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Abstract. In many real-world optimization problems, like the traffic
light scheduling problem tackled here, the evaluation of candidate solu-
tions requires the simulation of a process under various scenarios. Thus,
good solutions should not only achieve good objective function values,
but they must be robust (low variance) across all different scenarios.
Previous work has revealed the effectiveness of IRACE for this task.
However, the operators used by IRACE to generate new solutions were
designed for configuring algorithmic parameters, that have various data
types (categorical, numerical, etc.). Meanwhile, evolutionary algorithms
have powerful operators for numerical optimization, which could help to
sample new solutions from the best ones found in the search. Therefore,
in this work, we propose a hybridization of the elitist iterated racing
mechanism of IRACE with evolutionary operators from differential evo-
lution and genetic algorithms. We consider a realistic case study derived
from the traffic network of Malaga (Spain) with 275 traffic lights that
should be scheduled optimally. After a meticulous study, we discovered
that the hybrid algorithm comprising IRACE plus differential evolution
offers statistically better results than conventional algorithms and also
improves travel times and reduces pollution.

Keywords: Hybrid algorithms, Evolutionary algorithms, Simulation op-
timization, Uncertainty, Traffic light planning

1 Introduction

In many real-world optimization problems, the evaluation of candidate solutions
requires the simulation of a process under various scenarios that represent un-
certainty about the real-world. Good solutions should not only achieve good
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objective function values but also show robustness, i.e., low variance across sce-
narios. To assess the robustness of solutions, it is often required to simulate each
solution a number of times using different data, starting conditions or random
numbers. For example, when planning the traffic light schedules within a city1,
it is desirable to find a schedule that works well under many different traffic
conditions [3, 5, 7, 8, 13, 15, 16, 17, 18, 20, 21]. A common approach is to sim-
ulate each candidate solution under a number of scenarios generated from real
traffic data. However, there is a trade-off between the number of scenarios used
for evaluating each solution and the number of candidate solutions evaluated.

Previous work [6] has shown that IRACE [11] is able to find high-quality and
low-variance traffic light schedules by dynamically adjusting the number of simu-
lations performed per solution. The elitist iterated racing algorithm implemented
by IRACE has been traditionally used for the configuration of parameters in
machine learning and optimization algorithms, where each configuration must
be evaluated on a number of training instances of a problem and the algorithm
themselves are often stochastic. The algorithm implemented in IRACE uses a
learning mechanism inspired by reinforcement learning to sample new solutions
from the best ones previously found. Although this approach tends to work well
for configuring a mix of categorical and numerical parameters with dependen-
cies and constraints among them, other operators may perform better when the
problem consists only of numerical decision variables.

In this paper, we propose a hybridization of evolutionary operators from
evolutionary algorithms (EAs) and the elitist iterated racing of IRACE. We
evaluate its performance on the traffic light optimization problem and compare
it with previous results from the literature. The idea of previous approaches to
hybridizing EAs and racing was performing independent races to carry out the
evaluation step within an EA [9], whereas our proposal replaces the sampling
mechanism in IRACE, which is not simply a sequence of independent races,
with evolutionary operators.

Besides, in order to add value to our experimentation, we use an instance
based on real data from the city of Malaga, Spain. We also use a traffic simulator,
SUMO [1, 10], to evaluate each of the traffic light schedules generated by the
algorithms. With this, we not only seek to analyze which algorithm is better but
also to solve a real problem of the city.

In summary, the main contributions of this work are:

– We propose new hybrid algorithms that combine racing strategies with evo-
lutionary operators. Thus obtaining powerful and robust algorithms.

– We optimize the traffic light plan of a real city like Malaga (Spain) using
detailed micro-simulations.

– We offer an in-depth analysis of our hybrid algorithms and compare them
with well-known EAs such as a genetic algorithm (GA) and a differential
evolution (DE).

– We study which algorithm presents the greatest improvement to the city
according to different measures about traffic quality and emission reduction.

1 Legal and technical limitations may make real-time traffic light control infeasible.
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The rest of this article is organized as follows: Section 2 presents a description
of the Traffic Light Scheduling Problem. Section 3 describes the main contribu-
tion of this work, the hybridization between IRACE and EAs. Section 4 outlines
the main aspects of our experimentation. We discuss the results obtained in Sec-
tion 5. Finally, Section 6 presents conclusions and future work.

2 Problem Description

Traffic flow in large smart cities has become one of the most severe problems
that large cities face. In some cases, this problem is further aggravated due to the
high amount of traffic jams, traffic accidents, or even injured people or deaths.
Therefore traffic must be regulated with some elements such as traffic lights.
The larger the metropolitan area, the higher the number of traffic lights needed
to regulate the traffic flow. Optimal management of traffic might be beneficial
to minimize journey times, reduce fuel consumption and harmful emissions.

Traffic lights are coordinated in phases: green, yellow and red. In this way,
when some traffic lights of the same intersection are in green, some others must be
in red. Besides, the different pre-defined phases for an intersection are sequences
repeated over time, we call traffic light program (TLP) to each of those sequences.

The large number of program combinations that appear in traffic light sched-
ules of large cities require automatic tools to generate optimal TLP, which mo-
tivates the Traffic Light Scheduling Problem (TLSP) [8, 15, 16]. The main ob-
jective in this problem is to find optimized TLP for all the traffic lights located
in the intersections of an urban area with the aim of reducing journey time,
emissions, and fuel consumption.

Let us define the TLSP as follows. Let P = {I1, . . . , In} be a candidate TLP,
where each Ii corresponds to a different intersection defined as a set of predefined
valid phases Ii = {ϕi1, . . . , ϕimi

}, where mi = |Ii| and each ϕij ∈ N+ represents
the duration (in seconds) of phase j in intersection Ii, that is, the duration of
each valid phase of light colors (e.g., “rr yyg rr gyyy”). The objective is to find
a TLP P ′ that minimizes a fitness function f : Γ → R such that:

P ′ = arg min
P∈Γ

{f(P )} (1)

where Γ is the space of all possible TLPs.

In order to define the fitness function, we need to explain some previous
concepts used in the definition. The evaluation of a solution is performed using a
traffic simulator that provides information regarding the flow of vehicles. Vehicles
travel from a starting position to a destination position, then the travel time (tv)
of a vehicle v is the number of simulation steps (1 second per simulation step)
in which its speed was above 0.1 m/s, while its waiting time (wv) is the number
of simulation steps in which its speed was below 0.1 m/s.

Long phase duration may lead to a collapse of the intersection. TLPs should
prioritize those phases with more green lights on the directions with a high num-
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ber of vehicles circulating. So, we should maximize the following ratio measure:

GR(P ) =

n∑
i=1

|Ii|∑
j=1

ϕij ·
Gij
Rij

(2)

where Gij is the number of traffic lights in green, and Rij is the number of traffic
lights in red in phase j of intersection i and ϕij is the duration of the phase.
The minimum value of Rij is 1 in order to avoid a division by 0.

Finally, we define the following fitness function that should be minimized:

f(P ) =

V rem(P ) · tsim +
V (P )∑
v=1

tv(P ) + wv(P )

V (P )2 +GR(P )
(3)

where the presence of vehicles with incomplete journeys V rem(P ) penalizes the
fitness of a solution P proportionally to the simulation time tsim. The number
of vehicles that arrive at their destinations is squared (V (P )2) to prioritize this
criterion over the rest. This fitness function has been successfully used in [7, 8].

3 Hybridization of IRACE and Evolutionary Algorithms

There are many definitions of hybrid algorithms, yet the general idea is to com-
bine components or concepts from different techniques to exploit desirable char-
acteristics of those components to tackle problems with particular features [2].
In this work, we combine the elitist iterated racing strategy from IRACE with
evolutionary operators to obtain an algorithm that performs well on numerical
optimization problems where the fitness of each solution is uncertain and must
be evaluated using multiple simulations. The elitist iterated racing strategy of
IRACE decides how many simulations should be performed per solution, how
solutions are compared, and which solutions should be discarded at each iter-
ation. The evolutionary operators are responsible for generating new solutions
from the surviving population of solutions. Next, we will briefly explain the base
algorithm, IRACE, and the different characteristics of the hybrid algorithm.

3.1 IRACE

IRACE [11] is a well-known tool for automatic (hyper-)parameter configuration
of optimization and machine learning algorithms. In the context of automatic
parameter configuration, decision variables correspond to algorithmic parame-
ters, candidate solutions correspond to potential configurations of an algorithm,
and evaluating the fitness of a solution requires running the algorithm with
a particular parameter configuration on multiple training data or problem in-
stances. However, IRACE can be seen as an optimization method for mixed-
integer black-box problem under uncertainty, and, hence, it may be used to
tackle simulation-optimization problems, such as the TLSP [6].
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Algorithm 1 Pseudocode of IRACE

Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.
1: t← 1
2: Θt ← SampleUniformRandomPopulation
3: Θelite ← Race(Θt)
4: while evals < totalEvals do
5: t← t+ 1
6: M← Update(Θelite)
7: Θnew ← Sample(M)
8: Θt ← Θnew ∪Θelite

9: Θelite ← Race(Θt)
10: end while
11: Output: best solution from Θelite

Algorithm 1 briefly presents IRACE applied to the TLSP. Initially, a set of
solutions are sampled uniformly at random. Then a race is performed to identify
the best solutions among the initial set. Within a race, each solution is simu-
lated multiple times on different traffic scenarios until there is enough evidence
to eliminate it because it is performing worse than the best solution found so
far. In the TLSP, we use the pairwise paired Student’s t-test as the elimination
test. The race stops once a minimum number of solutions remains alive in the
race, the budget assigned to the race is exhausted, or multiple elimination tests
fail to eliminate any solution. The solutions that remain alive after the race are
called elite. These elite solutions are used to update a sampling model in a sim-
ilar fashion as reinforcement learning, from which new solutions are generated.
New and elite solutions together form a new population that is raced again. In
elitist racing, results from previous races are re-used in subsequent races and
elite solutions cannot be eliminated from the race until the contender has been
evaluated in as many scenarios as the elite solution. This process is iterated until
a maximum budget of simulations is exhausted. The main benefit of the racing
strategy is that poor solutions are discarded quickly to avoid wasting simula-
tions, while good solutions are simulated on many scenarios to provide a good
estimate of their fitness. Moreover, the elimination test takes into account not
only the mean value over multiple simulations but also the variance and the
number of simulations performed so far.

3.2 Hybrid Algorithms

Once we have described how IRACE works, let us analyze our hybrid algorithms.
In line 7 of Algorithm 1, the function Sample(M) generates a new set of candidate
solutions to the problem. In our hybrid algorithms, we replace that function
with operators taken from two EAs: Genetic Algorithm (GA) and Differential
Evolution (DE). We call IRACE+GA and IRACE+DE, respectively, to these
new hybrid algorithms. These EAs have already demonstrated their effectiveness
in solving the TLSP [6], so we consider them to hybridize with IRACE. In
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this way, the racing step remains intact but the sampling of new solutions is
carried out by these EAs. In IRACE, the Sample(M) procedure is equivalent
to the mating selection and variation steps of an EA, i.e., selecting parents,
generating new individuals from them (crossover), making some modification to
the new solutions (mutation), and returning the new set of solutions. IRACE
works with both numerical and categorical parameters. TLSP only has numerical
parameters, so, in this paper, we do not have to deal with categorical parameters.

The set of elite solutions Θelite contains the best solutions found by IRACE
after the race performed at each iteration (line 9). In our hybrid algorithm, the
parents used by the evolutionary operators are selected from Θelite. However,
the size of Θelite may vary each iteration and may be insufficient for the number
of parents required by the evolutionary operators. We handle this situation by
generating additional parents by random uniform sampling (as in line 2). This
mechanism also introduces more diversity to the set of parent solutions. Because
we use several evolutionary operators, the number of selected parents differs
from one algorithm to another. IRACE+GA needs two parents for the opera-
tor execution, while IRACE+DE needs four. The restriction in the number of
parents is given by the operators used by each algorithm, because each operator
requires a different number of solutions to generate a new one.

In this work, we have implemented two variants of the proposed hybrid al-
gorithm with the following operators:

– IRACE+GA: uniform crossover [19] and integer polynomial mutation [4]

– IRACE+DE: the “DE/best/1/bin” strategy [14].

The evaluation of the new solutions returned after the Sample(M) phase is
computed by performing several simulations, as carried out by IRACE. After
the evaluation phase, we merge this set of new solutions Θnew with set of elite
solutions Θelite to execute the racing. This returns a new set of elite solutions,
which will be used in the next iteration of the hybrid algorithms.

4 Experimental Setup

We describe here the experimental protocol followed in this work. First, we
describe the real-world case study of TLSP that is the main motivation of our
research. After that, we provide details about the experiments carried out. We
will analyze these experiments in the next section.

4.1 Real World Case Study

We consider a realistic scenario derived from the traffic network of Malaga [18],
which encompasses an area of about 3 km2 with 58 intersections controlled by
275 traffic lights (Fig. 1). Our network model was created from real data about
traffic rules, traffic element locations, road directions, streets, intersections, etc.
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Fig. 1. Locations of traffic lights considered in the case of study. The colors show large
(red), medium (yellow) and small (green) differences between two different solutions.

Once we have a realistic traffic network of a city, we need the routes and
vehicles circulating and their speeds. This information was collected from sen-
sorized points in certain streets measuring traffic density at various time in-
tervals. From the sensed data extracted, we have applied the Flow Generator
Algorithm (FGA) [18] to generate 60 different traffic scenarios with an average
of 4,827 vehicles (or different vehicle routes) per scenario. In order to evaluate
the reliability of a candidate solution, we split the generated traffic scenarios
into two equal sets of 30 scenarios each. One (training) set is exclusively used for
optimization, that is, for identifying optimal TLSP solutions. The other (testing)
set of scenarios is used for comparing the solutions found during optimization.

4.2 Case Study Constraints

Real-world instances of the TLSP often present additional constraints. In our
case, we consider the constraints recommended by the City Council of Malaga
(Spain). Phases containing any yellow signals are called fixed phases because
they have a predetermined duration and the set of such phases will be denoted
by Y . These fixed phases correspond to pedestrian crosses, which last for a
fixed time of 4 × number of lanes seconds. Non-fixed phases have a minimum
duration of ϕmin = 15 seconds. Moreover, the total program time (Tpi) within
each intersection Ii, which is computed as the sum of its phase durations:

Tpi =

|Ii|∑
ϕij∈Ii,j=1

ϕij (4)

is constrained within [Tpmin, Tpmax]. For the City Council of Malaga (Spain),
Tpmin = 60 and Tpmax = 120 seconds.

By default, the first programs of all intersections start at the same time.
However, we also optimize an offset time at each intersection (Toi) that repre-
sents a shift in seconds of the starting time of the program at the start of the
simulation. If the offset value of an intersection is negative, then program start
time is shifted back that number of seconds and the program actually starts on a
phase before the first one; whereas if the offset is positive, the program begins as
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if that number of seconds has already passed, i.e., skipping those seconds from
the duration of the first phase and, maybe, of later phases. Offset times enable
the emergence of series of coordinated traffic lights that produce a continuous
traffic flow over several intersections in one main direction. Offset values are
constrained within the time interval Toi ∈ [Tomin, T omax] = [−30, 30].

4.3 Repair Procedure

The TLSP is subject to some constraints we have just explained in Section 4.2. To
ensure that candidate solutions are valid, we propose a repair procedure that is
used by all the algorithms before the simulation. The value of each phase duration
ϕij is already constrained within a range that is larger than the minimum phase
duration ϕmin. However, we need to ensure that the total program time Tpi is
within [Tpmin, Tpmax]. Here we can distinguish two different cases.

In the first case, if the total program time for intersection Ii is smaller than
Tpmin, then we replace each non-fixed phase (those that do not contain a yellow
signal, i.e., ϕij /∈ Y ) with

ϕij =

⌈
ϕij ·

Tpmin − TpYi
Tpi − TpYi

⌉
(5)

where TpYi =
∑
ϕij∈Ii∩Y ϕij is the sum of the fixed phase durations within

intersection Ii.
In the second case, if the total program time is larger than Tpmax, then we

replace each non-fixed phase (ϕij /∈ Y ) with

ϕij = ϕmin +

⌊
(ϕij − ϕmin) · Tpmax − TpYi − ϕmin · |Ii \ Y |

Tpi − TpYi − ϕmin · |Ii \ Y |

⌋
(6)

where |Ii \ Y | is the number of non-fixed phases within intersection Ii and TpYi
is the total duration of the fixed phases within intersection Ii.

4.4 Simulator: SUMO

The quality of a solution (traffic light program) is evaluated through the Sim-
ulator of Urban Mobility (SUMO) [1, 10], which is a microscopic road traffic
simulator that provides detailed information about vehicles like velocity, fuel
consumption, emissions, journey time, waiting time, etc. The study of realistic
scenarios according to real patterns of mobility of the target city is possible due
to the fine-grained realistic micro-simulations provided by SUMO.

All simulations were performed with SUMO version 0.22. Since we already
introduce variability by means of the different traffic scenarios, we fix the ran-
dom seed used by SUMO to zero in all simulations. This means that, given a
traffic scenario and a candidate solution, the simulation is deterministic. In all
experiments, we stop each run of an algorithm, either a variant of IRACE or
otherwise, after executing 30 000 calls to the SUMO simulator. Given that each
solution is simulated on a number of different scenarios, the number of solutions
evaluated per run is often much lower.
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4.5 Algorithms

In our experiments we compare IRACE with the two hybrid variants described
above, namely, IRACE+GA and IRACE+DE. In addition, to assess the con-
tribution of the elitist racing mechanism, we also evaluate the classical GA and
DE algorithms. Here, we describe the implementation details of these algorithms.

Following the conclusions from a previous work on the TLSP [6], we use de-
fault settings for IRACE and the hybrids, except the following. The population
size is fixed to 10 individuals (also for GA and DE), the minimum number of
traffic scenarios simulated per candidate solution is set to two (T first = 2) and
we enable the deterministic option that tells IRACE that the only source of
uncertainty are the different scenarios and not the simulations themselves. The
evolutionary algorithms use a fixed number of simulations per candidate solu-
tion. Each solution is simulated on five different training scenarios and its fitness
is computed as the mean fitness over the five simulations. In [6], the authors al-
ready compared IRACE with differential evolution, genetic algorithm, particle
swarm optimization, and a random search; and showed that IRACE obtained
the best results with GA and DE being a close second, therefore, we focus here
in the comparison of IRACE, GA, DE, and the hybrids.

Our GA implementation uses a ranking method for parent selection and
elitist replacement for the next population, that is, the two best individuals of
the current population are included in the next one. The operators used are
uniform crossover and integer polynomial mutation with 1.0 of probability of
crossover and 0.1 of probability of mutation. These parameter settings were
found by additional experiments carried out in previous studies [3] to produce a
search behavior that is more exploitative rather than explorative, which is more
appropriate for the TLSP. Our DE implementation uses a “best/1/bin” strategy
with difference factor F = 0.5 and probability of crossover 0.5. These are the
default parameter values in jMetal [12]. Finally, IRACE+GA and IRACE+DE
use the same parameter settings as the GA and DE, respectively.

The GA and DE are implemented in Java using jMetal 5.0 [12]. IRACE and
the hybrids are implemented in R.2 We used IRACE version 2.3 as the baseline.3

4.6 Experimental Details

As mentioned above, we generated 60 traffic scenarios from real sensor data and
we split these scenarios into two sets of size 30. One set (training set) is used when
running the algorithms to find TLSP solutions, while the other set (testing set)
is used for evaluating the fitness and reliability of these solutions and comparing
the various strategies analyzed in this paper. During optimization, the traffic is
simulated up to a predefined time horizon (1 hour plus 10 minutes of warm-up,
in our case) in order to simulate the peak period in our real-world case study.
For the constraints of the TLSP, we apply the same repair method as in [6].

2 The source code is available at https://github.com/NEO-Research-Group/irace-ea
3 Available at https://cran.r-project.org/package=irace

https://github.com/NEO-Research-Group/irace-ea
https://cran.r-project.org/package=irace
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The algorithms presented in this paper are non-deterministic algorithms, so
we performed 30 independent runs for a fair comparison between them. After the
executions, we applied the non-parametric Kruskal-Wallis test with a confidence
level of 95% (p-value < 0.05) with Holms’s p-value correction to check if the ob-
served differences are statistically significant. In the cases where Kruskal-Wallis
test rejects the null hypothesis, we run a single factor ANOVA post hoc test for
pairwise comparisons. To properly interpret the results of statistical tests, it is
always advisable to report effect size measures. For that purpose, we have also
used the non-parametric effect size measure Â12 statistic proposed by Vargha
and Delaney [22]. In the case of minimization problems, such as the TLSP, higher

Â12 values suggest that algorithm 2 has a higher probability of obtaining a better
result than algorithm 1, e.g., Â12 = 0.3 indicates that algorithm 2 gets better
values than algorithm 1 in 30% of the runs.

The experiments were run on a cluster of 16 machines with Intel Core2 Quad
processors Q9400 at 2.66 GHz and 4 GB memory and 3 machines equipped with
three Intel Xeon CPU (E5-2670 v3) at 2.30 GHz and 64 GB memory. The cluster
was managed by HTCondor 8.2.7, which allowed us to perform parallel indepen-
dent executions to reduce the overall experimentation time.

5 Results

To give an in-depth view of the performance of our hybrid algorithms against
the standard ones, we will analyze their performance in several sets of scenarios
(training and testing). With this, we want to present the competitiveness of our
proposal and give a solution to the TLSP.
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Fig. 2. Mean fitness of the best solutions found so far within each run, as estimated by
each algorithm at each moment of its execution on traffic scenarios from the training
set. Results in the range [10,000, 30,000] are magnified.
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Table 1. Results of the Â12 test for the evaluation of the last solutions found over
training scenarios. Probability that the algorithm (column) is better than another
algorithm (row). We highlight in bold the values when the algorithm in the column is
better than the algorithm in the row.

IRACE IRACE+DE IRACE+GA GA DE

IRACE — 0.6711 0.6100 0.6067 0.4933
IRACE+DE 0.3289 — 0.3956 0.5122 0.3556
IRACE+GA 0.3900 0.6044 — 0.5478 0.4267
GA 0.3933 0.4878 0.4522 — 0.3811
DE 0.5067 0.6444 0.5733 0.6189 —

5.1 Training Set

During the training phase, each algorithm performs a maximum of 30,000 simula-
tions. Figure 2 shows the best fitness obtained, over the number of simulations,
averaged over 30 runs of each algorithm. We can see that, in general, up to
10,000 simulations, all the algorithms improve significantly the quality of their
solutions, but after this number of simulations, the improvement slows down.
Although the GA and DE obtain the best results up to 5,000 simulations, they
are quickly overtaken by IRACE and its hybrid variants. Figure 2 also shows in
more detail the differences, starting from 10,000 simulations, between IRACE,
IRACE+DE and IRACE+GA. We can notice that IRACE+DE consistently
obtains the lowest mean fitness, while IRACE and IRACE+GA show a simi-
lar result. The plot also shows that the fitness reported by the IRACE hybrids
sometimes increases due to the racing procedure performing additional simula-
tions to refine the estimation of the fitness.

We have performed an Â12 test at the end of the training execution (30,000
simulations) to check if IRACE+DE is indeed better than the other algorithms.

Table 1 shows the results of the Â12 test among the different algorithms, where
each value gives the probability of the algorithm in the column returning a better
solution than the one in the row. The test indicates that GA is better than the
rest of the algorithms. However, we also look at the other statistics shown in
Table 2. Although GA has better median than IRACE+DE’s only by 10−4, the
standard deviation of IRACE+DE is 3.6 times less than GA. Thus, we conclude
that IRACE+DE is more robust than GA. EAs obtain lower mean and median,
while IRACE reports solutions with smaller variability. These results support
our approach to hybridizing IRACE with EAs to obtain good quality robust
solutions. Particularly, IRACE+DE looks like a good option if we want to
apply these features.

5.2 Testing Set

The above reported statistics were obtained after evaluating the final solutions on
the same scenarios used during optimization, but the training scenarios will never
arise exactly in the real-world. We evaluate again the solutions on the 30 testing
scenarios to properly assess their quality in unseen scenarios. Figure 3 shows the
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Table 2. Statistics of each algo-
rithm from the best solutions ob-
tained in the 30,000 simulation of
the training. We mark in bold the
lower value of each metric.

Algorithm Mean Median STD Dev.

IRACE+DE 0.1585 0.1563 0.0101
IRACE+GA 0.1597 0.1590 0.0076
IRACE 0.1621 0.1615 0.0064
GA 0.1684 0.1562 0.0364
DE 0.1689 0.1596 0.0215
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0.2

0.3

0.4

IRACE+GAIRACE+DEIRACE DE GA

Fi
tn

es
s

Fig. 3. Fitness of the solutions obtained by the 5 algorithms. Each boxplot shows the
distribution of fitness values of one solution on the 30 traffic scenarios in the test set.

boxplots of each independent execution in each algorithm. EAs have the highest
variability, while the other three algorithms have more robust boxplots.

To better compare the different algorithms, we summarize the mean, median
and standard deviation (see Table 3) between the different independent runs.
IRACE+DE gets the best results in each of these metrics, followed by IRACE
and IRACE+GA, which are very similar, and the last ones, the EAs. This is a
great result for IRACE+DE because, as it was proved in the training results,
remarks the competitiveness of the algorithm also in the testing phase.

Anyway, the algorithms using IRACE obtain very similar results. This makes
us wonder if there are significant differences between them. To study this, we
perform a Wilcoxon rank-sum test between the algorithms to check if there
are significant differences. Table 4 shows the p-values reported by the test. As
we expected, IRACE+DE has significant differences compared to IRACE and
EAs. This result support our working hypothesis: including EAs (specifically a
DE) into IRACE can improve the performance. IRACE+GA and IRACE do
not offer significant differences between them, which is not a bad result either,
since at least the hybrid algorithm reaches a similar performance to IRACE.
Lastly, EAs have significant differences with the others algorithms.

Finally, we perform an Â12 test to see if our hybrid algorithms (especially
IRACE+DE) effectively beat the other competitors. Table 5 shows the re-

sults for the Â12 test. We observe that IRACE+DE is better than standard
IRACE 53.62% of the time, and 66.17% better than evolutionary ones. While
IRACE+GA is 51.33% of the time better than IRACE and 64.34% better than
the evolutionary ones. These differences are in favour of our approach. After this
experimentation, we can conclude that hybridizing IRACE with evolutionary
algorithms is a viable and competitive option. With this idea, we join the best
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Table 3. Statistics of each algo-
rithm from the best solutions ob-
tained in the testing phase. We
mark in bold the lower value of
each metric.

Algorithm Mean Median STD Dev

IRACE+DE 0.1607 0.1571 0.0175
IRACE+GA 0.1620 0.1577 0.0184
IRACE 0.1623 0.1581 0.0184
GA 0.1793 0.1630 0.0407
DE 0.1769 0.1676 0.0275

Table 4. Wilcoxon Test p-value of the testing
set with Holm correction.

IRACE DE IRACE+DE GA

DE < 2e−16 — — —
IRACE+DE 0.0237 < 2e−16 — —
GA 3.5e−11 0.0011 < 2e−16 —
IRACE+GA 0.3284 < 2e−16 0.2122 5.3e−13

of both types of algorithms obtaining a powerful and robust algorithm, which
allows us to find better solutions for TLSP than the commonly used algorithms.

5.3 Impact in Real World

The previous analysis has focused on the fitness function, an approximation
which encompasses some knowledge of traffic flow to guide the search, however, it
is quite complex to extract useful information for the domain’s expert. Therefore
in this section, we study the main traffic and environmental indicators which give
the domain’s expert more information about the solution.

In a real-world problem, it is desirable to analyze the impact that a repre-
sentative solution of the different algorithms would have in a real environment.
We choose one solution from each algorithm, as a typical traffic light plan as fol-
lows: (i) we calculate the mean of the fitness obtained in the 30 scenarios of the
testing set by each of the 30 solutions of each algorithm, (ii) we order upwards
these mean fitness for each algorithm, (iii) we select, as the representative, the
solution whose fitness value is at the 16th position, that is, immediately follow-
ing the median solution. We cannot select the median because there are an even
number of solutions (30).

We simulate again each of the representative solutions in the test scenarios
but allowing all the vehicles to reach their destination. This means that the fit-
ness values are not penalized, hence, they are smaller than those reported in the
previous boxplots. With these new simulations, we obtain 34 different traffic and
environmental measures of the 30 testing scenarios. Figure 4 shows some of the
most important measures for each algorithm. In all measures, hybrid algorithms
get the best results. IRACE+DE obtains the best average values in MeanTrav-
elTime and MeanWaitingTime, while IRACE+GA has the lowest MaxTrav-
elTime and MaxWaitingTime. In practice, if we implement the IRACE+DE
solution, citizens would complete the journeys in less time (329.60s) and with
less waiting time at intersections (88.84s). If IRACE+GA solution were imple-
mented, the MeanTravelTime is higher than in IRACE+DE solution, but in
the worst case (MaxTravelTime and MaxWaitingTime), IRACE+GA obtains
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Table 5. Results of the Â12 test for testing. Probability that the algorithm (column)
is better than another algorithm (row). We highlight in bold the values when the
algorithm in the column is better than the algorithm in the row.

IRACE IRACE+DE IRACE+GA GA DE

IRACE — 0.5362 0.5133 0.4066 0.3198
IRACE+DE 0.4638 — 0.4780 0.3820 0.2946
IRACE+GA 0.4867 0.5220 — 0.3985 0.3147

GA 0.5934 0.6180 0.6015 — 0.4506
DE 0.6802 0.7054 0.6853 0.5494 —
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Fig. 4. Traffic measures per vehicle. Mean values (and standard deviation) over 30 test
traffic scenarios of the median solutions for the five algorithms.

the minimum values. On the complete opposite side, we have GA and DE, with
the worst results of the comparison.

Regarding the environmental impact (fuel consumption and CO2 emissions),
IRACE+DE gives the most eco-friendly solutions. Nowadays, pollution is a
serious issue in many cities, so offering solutions that reduce emissions and fuel
is of vital importance in today’s cities.

With all these results, we can confirm that better TLPs result in less CO2
emissions, less fuel consumption, and less journey time for the citizen. Our hybrid
proposals, specially IRACE+DE, not only offer competitive solutions from a
scientific point of view, but it would also have a positive impact in the city at
multiple levels both environmental and for the quality of life of the citizens.

6 Conclusions

In this article, we have proposed new hybrid algorithms combining IRACE with
two evolutionary algorithms: GA and DE. These new hybrid algorithms are ide-
ally suited for black-box numerical optimization problems under uncertainty,
by using evolutionary operators designed for numerical optimization to gener-
ate better solutions, while handling uncertainty by means of the elitist racing
strategy in IRACE. We have used these hybrid algorithms (IRACE+DE and
IRACE+GA), IRACE, a GA, and a DE, to solve the TLSP using the real
instance of Málaga, Spain, and the SUMO traffic simulator to evaluate the solu-
tions. The results obtained in the experiments confirm the competitiveness of the
hybridization strategy. Both hybrid algorithms offer better results than GA (60%



Hybridization of Racing Methods with Evolutionary Operators 15

of the time) and DE (70% of the time) on realistic traffic scenarios. Particularly,
IRACE+DE returns the best results during the testing, being also competitive
during the training. Besides, we have seen the impact that the solutions would
have on the city. Our hybridization strategies obtain the best results in travel
times, fuel consumption, CO2 emissions, etc. These results reinforce our algo-
rithmic proposal and show the efficiency that IRACE+DE and IRACE+GA
obtain when solving a real-world problem.

As future work, we will consider other algorithms and operators that have
proven to be effective in numerical optimization problems for hybridization with
IRACE. Although preliminary experiments hybridizing IRACE with JADE [23],
a well-known variant of DE, did not improve the results over the IRACE+DE
proposed in this paper, we plan to perform a deeper analysis of IRACE+JADE
to extract any insights about the behavior of the new hybrid algorithms. Also,
we plan to test our hybrid algorithms on other black-box numerical optimization
problems under uncertainty to further validate our results.
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6. Ferrer, J., López-Ibáñez, M., Alba, E.: Reliable simulation-optimization of traffic
lights in a real-world city. Applied Soft Computing 78, 697–711 (2019)
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8. Garćıa-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights
with particle swarm optimization. IEEE Transactions on Evolutionary Computa-
tion 17(6), 823–839 (Dec 2013)

9. Heidrich-Meisner, V., Igel, C.: Hoeffding and Bernstein races for selecting poli-
cies in evolutionary direct policy search. In: Danyluk, A.P., Bottou, L., Littman,
M.L. (eds.) Proceedings of the 26th International Conference on Machine Learning,
ICML 2009, pp. 401–408, ACM Press, New York, NY (2009)

10. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements 5(3-4), 128–138 (2012)
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