
New Initialisation Techniques for
Multi-Objective Local Search

Application to the Bi-objective Permutation Flowshop

Aymeric Blot1, Manuel López-Ibáñez2,
Marie-Éléonore Kessaci1, and Laetitia Jourdan1

1 Université de Lille, CNRS, UMR 9189 – CRIStAL
{aymeric.blot,mkessaci,laetitia.jourdan}@univ-lille.fr

2 Alliance Manchester Business School, University of Manchester
manuel.lopez-ibanez@manchester.ac.uk

Abstract. Given the availability of high-performing local search (LS)
for single-objective (SO) optimisation problems, a successful approach
to tackle their multi-objective (MO) counterparts is scalarisation-based
local search (SBLS). SBLS strategies solve multiple scalarisations, aggre-
gations of the multiple objectives into a single scalar value, with varying
weights. They have been shown to work specially well as the initialisa-
tion phase of other types of MO local search, e.g., Pareto local search
(PLS). A drawback of existing SBLS strategies is that the underlying
SO-LS method is unaware of the MO nature of the problem and returns
only a single solution, discarding any intermediate solutions that may
be of interest. We propose here two new SBLS initialisation strategies
(ChangeRestart and ChangeDirection) that overcome this drawback by
augmenting the underlying SO-LS method with an archive of nondomi-
nated solutions used to dynamically update the scalarisations. The new
strategies produce better results on the bi-objective permutation flow-
shop problem than other five SBLS strategies from the literature, not
only on their own but also when used as the initialisation phase of PLS.

Keywords: Flowshop scheduling · Local search · Heuristics · Multi-
objective optimisation · Combinatorial optimisation.

1 Introduction

Multi-objective (MO) local search methods [11,7,5] are usually classified into
two types. Scalarisation-based local search (SBLS) strategies aggregate the mul-
tiple objectives into a single (scalar) one by means of weights, and use single-
objective (SO) local search to tackle each scalarised problem. Dominance-based
local search (DBLS) strategies search the neighbourhood of candidate solutions
for (Pareto) dominating or nondominated solutions. Successful algorithms for
MO combinatorial optimisation problems often hybridise both strategies by gen-
erating a set of high-quality solutions by means of SBLS, and further improving
this set by applying a DBLS method [3,7,8,5].

2 A. Blot et al.

Various SBLS strategies have been proposed in the literature that mainly
differ in the sequence of weights explored during the search and the starting
solution for solving each scalarisation. The simplest method, henceforth called
Restart [10], uses a uniform set of weights and starts each scalarisation from a
randomly (or heuristically) generated solution. More advanced strategies, such as
AdaptiveAnytime [4], dynamically compute the next weight and choose a starting
solution among the best ones found so far with the goal of closing the largest
“gap” in the current Pareto front approximation.

We propose to augment the SO local search that solves the scalarisations with
an archive of nondominated solutions, such that they are able to return a set of
solutions that are available to the overall SBLS strategy and to the other local
search runs solving other scalarisations. We also propose two new SBLS strategies
able to generate high-quality solutions to initialize DBLS. With ChangeRestart,
we subdivide the time granted to solve each scalarisation in multiple steps, and
use intermediary solutions to restart each local search run when it falls behind.
With ChangeDirection, we further improve ChangeRestart by changing not only
the starting solution of a local search run, but also the weight that defines the
scalarisation being solved. As a case study, we focus on a bi-objective variant
of the permutation flowshop scheduling problem (PFSP), which has been used
previously as a benchmark for MO local search [3].

This paper is organised as follows. Section 2 describes classical SBLS strate-
gies and the bi-objective PFSP considered here. Section 3 proposes to augment
SO local search used within SBLS strategies with a nondominated archive, and
Sect. 4 proposes two new SBLS strategies. The experimental setup and results
are discussed in Sect. 5 and 6, respectively. Section 7 summarises the conclusions.

2 Background

2.1 Scalarisation-based Local Search (SBLS)

In MO combinatorial optimisation problems, we have a set of feasible solutions S,
where each solution s ∈ S may be evaluated according to a vector of M objec-
tives f(s) = (f1(s), . . . , fM (s)). Without a priori information, candidate solu-
tions are usually compared in terms of Pareto dominance: s1 dominates s2 iff
∀i = 1, . . . ,M , fi(s1) ≤ fi(s2) and ∃j, fj(s1) < fj(s2) (assuming minimisation
without loss of generality). The goal becomes to find, or approximate as well as
possible, the Pareto-optimal set, i.e., the set of solutions S∗ ⊂ S that are not
dominated by any other solution in S. The image of the Pareto-optimal set in
the objective space is called the Pareto front.

An MO problem can be transformed into a SO one by scalarising it, for
example, by means of weighted sum. For simplicity, we will focus on the bi-
objective (M = 2) case in the following. Given a problem with two objectives
f(s) = (f1(s), f2(s)) and a normalised weight vector λ = (λ, 1 − λ), where
λ ∈ [0, 1] ⊂ R, the corresponding scalarised problem (scalarisation) is computed
as fλ(s) = λ · f1(s) + (1−λ) · f2(s). An optimal solution of this SO scalarisation

New Initialisation Techniques for Multi-Objective Local Search 3

is a Pareto-optimal solution of the MO problem, thus multiple Pareto-optimal
solutions (although maybe not all) may be obtained by solving multiple scalarisa-
tions with different weights. The main advantage of solving scalarisations instead
of the original MO problem is that, very often, highly effective and efficient lo-
cal search algorithms exist for the single-objective case. SBLS approaches are
conceptually related to decomposition-based algorithms (e.g., MOEA/D [14]).

Classical SBLS strategies differ in how weights are generated and which so-
lution is used as the starting point of each local search run LSλ solving fλ:

Restart. Perhaps the simplest strategy consists in generating a set of uni-
formly distributed weights and start each LSλ run from a randomly or heuristi-
cally generated solution [10].

TPLS. In its simplest version [10], one high-quality solution is generated by
optimising just the first objective. In a second phase, a sequence of scalarisations
of the problem, with weights that increasingly favours the second objective, are
tackled by running LSλ, thus generating solutions along the Pareto frontier from
the first to the second objective. Moreover, each run of LSλ starts from the
best solution found for the previous scalarisation. This strategy is called 1to2
or 2to1 depending on the objective optimised in the first phase, and produce
better solutions towards that objective. An alternative strategy (Double) avoids
this bias by using half of the weights for 1to2 and the other half for 2to1 [10,4]

AdaptiveAnytime. Unless the problem is fairly regular in terms of difficulty
and the Pareto front is roughly symmetric for all scalarising directions, the above
TPLS strategies can lead to uneven exploration of the objective space and poorly
distributed approximation of the Pareto front. Similar poor results are also ob-
tained when the algorithm is terminated before finishing the predefined number
of scalarisations. The AdaptiveAnytime strategy was proposed to address these is-
sues [4]. Similar to Double TPLS, a first phase generates one high-quality solution
for each individual objective and a second phase solves a sequence of scalarisa-
tions. AdaptiveAnytime maintains a set G of “gaps” in the current Pareto front
approximation, where each gap is a pair of solutions that are neighbours in the
objective space, i.e., no other solution exists within the hyper-cube defined by
them, and the size of the gap is the volume of this hyper-cube. The most suc-
cessful variant of AdaptiveAnytime solves two scalarisations at each step, by first
finding the largest gap in G, e.g., (s1, s2) with f1(s1) < f1(s2), then computing:

{
λ1 = λ− θ · λ
λ2 = λ+ θ · (1− λ)

where λ =
f2(s1)− f2(s2)

f2(s1)− f2(s2) + f1(s2)− f1(s1)
(1)

and θ ∈ [0, 1] is a parameter that biases λ1 towards the first objective and λ2
towards the second objective; and solving fλ1 starting from s1 and fλ2 starting
from s2. The solution returned by solving each scalarisation is used to update
G, by removing any dominated solutions and updating the corresponding gaps.
Thus, each step of the AdaptiveAnytime strategy tries to reduce the size of the
largest gap and adapt the weights to the shape of the current front.

4 A. Blot et al.

2.2 Bi-objective Permutation Flowshop Scheduling

The above SBLS strategies have been tested on various bi-objective PFSPs [4]
and AdaptiveAnytime was later used as the initialisation phase of the state-of-
the-art MO local search [3]. The PFSP is among the best-known problems in the
scheduling literature, since it models several typical problems in manufacturing.
Given a set of n jobs to be processed sequentially on m machines, where each
job requires a different processing time on each machine, the goal is to find
a permutation of the jobs that optimises particular objectives, such that all
the jobs are processed in the same order on all machines, and the order of the
machines is the same for all jobs. In this paper, we focus on the bi-objective
variant (bPFSP) that minimises the completion time of the last job (makespan)
and the sum of completion times of all jobs (total flowtime).

3 Archive-aware SBLS Strategies

Classical SBLS strategies (Restart, 1to2, 2to1, Double and AdaptiveAnytime) use
a SO local search to find a new solution optimised for a given scalarisation. Each
local search run (LSλ) starts from a given solution and returns the single best
solution found for that particular scalarisation. Any other solution found during
the run is discarded, even when not dominated by the solution returned.

We propose to augment the SO local search with an archive that keeps track
of nondominated solutions found while solving a scalarisation, in order to pre-
serve solutions that may be optimal for the MO problem, even if they are not for
the particular scalarisation. Since such intermediary solutions are fully evaluated
to compute their scalarised value, keeping an archive of these solutions only adds
the computational overhead of updating the archive. In practice, adding every
solution evaluated to the archive would require too much time. Instead, we only
update the archive when a new solution replaces the current one.

As an example of SO local search, let us consider iterated greedy (IG) [12]. At
each iteration of IG, the current solution π is randomly destructed (by removing
some jobs from it), heuristically reconstructed (by re-inserting the jobs in new
positions), and the resulting solution may be further improved by another local
search. An acceptance criterion replaces the current solution (π) with the new
one if the latter is better or some other condition is met. In any case, if the new
solution improves the best-so-far one (π?), the latter is replaced. The algorithm
returns π? once it terminates.

Our proposed archive-aware IG adds an archive of nondominated solutions
(A) that is updated every time a better current solution is found, and returns
the archive in addition to the best solution found. Any other SO local search
used within SBLS strategies can be made archive-aware in a similar manner.

We propose variants of the classical SBLS strategies that make use of such
archive-aware SO local search and we denote such variants with the suffix “arch”.
In Restartarch, 1to2arch, 2to1arch and Doublearch, each local search run produces
an archive instead of a single solution. The resulting N scalar archives are in-
dependent of each other until merged into a final archive. Thus, the search

New Initialisation Techniques for Multi-Objective Local Search 5

trajectory of these archive-aware SBLS variants is the same as their original
counterparts, except for the overhead incurred by updating the archives. In the
case of AdaptiveAnytimearch, the archive returned by each local search run is im-
mediately merged with the overall archive so that all solutions returned by the
local search are used for computing the next largest gap.

4 New SBLS Strategies: ChangeRestart, ChangeDirection

4.1 ChangeRestart

We observed that the sub-spaces searched by running the SO local search for
different values of λ often overlap, thus the best-so-far solution found for one
scalarisation may be worse than the best-so-far solution found for another when
the latter solution is evaluated on the former scalarisation. Thus, the main idea
behind ChangeRestart is to divide each local search run (LSλ) into smaller steps
and, at each step, decide to either continue the run until the next step or restart
it from a new solution. In particular, the time limit assigned to each LSλ run is
divided by N steps (when N steps = 1, ChangeRestart is identical to Restart). When
interrupted, LSλ returns its best-so-far solution (π?λ). Then, for all weights λ,
we calculate the scalarised value fλ of all solutions in the current nondominated
archive A, and we can limit the computational overhead of this recalculation
by reducing the number of steps (N steps). After interrupting LSλ′ and LSλ′′ , if
fλ′(π?λ′′) < fλ′(π?λ′), then LSλ′ restarts its search from π?λ′′ . In the archive-aware
variant ChangeRestartarch, each run of LSλ returns a nondominated archive that
is merged with the overall archive A.

Figure 1 shows possible executions of ChangeRestart and ChangeRestartarch for
two scalarisations and three steps (N steps = 3). Blue points () and red triangles
() show the initial solutions and the best solutions found after each step. These
solutions are connected with arrows to show the trajectory followed by each
run of LSλ. Unfilled points () and triangles () show intermediary solutions in
the archive after each step. For ChangeRestart (left), after the second step, the
solution (a) found for λ = 1 has a worse value in the first objective than the
solution (b) found for λ = 0.5. Thus, the local search for λ = 1 re-starts from
solution b instead of a. For ChangeRestartarch (right), the local search re-starts
instead from solution (c), as it has an even better value regarding objective f1.

4.2 ChangeDirection

While ChangeRestart is an extension of Restart, the second SBLS strategy pro-
posed here, ChangeDirection, is inspired by the more advanced AdaptiveAnytime,
which dynamically adapts scalarisation weights according to the gaps in the cur-
rent overall archive (A), in order to focus the search in the direction that will
most improve the current approximation to the Pareto front. In ChangeDirection,
as in ChangeRestart, the runs of LSλ are also divided in a number of steps and,
after each step, solutions from different scalarisations are merged into A. How-
ever, instead of only updating the starting solution of each LSλ run, the weight

6 A. Blot et al.

a

b

f1

f2 λ = 1.0

λ = 0.5

a

b

c

f1

f2 λ = 1.0

λ = 0.5

Fig. 1. Example runs of ChangeRestart (left) and ChangeRestartarch (right) (N steps = 3).

λ is also updated. That is, in addition to speeding up an LSλ run by re-starting
from a better initial solution, the scalarisation direction of LSλ may be changed
to focus on the largest gap in the current approximation front. In particular, a
weight λ is replaced by another weight whenever the best-so-far solution of LSλ
is worse, according to fλ, than a solution returned by another local search run.
In that case, the computational resources allocated to searching in the direction
given by λ could be better used in searching on a different direction.

ChangeDirection only differs from ChangeRestart in the deletion and replace-
ment of scalarisation directions. Thus, we will only explain those novel parts.
First, we delete those scalarisation weights for which the best solution found
in the last run of LSλ is worse, according to the same scalarisation fλ, than a
solution in A. Then, following the strategy of AdaptiveAnytime explained ear-
lier, the gaps in the current approximation front are computed and new weights
are generated from the largest gap to replace the deleted ones. In particular,
two weights are generated from each gap (Eq. 1) until all deleted weights are
replaced. When only one additional weight is needed, it is chosen randomly be-
tween the two weights produced by the gap. The new scalarisations then start
from the solutions constituting the sides of the gap. If all gaps are used and addi-
tional weights are needed, they are drawn uniformly at random within [0, 1] and
initial solutions are taken uniformly at random from A. Finally, as in Change-
Restart, each LSλ either re-starts from a new initial solution if its scalarisation
was introduced in this step, or continues from its current solution, otherwise.
As previously, in the archive-aware variant ChangeDirectionarch, each run of LSλ
returns a nondominated archive that is merged with the overall archive A.

5 Experimental Setup

We wish to investigate not only whether the new proposed SBLS strategies work
well on their own, but also if they provide a good initial set for a dominance-
based local search (DBLS) algorithm. Thus, we use the various SBLS strategies
as the initialisation phase of a hybrid of SBLS+DBLS algorithm, where a SBLS
strategy generates an initial approximation front that is further improved by a
DBLS strategy, in our case, an iterated variant of Pareto local search (IPLS). We
use IG as the single-objective local search (LSλ) and the algorithms are evaluated

New Initialisation Techniques for Multi-Objective Local Search 7

on the bi-objective PFSP (bPFSP). In this section, we explain the details of the
our experimental setup.

bPFSP Instances. As a benchmark, we consider the well-known Taillard in-
stances [13], in particular, 80 instances divided into 8 classes with {20, 50, 100, 200}
jobs and {10, 20}machines, i.e., 10 instances for each combination jobs×machines.

Iterated Greedy (IG). The single-objective local search used by the SBLS
strategies is Iterative greedy (IG) [12], which is a state-of-the-art algorithm for
the single-objective PFSP. The particular IG variant and parameter settings
are directly taken from the bPFSP literature [3]. For the archive-aware SBLS
strategies, we augment this IG variant with an archive as explained in Section 3.

Iterated Pareto Local Search (IPLS). As the DBLS component of our
hybrid SBLS+DBLS algorithm, we consider an iterated variant of Pareto local
search (PLS) [9], as it was shown that even simple perturbations could benefit
PLS algorithms [2]. Our iterated PLS (IPLS) extends the PLS used in [3] by per-
turbing the archive when the latter converges to a Pareto local optimal set, using
the generalised framework of [1]. The perturbation used creates a new archive
by taking every current solution and replacing it with one of its neighbours,
taken uniformly at random, three times in a row; dominated solutions from this
new set are then filtered. As the neighbourhood of PLS, we use the union of the
exchange and insertion neighbourhoods [6], in which two positions of two jobs
are swapped and one job is reinserted at another position, respectively.

Termination criteria. The termination criterion of algorithms applied to
the bPFSP is usually set as maximum running time linearly proportional to both
the number of jobs n and machines m (e.g., 0.1 ·n ·m CPU seconds [3]). Instead,
we use a maximum running time for the hybrid SBLS+IPLS of 0.002 · n2 · m
CPU seconds. Indeed, the total number of solutions grows exponentially and the
typical size of permutation neighbourhoods grows quadratically, making a linear
running time less relevant. The coefficient 0.002 was chosen to match the linear
time for n = 50 and m = 20. The SBLS strategies are limited to 25% of this
maximum running time, and the remaining 75% is allocated to IPLS. In IPLS, a
perturbation occurs after n successive iterations without improvement.

The main parameter of the SBLS strategies is the number of scalarisations
(N scalar), that is, the number of runs of IG executed in addition to two individual
runs for each of the two single objectives. Following [3], we perform longer runs
of IG for the two single objectives (IG{1,2}) than for the other scalarisations
(IGλ), with the time assigned to IG{1,2} being 1.5 times the time assigned to
IGλ. As more time is allocated to IG{1,2} than to IGΛ, their respective running

time budgets are 1.5/(N scalar + 3) and 1/(N scalar + 3) of the total time assigned
to the SBLS strategy. In the case of ChangeRestart and ChangeDirection, the
maximum runtime of each IG is further divided by N steps.

The following experiments are separated in three successive phases. First,
we analyse the effect of using an archive-aware IG on the five SBLS strategies
from the literature (Restart, 1to2, 2to1, Double, and AdaptiveAnytime). Second,
we compare all these SBLS variants with the new SBLS strategies proposed
here (ChangeRestart and ChangeDirection), including their archive-aware coun-

8 A. Blot et al.

terparts. Finally, we analyse other possible setting for the parameters N scalar

and N steps. Unless stated otherwise, ChangeRestart and ChangeDirection use
N steps = 20; all SBLS strategies use a fixed value of N scalar = 12; and both
AdaptiveAnytime and ChangeDirection use θ = 0.25 for Eq. 1 [3].

In all cases, we run the hybrid SBLS+IPLS and we save the archive returned
by the SBLS strategies (before IPLS) and the final archive (after IPLS). Each
experiment is repeated 5 times, using independent random seeds, on each of the
80 Taillard instances, that is, we perform for each strategy 50 runs per instance
class and 400 runs in total. All replications use the same seeds on the same
instances. All the experiments have been conducted on Intel Xeon E5-2687W
V4 CPUs (3.0GHz, 30MB cache, 64GB RAM).

Results are evaluated according to both the hypervolume and the additive-ε
indicators [15]. Indicator values have been computed independently on every run
by aggregating all results generated for an instance and scaling both objectives
to a 0–1 scale in which 0 (1) corresponds to the minimum (maximum) objective
value reached by any solution. The hypervolume variant 1−HV is used, with 0
corresponding to the maximum hypervolume, so that both indicators are to be
minimised. The reference point used for computing the hypervolume indicator is
(1.0001, 1.0001). The reference set for computing the additive-ε indicator is the
set of nondominated solutions from all aggregated results for each instance.

6 Experimental Results

6.1 Known SBLS strategies vs. their archive-aware variants

First, we compare the five classical SBLS strategies with their archive-aware vari-
ants. Figure 2 shows the mean hypervolume and additive-ε values, over all 80
bPFSP instances, obtained by each strategy before and after running IPLS. For
both indicators, all the archive-aware variants (in red) lead to improved quality
before IPLS. After results are improved by IPLS, all archive-aware variants pro-
duce again better results than their original counter-parts, with the exception of
AdaptiveAnytime. This is somewhat surprising and further analysis is needed to
understand this behaviour. Interestingly, some of the archive-aware variants are
able to outperform AdaptiveAnytime when their original variants are not.

6.2 Performance of the two new SBLS strategies

We now compare the newly proposed SBLS strategies (ChangeRestart and Change-
Direction) to the ones from the literature as well as their archive-aware variants.
In terms of hypervolume (Fig. 2, left), all four new strategies achieve in average
much better results than the strategies from the literature, with ChangeRestartarch
achieving the best results both on its own and when further improved by IPLS.
However, in terms of additive-ε (Fig. 2, right), the non-archive-aware ChangeRe-
start strategy performs much worse than the three other new strategies, but still
better than most strategies from the literature. Overall, the best strategy accord-
ing to both indicators appears to be the archive-aware ChangeRestart strategy.

New Initialisation Techniques for Multi-Objective Local Search 9

0.25 0.3

0.16

0.17

1−HV before IPLS

1
−
H
V

a
ft

er
IP
L
S

0.16 0.18 0.2 0.22 0.24

0.095

0.1

0.105

ε before IPLS

ε
a
ft

er
IP
L
S

Restart Restartarch 1to2 1to2arch
2to1 2to1arch Double Doublearch

AdaptiveAnytime AdaptiveAnytimearch ChangeRestart ChangeRestartarch
ChangeDirection ChangeDirectionarch

Fig. 2. Comparison of all SBLS strategies according to (left) mean hypervolume and
(right) mean additive-ε.

To validate these observations, Table 1 shows the results of a statistical anal-
ysis comparing all approaches, without averaging over instance classes, for both
hypervolume (top) and ε (bottom). For each instance class, and for all possible
pairs of strategies, we conducted a statistical Wilcoxon test comparing their final
quality (after IPLS) paired on the 50 values per class. The symbol “3” in the
table indicates strategies for which there was no other strategy performing sta-
tistically better (95% confidence). In other words, within each row, all strategies
with “3” are not statistically better to each other, while for those strategies
without “3”, there was at least one other strategy statistically better. As shown
in Table 1, the SBLS strategies from the literature are often outperformed by
some other strategy, whereas their archive-aware variants are less often so, in par-
ticular on the smaller instances with 20 and 50 jobs. Finally, ChangeRestartarch
and both variants of ChangeDirection are almost never outperformed, even on
the largest instances, validating our previous observations.

6.3 Analysis of Parameters N scalar and N steps

SBLS strategies strongly depend on the number of scalarisations. Our choice of
N scalar = 12 was motivated by previous studies claiming that few scalarisations
should be preferred [3]. Figure 3 (left) shows for the 14 previous strategies the
final performance regarding both hypervolume and additive ε indicators, for both
parameter values of N scalar ∈ {6, 12} scalarisations, in order to see the impact
of archives-aware mechanisms when using very few scalarisations.

We can see that for all strategies, both with and without archiving, using
12 scalarisations improves significantly the mean performance regarding hyper-

10 A. Blot et al.

Table 1. SBLS strategies not statistically outperformed by another strategy after IPLS
step, using paired Wilcoxon tests (left: hypervolume; right: additive-ε)

R
es
ta
rt

1
to
2

2
to
1

D
o
u
b
le

A
d
ap

ti
ve
A
n
yt
im

e
R
es
ta
rt

ar
ch

1
to
2
ar
ch

2
to
1
ar
ch

D
o
u
b
le

ar
ch

A
d
ap

ti
ve
A
n
yt
im

e a
rc
h

C
h
an

g
eR

es
ta
rt

C
h
an

g
eR

es
ta
rt

ar
ch

C
h
an

g
eD

ir
ec
ti
o
n

C
h
an

g
eD

ir
ec
ti
o
n
ar
ch

R
es
ta
rt

1
to
2

2
to
1

D
o
u
b
le

A
d
ap

ti
ve
A
n
yt
im

e
R
es
ta
rt

ar
ch

1
to
2
ar
ch

2
to
1
ar
ch

D
o
u
b
le

ar
ch

A
d
ap

ti
ve
A
n
yt
im

e a
rc
h

C
h
an

g
eR

es
ta
rt

C
h
an

g
eR

es
ta
rt

ar
ch

C
h
an

g
eD

ir
ec
ti
o
n

C
h
an

g
eD

ir
ec
ti
o
n
ar
ch

20× 10 3 3 3 3 3 3 3 3 3 3 3 3 3 3

20× 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

50× 10 3

50× 20 3

100× 10 3 3 3 3 3 3 3 3 3

100× 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

200× 10 3 3 3 3 3 3 3 3

200× 20 3 3 3 3 3 3 3 3

volume and slightly the one regarding the ε indicator, hinting that even with
archiving a sufficient number of scalarisations are still required.

The number of steps, i.e., how many times we can restart the scalarisations,
is at the core of the two new SBLS strategies we propose. Figure 3 (right) shows
for all variants of the ChangeRestart and ChangeDirection strategies the impact
of the parameter N steps, for values of N steps = 1 (equivalent to Restart) and
N steps ∈ {2, 5, 10, 15, 20, 25}, using the final performance regarding both the
hypervolume and ε indicators. Marks indicate the value of N steps, while colours
indicate the strategy.

As the figure shows, at first increasing the number of steps from one largely
improves the quality of the results. Increasing the number of steps further spe-
cially benefits the archive-aware variants and in particular, ChangeDirectionarch.
However, for large values of N steps, the quality improvements stop or, in several
cases, worsen. Thus, it appears that even larger values would not improve the
results reported here.

7 Conclusion

This paper proposes and evaluates two complementary ways of augmenting
scalarisation-based local search (SBLS) strategies by making the underlying
single-objective local search aware of the multi-objective nature of the prob-
lem. Our first proposal adds an archive of nondominated solutions to the single-
objective local search. Our results showed that these archive-aware SBLS vari-
ants always improve over their original counterparts when ran on their own.
Moreover, this improvement also shows for nearly all SBLS strategies when act-
ing as the initialisation phase of an iterated Pareto local search (IPLS).

New Initialisation Techniques for Multi-Objective Local Search 11

0.16 0.17 0.18

0.095

0.1

0.105

0.11

1−HV after IPLS

ε
a
ft

er
IP
L
S

N scalar = 6 N scalar = 6 (arch)

N scalar = 12 N scalar = 12 (arch)

0.16 0.17
0.09

0.095

0.1

0.105

1−HV after IPLS

ε
a
ft

er
IP
L
S

1 2
5 10
15 20
25

ChangeRestart ChangeRestartarch
ChangeDirection ChangeDirectionarch

Restart

Fig. 3. Impact of the number of scalarisations (left) and the number of steps (right)

Our second proposal was to divide each run of the single-objective local
search into a number of smaller steps and, at each step, restart scalarisations
that produce poor results. We proposed two SBLS strategies that differ on what
is changed by the restart. In ChangeRestart, the local search for solving a scalar-
isation is restarted from the best-known solution for that scalarisation problem.
This solution was possibly generated when solving a different scalarisation. In
ChangeDirection, not only the starting solution, but also the weight that defines
the scalarisation problem itself being solved are both updated in order to re-focus
this particular run on the largest gap of the current approximation front.

Our experimental results show that these two new SBLS strategies outper-
form five classical SBLS strategies from the literature, even when the latter
are using an archive-aware local search. In particular, ChangeDirection produces
consistently the best results, either on its own or when used as the initialisation
phase of a hybrid SBLS+IPLS algorithm, which suggests that the new strategies
may lead to new state-of-the-art results for the bi-objective permutation flow-
shop [3], and other problems. An additional benefit of ChangeDirection is that it
maintains the adaptive behaviour of AdaptiveAnytime, while it also may perform
N scalar local search runs in parallel between steps.

Future work will analyse in more detail the interaction between the new
SBLS strategies and the archive-aware SO local search. A more comprehensive
analysis of the effect of the N scalar and N steps parameters would be needed
to understand their interactions with problem features. We would also hope
to evaluate the new proposals in terms of their anytime behaviour [4]. Finally,
we focused here on archive-aware mechanisms and we did not consider various
common speedups that would be required for a fair comparison with other state-
of-the-art algorithms.

12 A. Blot et al.

References

1. Blot, A., Jourdan, L., Kessaci-Marmion, M.E.: Automatic design of multi-objective
local search algorithms: case study on a bi-objective permutation flowshop schedul-
ing problem. GECCO 2017, pp. 227–234. ACM Press (2017).

2. Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic Pareto local
search algorithms. In: PPSN XI, LNCS, vol. 6238, pp. 485–495. Springer (2010).

3. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. COR 38(8), 1219–1236 (2011).

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Improving the anytime behavior
of two-phase local search. AMAI 61(2), 125–154 (2011).

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Combining two search
paradigms for multi-objective optimization: Two-Phase and Pareto local search.
In: Hybrid Metaheuristics, vol. 434, pp. 97–117. Springer Verlag (2013).

6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search.
EJOR 243(2), 369–385 (2015).

7. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-
based multiobjective local search: design, implementation and experimental anal-
ysis on scheduling and traveling salesman problems. JOH 18(2), 317–352 (2011).

8. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. ITOR 19(4), 495–520 (2012).

9. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Metaheuristics for
Multiobjective Optimisation, LNMES, vol. 535, pp. 177–200. Springer (2004)

10. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling
salesman problem. In: EMO 2003, LNCS, vol. 2632, pp. 479–493. Springer (2003)

11. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-
binatorial optimization: A review. In: Handbook of Approximation Algorithms and
Metaheuristics, pp. 29–1—29–15. Chapman & Hall/CRC (2007)

12. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. EJOR 177(3), 2033–2049 (2007)

13. Taillard, É.D.: Benchmarks for basic scheduling problems. EJOR 64(2), 278–285
(1993)

14. Zhang, Q. and Li, H. (2007): MOEA/D: A multiobjective evolutionary algorithm
based on decomposition. IEEE TEC, 11(6):712–731.

15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
TEC 7(2), 117–132 (2003)

	New Initialisation Techniques for Multi-Objective Local Search

