
16 if @Rr ∈ R then break // No more regions ⇒ next point

17 〈~l, ~u,∆αA,A′(~l)〉 ← Rr

18 until p2 ≥ u2
19 top← p2
20 if A == ∅ then return HV w

R
21 ~p← pop(A) // Next point

22 r ← 1, 〈~l, ~u,∆αA,A′(~l)〉 ← Rr // Restart regions

23 return HV w
R
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Figure 4: Illustration of all possible cases considered by Algorithm 2.

4. Incorporating DM’s Preferences into Automatic Algorithm Configuration

The method proposed above can be integrated with an AC method such as irace (López-
Ibáñez et al., 2016) by using HV w (Eq. 6) as the criterion optimised by irace. However,
in practice, the DM will be only interested in looking at EAF differences of already well-
performing configurations and it would not be practical that the DM visualises the EAF
differences of all pairs of algorithm configurations that are mutually incomparable in terms of
Pareto-optimality. Therefore, we discuss here a method to identify the pair of configurations
with the largest EAF differences from a given set of configurations.

Intuitively, the most interesting cases for the DM are pairs of configurations that are well-
performing, incomparable in terms of Pareto-optimality and that show large EAF differences
in favour of both configurations, although on different regions of the objective space. On
the other hand, pairs of configurations where EAF differences only appear in favour of one
configuration are necessarily less interesting, since that configuration is clearly better than
the other one. Thus, we propose to calculate, for both configurations of each pair, the sum
of the areas of weighted regions (generated from the EAF differences), so that we can select
the pair with the maximum of the minimum of both areas among all pairs.

More formally, for each unique pair {A,A′}, where A and A′ are the multiset of ap-

12

http://dx.doi.org/10.1016/j.ejor.2020.07.059


Please cite this pre-print manuscript as: Juan Esteban Diaz and Manuel López-Ibáñez. Incorporating Decision-Maker’s
Preferences into the Automatic Configuration of Bi-Objective Optimisation Algorithms. European Journal of Operational
Research, 2020. doi: 10.1016/j.ejor.2020.07.059

proximation fronts produced by two different algorithm configurations, we first compute the
regions of the EAF differences in favour of either side (Algorithm 1), i.e., RA for ∆αA,A′(·)
and RA′ for −∆αA,A′(·). Then, we compute the total area of each set of regions RA and RA′
by calculating (using Algorithm 2) HV w

RA(AT ) and HV w
RA′ (A

T ), where AT = {(fmin
1 , fmin

2 )}
is an approximation front with a single point that dominates all regions. As our goal is
to calculate the area and not the volume of each weighted region, we use a value 1 for the
∆αA,A′(·) of all regions when running Algorithm 2. Finally, the DM is shown the EAF
differences of the pair {A,A′} that satisfies:

max
∀{A,A′}

{min{HV w
RA(AT ), HV w

RA′ (A
T )}} (8)

The DM then chooses which side of the differences is their preferred one and, following
the method described in the previous section, this choice is translated into a HV w that will
guide a subsequent run of irace.

If the pair selected by the method above does not present EAF differences that are
interesting to the DM, or the DM does not feel confident in choosing either side, then the
second best pair that satisfies the previous requirement (if such a pair exists) could be shown
to the DM. This process could continue until the DM makes a choice or until there are no
more possible pairs of configurations to be shown. If we run out of configurations to show,
we execute irace once again to generate new algorithm configurations and show them to
the DM. There is also the possibility that the DM is interested in a region of the objective
space that cannot be attained by any algorithm configuration. In that case, the DM could
provide an “ideal” approximation front to be compared with the actual fronts produced by
the algorithm configurations returned by irace. Moreover, it is also possible to combine our
proposed method with other preference elicitation methods (goals, desirability functions,
etc.) as long as the combination can be expressed as a weighted hypervolume (Brockhoff
et al., 2013). For the sake of brevity, we do not discuss such cases in detail here.

5. Experiments

We test our approach on two different scenarios. The first one is a simple benchmark
designed to illustrate our proposal, whereas the second scenario corresponds to a real-world
multi-objective production planning problem under uncertainty.

Software implementations. We use irace2 version 2.3 as the automatic algorithm configura-
tor. In a nutshell, irace (López-Ibáñez et al., 2016) is an optimisation algorithm that uses
an elitist iterated racing procedure to dynamically decide how many replications of each
algorithm configuration are necessary to evaluate its quality. Parameter configurations are
sampled from a probabilistic distribution, which is subsequently updated, as in reinforce-
ment learning, to bias future samples towards the best parameter values found within a
single run.

2https://cran.r-project.org/package=irace
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The eaf package3 (López-Ibáñez et al., 2010) version 1.9 is used to compute EAF differ-
ences and visualise them. Both irace and eaf packages are implemented in R (R Development
Core Team, 2008) and are publicly available.

Computational environment. All experiments are executed on an Intel(R) Xeon(R) Silver
4114 CPU 2.20 GHz with 46 GB of RAM running Ubuntu GNU/Linux, version 16.04.5. Each
run of irace may use up to 10 CPUs in parallel. In our experiments, each irace step between
interactions with the DM required 3 minutes on average in the scenario in Section 5.2 and
around 280 minutes in the scenario in Section 5.3. The main factors affecting computation
time are the budget assigned to irace, the runtime required by each run of the algorithm
being configured and the number of parallel CPUs. In practice, some scenarios may allow
almost real-time interaction, whereas others may require days of computation time between
interactions.

Reproducibility. We provide codes, datasets and scripts to reproduce the experiments in
Section 5.2. We also provide a version of the eaf package implementing the algorithms
proposed here. The MOEA algorithm in Section 5.3 and the data regarding the real-world
problem are not publicly available; however, we provide the data generated by it together
with scripts to reproduce the analysis. All supplementary material is available at http:
//doi.org/10.5281/zenodo.3749288 .

5.1. Simulation of the DM’s True Preferences
In order to validate our proposed interactive approach, we simulate the true preferences

of a DM by means of weight distribution functions over the objective space (Brockhoff
et al., 2013). Such weight functions allow a DM to specify regions or points of interest in
the objective space. For example, a combination of exponential weight functions may be
used to capture a preference for extreme values for both objectives:

wexp(~z) =
m∑
i=1

1

µexp
λe
− (zi−f

min
i )

µexp (9)

where ~z = (z1, . . . , zm) is a point in the objective space, µexp ∈ R+ is the mean of the
distribution (inverse of the exponential rate) and fmin

i is the ideal value of objective i.
Similarly, the DM may be interested in a particular point ~g ∈ Rm (goal) in the objective

space. Preference towards such a goal may be articulated by using as the weight distribution
wgoal(~z) a bivariate normal distribution, with mean ~g, variance σ = 0.25 and correlation 1
(Auger et al., 2009).

Given the weight distribution that describes the true preferences of the DM, we can
evaluate how much a given approximation front satisfies those preferences by computing
the weighted hypervolume according to the weight distribution. Since computing the exact
weighted hypervolume for arbitrary weight functions is far from trivial, we instead estimate

3http://lopez-ibanez.eu/eaftools
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its value by Monte-Carlo sampling following the method described by Auger et al. (2009)
and Brockhoff et al. (2013). The accuracy of this sampling method is independent of the
weight function. In our evaluation, we use 106 samples to estimate the weighted hypervolume
corresponding to the DM’s true preferences.

5.2. DM’s Preferences in the Configuration of the Length Parameter of W-RoTS
We validate our proposed approach by automatically configuring a single parameter of

Weighted Robust Taboo Search (W-RoTS). The effect of this parameter on the generated
approximation fronts is well understood, thus we can verify whether the choices of the DM
lead to the expected parameter values.

W-RoTS. Weighted Robust Taboo Search (W-RoTS) (López-Ibáñez et al., 2006) is a multi-
objective local search algorithm that performs multiple runs of the single-objective robust
taboo search (RoTS). Each run of RoTS solves a scalarised version (a weighted sum) of
the multi-objective problem. The weights are dynamically generated using a strategy called
regular anytime (Dubois-Lacoste et al., 2011b) that progressively divides the range of weights
into finer “levels” of maximally dispersed weights. In the bi-objective case and assuming the
weighted sum fλ(~x) = λf1(~x) + (1 − λ)f2(~x), with ~x ∈ X and λ ∈ [0, 1], the sequence of
weights will be λ ∈ {0, 1, 0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, . . . }. That is, additional
scalarisations will progressively fill gaps in the current approximation of the Pareto front.
The computation time consumed by each run of RoTS for a given weight is controlled by a
parameter ` (taboo search length), with higher values devoting more time to optimising the
scalarised problem and, typically, returning a higher quality solution. If W-RoTS stops after
a given CPU time, then higher values of ` will decrease the number of different scalarised
problems that may be solved, thus leaving gaps in the resulting approximation front, but
obtaining very high-quality solutions for the weights used; whereas lower values of ` will allow
tackling more scalarised problems, filling the gaps yet returning lesser quality solutions for
each of them. Thus, the value of ` has a predictable effect on the differences between the
generated approximation fronts.

Experimental setup. We run W-RoTS with a maximum CPU-time of 1 second with config-
urations ` = 1 (P1C1) and ` = 100 (P1C2) on an instance of the bi-objective quadratic
assignment problem of size 25 and correlation between the objectives of −0.75. Each run
is replicated 30 times with different random seeds. The EAF differences (Figure 5) demon-
strate the expected behaviour: P1C1 (` = 1) obtains better results along the front except
for a few specific regions, whereas P1C2 (` = 100) returns higher-quality solutions at the
extremes of the front. In this section, all hypervolume (weighted or not) calculations use
~r = (1779390, 1650208) and the ideal point is fmin = (1264374, 1166290).

DM preferences. We can simulate a preference of the DM for the centre of the front by means
of the weight distribution wgoal (Section 5.1) with the goal (1 264 374, 1 166 290), which is
the point we found after a few preliminary experiments. According to this preference, the
mean weighted hypervolume of P1C1 (` = 1) is larger than the one of P1C2 (` = 100)
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(see Table 1), thus P1C1 matches more closely the DM’s preferences in this case. We can
also simulate a preference of the DM for the extreme values of either objective by using an
exponential weight distribution wexp (Eq. 9) with µexp = 0.1. According to this preference,
the mean weighted hypervolume of P1C1 (` = 1) is smaller than the one of P1C2 (` = 100)
(see Table 1), validating that P1C2 matches more closely the preference of the DM for
the extremes of the front. Boxplots of the weighted hypervolume according to both weight
distributions (Figure 9) show significant differences between P1C1 and P2C2.

Automatic configuration. We now evaluate what happens if irace tunes the parameter ` after
the DM selects either side of Figure 5 as their preferred differences. First, we compute the
regions corresponding to each side using Algorithm 1. Then, Algorithm 2 uses these regions
to define two HV w functions (Eq. 6) with ψ = 0.1. These HV ws become the optimisation
criterion guiding two different settings of irace, denoted as P1iraceC1 and P1iraceC2, for
the EAF differences in favour of P1C1 and P1C2, respectively. Each setting of irace is
configuring parameter ` with an integer domain of [1, 200] for a maximum budget of 500
runs of W-RoTS. We run each irace setting 30 times with different random seeds, keeping
only the best configuration obtained by each run. As a result, we obtain 30 configurations of
` for P1iraceC1 and for P1iraceC2 with a mean value of ` of 3.8 (with a standard deviation
of 1.06) and 23.5 (standard deviation is 8.77), respectively. Thus the different HV ws clearly
lead irace towards different values of `. In order to visualise the EAF differences between
these configurations, we run each of them 30 times with different random seeds.

Analysis of results. The effect of the DM’s choice is visible when comparing the configura-
tions obtained by P1iraceC1 and those obtained by P1iraceC2 (Figure 6) in relation to the
original decision of the DM (Figure 5). There are 900 approximation fronts (30 runs of 30
configurations) on each side of Figure 6. The plots show that the configurations returned
by the two settings of irace are not only clearly different, but also that they are different
precisely in the regions preferred by the DM.

The improvement obtained by irace with respect to the configuration chosen by the DM
is visible in Figs. 7 and 8. Figure 7 shows the EAF differences between P1C1 (` = 1) and
the configuration with ` = 4, which is the closest integer value to the mean ` returned by
P1iraceC1 after the DM chose P1C1 (` = 1). The plot shows that there are clear differences
along the front and especially on the extremes in favour of ` = 4, and thus irace was able
to find a configuration that outperforms the one chosen by the DM, while at the same time
respecting DM’s preferences. This conclusion is even stronger in Figure 8 when comparing
P1C2 (` = 100) and the configuration with ` = 24, which is the closest integer value to the
mean ` returned by P1iraceC2 when the DM chose P1C2 (` = 100). Again in this case, irace
not only improves the configuration chosen by the DM, but the improvement is focused on
the region of the objective space preferred by the DM.

We also verify that irace is indeed generating configurations that match the true prefer-
ences of the DM by calculating the estimated weighted hypervolume according to both the
weight distributions wgoal (preference for the centre of the front) and wexp (preference for
the extremes). Table 1 shows the mean values of the weighted hypervolume for each weight
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Table 1: Mean weighted hypervolume according to weight distributions wgoal and wexp of the approximation
fronts generated by various configurations of W-RoTS.

P1C1 P1C2 P1iraceC1 P1iraceC2

wgoal 12 655 754 610 10 348 549 426 12 833 541 277 12 503 730 101

wexp 45 875 372 184 49 194 740 255 50 140 237 619 52 005 727 121

distribution. In the case of wgoal, the value corresponding to P1iraceC1 is larger than the
one of P1C1, which implies that irace was successful in improving the configuration chosen
by the DM (P1C1). Moreover, the value corresponding to P1iraceC1 is larger than the
value of P1iraceC2, which implies that irace obtained configurations more closely matching
the true preference of the DM when guided by the HV w computed after the DM chose the
EAF differences in favour of P1C1 (consistent with wgoal) rather than those in favour of
P1C2 (consistent with wexp). A similar analysis can be made for wexp, that is, P1iraceC2
obtains the largest mean value, improving over P1C2, which was the configuration chosen
by the DM. Moreover, P1iraceC2 obtains larger values according to wexp than P1iraceC1,
because the former was guided by the HV w computed from the EAF differences that were
consistent with wexp. All the observed differences are statistically significant according to
the non-parametric Wilcoxon rank-sum test, as shown in Figure 9. The fact that the config-
urations generated by irace optimise the weighted hypervolume that is consistent with the
true preferences of the DM confirms that the proposed preference elicitation method works
as expected.

5.3. Re-configuring a Multi-objective Optimiser for a Real-world Problem According to DM’s
Preferences

We consider now a more realistic and challenging task: the (re-)configuration of a multi-
objective evolutionary algorithm (MOEA) that tackles a real-world, multi-objective, big
bucket, multi-product, multi-level (sub-products), capacitated (constraints are considered)
production planning problem within a failure-prone batch manufacturing system specialised
on cleaning products, conformed by multiple production lines with insufficient capacity
to fully cover demand requirements. In this system, 31 products can be manufactured
across 7 independent production lines. Given that some products can be manufactured
in multiple production lines, the optimisation problem should determine the values of 41
decision variables. Here, a variable indicates the number of product lots to be manufactured
in a specific production line. Apart from the intrinsic uncertainty present in the system due
to the occurrence of production line failures, all capacity, labour and demand constraints
need to be considered as well during the optimisation process, in order to set the values of
those decision variables. The existing algorithm combines a MOEA with a discrete-event
simulation model. See Diaz et al. (2017, 2018) for more details.

The effectiveness of this algorithm was demonstrated against other approaches, after
tuning its parameters using irace guided by the (unweighted) HV (Diaz et al., 2018). As
discussed above, the HV implicitly incorporates unstated preferences into the AC process.
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Figure 5: EAF differences between two W-RoTS configurations, P1C1 (` = 1) and P1C2 (` = 100). Each
configuration is run 30 times and each run stops after 1 CPU-second.

Figure 6: EAF differences between the W-RoTS configurations returned by P1iraceC1 and by P1iraceC2.
Each side contains data from the approximation fronts generated by 30 runs of 30 configurations.
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Figure 7: EAF differences between configuration P1C1 (` = 1) and the configuration with ` = 4, which is
the closest integer value to the mean ` returned by P1iraceC1.
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Figure 8: EAF differences between configuration P1C2 (` = 100) and the configuration with ` = 24, which
is the closest integer value to the mean ` returned by P1iraceC2.
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Figure 9: Boxplots of weighted hypervolume values according to two different weight distributions: wgoal
(left) and wexp (right). The same approximation fronts are evaluated on both subfigures. Sets P1C1 and
P2C2 contain 30 fronts each, i.e., 30 runs of one configuration of W-RoTS. Sets P1iraceC1 and P2iraceC2
contain 900 fronts each, 30 runs of the best configuration of W-RoTS returned by each of the 30 independent
runs of irace i.e., 30 runs of each configuration of W-RoTS returned by 30 runs of irace. Pairs of sets joined
by a line were compared using the Wilcoxon rank-sum (Mann–Whitney U) test, and the resulting p-value
(adjusted by Holm’s method for multiple comparisons) is shown above the line.

Table 2: Target algorithm parameters used by irace. See Diaz et al. (2017, 2018) for details about these
parameters.

Parameter Type Domain

Crossover probability real (0, 1)
Mutation probability real (0, 1)
Selection operator categorical {NSGA-II, SPEA2, random}
Number of seeds∗ categorical {0, 2, 4, 8, 16, 32}

Number of fitness evaluations∗∗ categorical {10, 30}
Crowding degree for crossover integer [0, 100]
Crowding degree for mutation integer [0, 100]

Seeding operator categorical {1, 2, 3}
∗ used in the initial population
∗∗ used to compute objective values during the optimisation procedure

Here, we demonstrate how our proposal allows DMs to explicitly incorporate their actual
preferences into the AC process, leading to different configurations of the algorithm that
respond to those preferences on a realistic problem.

Experimental setup. Compared to W-RoTS, the algorithm in this section has a larger number
of parameters, with more complex domains, that need to be configured, as shown in Table 2.
Moreover, contrary to W-RoTS, it is not obvious how to set those parameters to satisfy
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different DM’s preferences, and such alternative parameter configurations may not even
exist. Therefore, unlike Section 5.2, where the DM’s choice was based upon predefined
configurations that we knew in advance evidenced different outcomes, here, we first use
irace to find high-performing configurations by optimising the HV . In this section, all
hypervolume (weighted or not) calculations use ~r = (−547956, 76227) and the ideal point is
fmin = (−752658, 0).

Next, we use the criterion (Eq. 8) described in Section 4 to select from the elite configu-
rations returned by irace, the pair that evidences the highest EAF differences. These EAF
differences are visually shown to the DM, who then will select one of the configurations (or
possibly ask the system to show a different pair). Following the approach proposed here,
the DM’s choice will be converted to a HV w that guides further runs of irace. This would
be the usual process in any realistic application scenario.

DM preferences. The true preferences of the DM are simulated by means of two wgoal weight
distributions with different goals: wgoal,C1 uses the goal (−700 000, 5000), while wgoal,C2 uses
(−780 000, 76 200). These goals correspond to two extremes of the objective space, as shown
in Fig 10. This visualisation (without the goals) would be the one shown to the DM, as
explained next.

Automatic configuration. We first run irace guided by the (unweighted) HV and a budget
of 1000 runs of the MOEA. The pair of configurations returned by irace showing the highest
EAF differences (Eq. 8) are denoted here P2C1 and P2C2. At the time irace stops, each of
them has been run 16 times, thus there are 16 approximation fronts generated by each of
them. Their EAF differences are shown in Figure 10. Their mean true weighted hypervolume
values according to wgoal,C1 and wgoal,C2 are shown in Table 3. As expected, P2C1 (resp.
P2C2) will be chosen by the DM if the true preferences are simulated according to wgoal,C1

(resp. wgoal,C2). Although in practice the DM will only choose one of them, here we run two
settings of irace, each setting guided by the HV w computed from the regions in favour of
each choice. Each run of irace has a budget of 1000 MOEA runs, and we repeat each run
30 times with different random seeds. P2iraceC1 denotes the 30 configurations returned by
irace after the DM chooses P2C1, whereas P2iraceC2 denotes the ones returned after the
DM chooses P2C2. Each of these configurations is executed 30 times with different random
seeds.

Analysis of results. If we compare all configurations obtained by P2iraceC1 and P2iraceC2
(Figure 11) and contrast those EAF differences to the ones initially shown to the DM
(Figure 10), it is fairly clear that the configurations returned by each irace variant are
performing better precisely on the regions of the objective space that correspond to the
choice made by the DM. It is important to understand that the regions where P2iraceC1
performs better with respect to P2iraceC2 (Figure 11) actually dominate the regions where
P1C1 performed better with respect to P2C2 (Figure 10), which is the desired behaviour
according to Pareto-optimality.

Next we compare P2C1 and an “average” configuration from P2iraceC1. In particular,
we compute the mean HV w of each configuration in P2iraceC1 using the regions in favour of
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Figure 10: EAF differences between two parameter configurations P2C1 and P2C2. These configurations
were obtained by one run of irace guided by the unweighted hypervolume. Each side contains data from
the approximation fronts generated by 16 MOEA runs. Points (� and �) on the left and the right show the
location of the goals corresponding to wgoal,C1 and wgoal,C2, respectively.

Figure 11: EAF differences between P2iraceC1 and P2iraceC2. Each side contains data from the approxi-
mation fronts generated by 30 runs of the best configuration returned by each of 30 runs of irace.
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Table 3: Mean weighted hypervolume according to weight distributions wgoal,C1 and wgoal,C2 of the approx-
imation fronts generated by various configurations of the MOEA.

P2C1 P2C2 P2iraceC1 P2iraceC2

wgoal,C1 5 687 432 215 4 810 012 874 6 247 075 350 5 365 817 542

wgoal,C2 3 530 670 353 3 871 195 429 3 612 257 671 4 629 175 274

P2C1, which was the HV w used by irace when generating P2iraceC1, and select as the con-
figuration with the closest mean HV w to the average. Figure 12 shows the EAF differences
between P2C1 and this “average” configuration from P2iraceC1. Although the EAF differ-
ences do not show an obvious improvement, the configuration returned by irace does have a
larger HV w value than P2C1. In terms of the true preferences of the DM, the configuration
returned by irace is better near the DM’s preferred goal (wgoal,C1). Table 3, which presents
the mean values of the weighted hypervolume for each weight distribution, shows the config-
urations in P2iraceC1 reach a better mean weighted hypervolume value according to wgoal,C1

than P2C1. However, the boxplots of P2C1 and P2iraceC1 in Figure 14a, which illustrates
the distribution of those hypervolume values by means of boxplots and the p-values resulting
from Wilcoxon rank-sum tests between various pairs, shows that there is a large variance
and the differences are not statistically significant. There may be no configuration of the
MOEA that significantly improves P2C1 with respect to wgoal,C1 or irace was not able to find
it within the budget given. Importantly, irace did not trade-off a regression with respect to
wgoal,C1 for an improvement in some other region, as may be the case with the non-weighted
HV .

A similar conclusion is obtained when comparing P2C2 and the corresponding “average”
configuration from P2iraceC2. In this case, we compute the mean HV w of each configura-
tion in P2iraceC2 using the regions in favour of P2C2, which was the HV w used by irace
when generating P2iraceC2. Figure 13 shows that this “average” configuration is better
than the one chosen by the DM on a larger region of the objective space; however, that
region is not near the DM’s preferred goal (wgoal,C2). Nevertheless, according to their mean
values of the weighted hypervolume given by Table 3, the configurations returned by irace
(P2iraceC2) obtain a better mean weighted hypervolume value according to wgoal,C2 than
P2C2. Moreover, according to Figure 14b, which presents boxplots of those hypervolume
values together with the p-values of Wilcoxon rank-sum tests between various pairs, the
difference between P2iraceC2 and P2C2 is statistically significant at a 95% confidence level
(p-value= 0.04 < 0.05). In other words, even though irace was not able to improve over
P2C2 near the goal preferred by the DM, irace was still able to improve elsewhere without
regressing with respect to wgoal,C2. If irace cannot find a configuration that improves on the
regions preferred by the DM, the HV w still allows finding improvements in other regions of
the objective space.

Finally, we verify that irace is indeed generating configurations that match the true
preferences of the DM by calculating the estimated weighted hypervolume according to
two different wgoal weight distributions, one favouring objective 1 (wgoal,C1) and the other
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Figure 12: EAF differences between P2C1, which has a mean HV w of 5.53e+19, and the configuration
that has the closest mean HV w (5.95e+19) to the average (5.95e+19) across the mean HV w values of all
configurations returned by P2iraceC1. HV w values are computed using the regions in favour of P2C1 in
Figure 10, which was chosen by the DM according to the goal corresponding to wgoal,C1 (�).

-7.8e+05 -7.2e+05 -6.6e+05 -6e+05 -5.4e+05
objective 1

0
4e

+0
4

8e
+0

4
ob

je
ct

iv
e 

2

P2C2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

-7.8e+05 -7.2e+05 -6.6e+05 -6e+05 -5.4e+05
objective 1

0
4e

+0
4

8e
+0

4
ob

je
ct

iv
e 

2

P2iraceC2 (average)

Figure 13: EAF differences between P2C2, which has a mean HV w of 5.44e+19, and the configuration
which has the closest mean HV w (5.60e+19) to the average (5.61e+19) across the mean HV w values of all
configurations returned by P2iraceC2. HV w values are computed using the regions in favour of P2C2 in
Figure 10, which was chosen by the DM according to the goal corresponding to wgoal,C2 (�).
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Figure 14: Boxplots of weighted hypervolume values according to two wgoal weight distributions with
different goals. The same approximation fronts are evaluated on both subfigures. Sets P2C1 and P2C2
contain 16 fronts each, i.e., 16 runs of one configuration of the MOEA. Sets P2iraceC1 and P2iraceC2
contain 900 fronts each, i.e., 30 runs of the best configuration of the MOEA returned by each of the 30
independent runs of irace. Pairs of sets joined by a line were compared using the Wilcoxon rank-sum
(Mann–Whitney U) test, and the resulting p-value (adjusted by Holm’s method for multiple comparisons)
is shown above the line.

favouring objective 2 (wgoal,C2). As expected, Table 3 shows that P2iraceC1 obtains the
highest values with respect to wgoal,C1, whereas P2iraceC2 does the same with respect to
wgoal,C2. As discussed above, according to Figure 14, the improvement of P2iraceC1 over
P2C1 with respect to wgoal,C1 is not statistically significant (p-value= 0.18), while the im-
provement of P2iraceC1 over P2C1 with respect to wgoal,C2 is close to the 95% confidence
level (p-value= 0.043 < 0.05). However, the differences between P1iraceC1 and P2iraceC2
are statistically significant for both weight distributions and, for each of them, the difference
is in favour of the configurations generated by irace when guided by the choice made by
the DM (P1iraceC1 for wgoal,C1 and P2iraceC2 for wgoal,C2). In other words, the configu-
rations generated by irace for each choice are clearly specialised towards satisfying each of
the two alternative preferences of the DM, which confirms the effectiveness of the proposed
preference elicitation method.

6. Conclusions and Future Work

In this paper, we have proposed a procedure to elicit DM’s preferences from a visualisa-
tion of EAF differences by converting these differences into a weighted hypervolume (HV w).
The HV w does not contradict the Pareto-optimality criterion and, at the same time, assigns
a better quality to approximation fronts that attain regions of the objective space that are
preferred by the DM.

We believe that eliciting preferences in this way is far simpler and more intuitive than
directly defining a weight function, in particular, in the context of automatic algorithm
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configuration, where many approximation fronts returned by different configurations of sto-
chastic bi-objective optimisers must be compared.

We demonstrate for a well-understood benchmark (the configuration of the length pa-
rameter of W-RoTS) that an AC method (irace) guided by the HV w generated from our
proposed approach is able to find improved algorithm configurations that satisfy the DM’s
preferences. In addition, we have shown that the proposed approach also works on a more
realistic and challenging scenario arising in the context of a real-world production planing
problem under uncertainty, where there is no prior knowledge about the algorithm config-
urations that would satisfy the DM’s preferences. Our analysis shows that the resulting
algorithm configurations not only improve over the ones generated by irace when guided
by the unweighted HV , but also perform clearly better upon the preferred regions of the
objective space, thus confirming that irace is guided by the DM’s preferences.

As far as we know, our approach is the first to incorporate DM’s preferences into the
AC of multi-objective optimisers. Although we have focused here on irace, our proposed
approach may be integrated into other AC methods.

We have limited ourselves to bi-objective problems, for which the visualisation of the
EAFs is more easily understood. Nevertheless, the main ideas of our approach are applicable
to problems with three objectives, although in that case, more complex and interactive
visualisations should be made available to the DM (Tušar and Filipič, 2014). For higher
number of objectives, it is an open question how to effectively visualise EAF differences and
there is no reason to expect that the most useful methods for multi-objective optimisers (2
and 3 objectives) must be the same as for many-objective optimisers (4 and more objectives),
nor vice versa.

Our proposed approach works well when the training problem instances used in the AC
process are fairly homogeneous in terms of the shape of the Pareto front, so that preferences
obtained on one problem instance can be translated to a different one. If this is not the case,
either further interactions with the DM would be required for different classes of instances,
or we would need a way to map the choice of EAF differences from one Pareto front shape
to a different one. Moreover, it is also an open question how to adjust the HV w when the
DM wishes to refine their preferences through multiple sequential interactions. Thus, future
work will focus on studying ways of aggregating the DM’s preferences elicited by means of
EAF differences across multiple interactions and across differently-shaped training problem
instances.

Finally, we have only considered here the configuration of already designed multi-objective
optimisers, yet the procedure is directly applicable to a wide range of automatic algorithm
design tasks (Bezerra et al., 2016) and to other contexts where the DM is closely involved
in the algorithm design (Trianni and López-Ibáñez, 2015).
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